OGC API-Common

Open Geospatial Consortium

Submission Date: <yyyy-mm-dd>

Approval Date: <yyyy-mm-dd>

Publication Date: 2019-12-13

External identifier of this OGC® document: http://www.opengis.net/doc/IS/ogcapi-common/1.0
Internal reference number of this OGC® document: 19-072

Version: 0.0.6

Category: OGC® Implementation Specification

Editor: Charles Heazel

OGC API-Common

Copyright notice
Copyright © 2019 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/
Warning

This document is not an OGC Standard. This document is distributed for review
and comment. This document is subject to change without notice and may not
be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type:
OGC®ImplementationSpecification

Document stage: Draft

Document language: English

http://www.opengis.net/doc/IS/ogcapi-common/1.0
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the
terms set forth below, to any person obtaining a copy of this Intellectual Property and any associated
documentation, to deal in the Intellectual Property without restriction (except as set forth below), including without
limitation the rights to implement, use, copy, modify, merge, publish, distribute, and/or sublicense copies of the
Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to do so, provided that
all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to
the above copyright notice, a notice that the Intellectual Property includes modifications that have not been
approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT
MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE
USER’'S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL
PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL,
INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED
INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE
OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE IMPLEMENTATION, USE,
COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property
together with all copies in any form. The license will also terminate if you fail to comply with any term or condition
of this Agreement. Except as provided in the following sentence, no such termination of this license shall require the
termination of any third party end-user sublicense to the Intellectual Property which is in force as of the date of
notice of such termination. In addition, should the Intellectual Property, or the operation of the Intellectual Property,
infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright, trademark or other right of a
third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any compensation or
liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be
destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and
shall at all times be the sole entity that may authorize you or any third party to use certification marks, trademarks
or other special designations to indicate compliance with any LICENSOR standards or specifications. This Agreement
is governed by the laws of the Commonwealth of Massachusetts. The application to this Agreement of the United
Nations Convention on Contracts for the International Sale of Goods is hereby expressly excluded. In the event any
provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified so as
to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

Table of Contents

1. Introduction
2. Scope
3. Conformance
4. References
5. Terms and Definitions
5.1. Conformance Module; Conformance Test Module
5.2. Conformance Class; Conformance Test Class
5.3. dataset
5.4. Distribution
5.5. Executable Test Suite (ETS)
5.6. Recommendation
5.7. Requirement
5.8. Requirements Class
5.9. Requirements Module
5.10. Standardization Target
6. Conventions
6.1. Identifiers
6.2. Link relations
6.3. Use of HTTPS
6.4. API definition
6.4.1. General remarks
6.4.2. Role of OpenAPI
6.4.3. References to OpenAPI components in normative statements
6.4.4. Paths in OpenAPI definitions
6.4.5. Reusable OpenAPI components
7. Overview
7.1. Evolution from OGC Web Services
7.2. Encodings
8. Requirement Class "Core"
8.1. Overview
8.1.1. Resources
8.1.2. Modular APIs
8.1.3. Navigation
8.2. Foundation Resources
8.2.1. API landing page
8.2.2. API Definition
8.2.3. Declaration of Conformance Classes
8.3. Spatial Resources

11
12
12
12
12
12
12
13
13
13
13
13
14
14
14
14
14
14
14
15
15
15
17
17
18
19
19
19
19
19
21
22
23
24
25

8.4. Information Resources
8.5. General Requirements
8.5.1. HTTP 1.1
8.5.2. HTTP Status Codes
8.5.3. Web Caching

8.5.4. Support for Cross-Origin Requests

8.5.5. Encodings
8.5.6. Link Headers
9. Requirement Class "Collections"
9.1. Overview
9.2. Spatial Resources
9.2.1. Collections Metadata
9.2.2. Collection Information
9.2.3. Collection Resource
9.3. Information Resources
9.4. Parameter Modules
9.4.1. Parameter bbox
9.4.2. Parameter datetime
9.5. General Requirements
9.5.1. Coordinate Reference Systems
10. Requirements classes for encodings
10.1. Overview
10.2. Requirement Class "HTML"
10.3. Requirement Class "GeoJSON"
11. Requirements class "OpenAPI 3.0"
11.1. Basic requirements
11.2. Complete definition
11.3. Exceptions
11.4. Security
12. Media Types
Annex A: Abstract Test Suite (Normative)
A.1. Introduction
A.2. Conformance Class Core
A.2.1. General Tests
A.2.2. Landing Page {root}/

A.2.3. API Definition Path {root}/api (link)

A.2.4. Conformance Path {root}/conformance

A.3. Conformance Class Collections
A.3.1. General Tests

A.3.2. Feature Collections {root}/collections

A.3.3. Feature Collection {root}/collections/{collectionId}

25
26
26
26
27
27
28
29
30
30
30
31
33
37
38
39
39
40
42
42
44
44
44
45
47
47
47
48
48
50
51
51
51
51
51
52
53
54
54
54
35

A.3.4. Features {root}/collections/{collectionId}/items

A.3.5. Second Tier Tests
A.4. Conformance Class GeoJSON
A.4.1. Geo]JSON Definition
A.4.2. Geo]JSON Content
A.5. Conformance Class HTML
A.5.1. HTML Definition
A.5.2. HTML Content
A.6. Conformance Class OpenAPI 3.0
Annex B: Examples (Informative)
B.1. Example Landing Pages
B.2. API Description Examples
B.3. Conformance Examples
B.4. Collections Metadata Examples
B.5. Collection Information Examples
Annex C: Revision History

Annex D: Bibliography

56
60
61
62
62
62
63
63
63
66
66
66
66
67
69
70
71

Chapter 1. Introduction

1. Abstract

The OGC has extended their suite of standards to include Resource Oriented Architectures and Web
APIs. In the course of developing these standards, some practices proved to be common accross all
OGC API standards. The purpose of this standard is to document those practices. It also serves as a
common foundation upon which all OGC APIs will be built. As such, this OGC API Common
standard serves as the "OWS Common" standard for OGC Resource Oriented APIs.

An OGC API provides a lighweight interface to access one or more resources. The resources
addressed by OGC APIs fall into three categories; Foundation Resources, Spatial Resources, and
Information Resources. These Resource Catagories are described in section 8, Requirement Class
Core.

The API-Common standard defines resources and access paths that are supported by all OGC APIs.
These are listed in Table 1.

Table 1. Overview of Resources

Resource Path HTTP Document Reference
Method
Landing page / GET API Landing Page
API definition /api GET API Definition
Conformance classes /conformance GET Declaration of Conformance
Classes
Collections metadata /collections GET Collections Metadata

The resources identified in Table 1 primarily support Discovery operations. Discovery operations
allow clients the interrogate the API to determine its capabilities and retrieve information
(metadata) about this distribution of the resource. This includes the API definition of the server(s)
as well as metadata about the resources provided by those servers.

This standard also defines common Query operations for OGC APIs. Query operations allow
resources or values extracted from those resources to be retrieved from the underlying data store.
The information to be returned is based upon selection criteria (query string) provided by the
client. This standard only defines simple query parameters which should be applicable to all
resource types. Other OGC API standards may define additional query capabilities specific to their
resource type.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, property, geographic information, spatial data, spatial things, dataset,
distribution, API, geojson, html, OpenAPI, AsyncAPI, REST, Common

iii. Preface

OGC Declaration

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying
any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial Consortium (0OGC):

e Heazeltech LLC
e others TBD

v. Submitters

All questions regarding this submission should be directed to the editors or the submitters:

Name Affiliation
Chuck Heazel (editor) Heazeltech
others TBD

Chapter 2. Scope

This specification identifies resources, captures compliance classes, and specifies requirements
which are applicable to all OGC API standards. It should be included as a normative reference by all
such standards.

This specification addresses two fundamental operations; discovery and query.

Discovery operations allow the API to be interrogated to determine its capabilities and retrieve
information (metadata) about this distribution of a resource. This includes the API definition of the
server as well as metadata about the spatial resources provided by the server.

Query operations allow spatial resources to be retrieved from the underlying data store based upon
simple selection criteria, defined by the client.

Chapter 3. Conformance

Conformance with this standard shall be checked using the tests specified in Annex A (normative)
of this document. The framework, concepts, and methodology for testing, and the criteria to claim
conformance are specified in the OGC Compliance Testing Policies and Procedures and the OGC
Compliance Testing web site.

The one Standardization Target for this standard is Web APIs.

OGC API-Common provides a common foundation for OGC API standards. It is anticipated that this
standard will only be implemented through inclusion in other standards. Therefore, all the relevant
abstract tests in Annex A shall be included or referenced in the Abstract Test Suite in each separate
standard that normatively references this standard.

This standard identifies five conformance classes. The conformance classes implemented by an API
are advertised through the /conformance path on the landing page. Each conformance class is
defined by one requirements class. The tests in Annex A are organized by Requirements Class. So
an implementation of the Core conformance class must pass all tests specified in Annex A for the
Core requirements class.

The requirements classes for OGC API-Common are:
* Core

The Core Requirements Class is the minimal useful service interface for an OGC API. The
requirements specified in this requirements class are mandatory for all OGC APIs

Additional capabilities such as support for transactions, complex data structures, and rich queries
are specified in additional OGC API standards and in OGC managed API extensions. Those
standards and extensions build on the API-Common foundation to provide the full functionality
required of the API implementation.

e Collections

The Collections Requirements Class extends the Core to enable fine-grained access to spatial
resources. This requirements class is mandatory for all OGC APIs which expose spatial resources.

The structure and organziation of a collection of spatial resources is very much dependent on the
nature of that resource and the expected access patterns. This is information which cannot be
specified in a common manner. The Collections Requirements Class specifies the requirements
necessary to discover and understand that structure and organization. Requirements governing the
resource collections themselves are specified in the resource-specific OGC API standards.

* HTML
* GeoJ]SON
Neither the nor Core nor Collections requirements class mandate a specific encoding or format for

representing resources. The HTML and GeoJ/SON requirements classes specify representations for
these resources in commonly used encodings for spatial data on the web.

Neither of these encodings are mandatory. An implementation of the API-Common standard may
decide to implement another encoding instead of, or in addition to, these two.

* OpenAPI 3.0

The API-Common does not mandate any encoding or format for the formal definition of the APIL
The prefered option is the OpenAPI 3.0 specification. The OpenAPI 3.0 requirements class has been
specified for APIs implementing OpenAPI 3.0.

10

Chapter 4. References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

* Open API |Initiative: OpenAPI Specification 3.0.2, https://github.com/OAI/OpenAPI-
Specification/blob/master/versions/3.0.2.md

 Fielding, R., Gettys, J., Mogul, J., Frystyk, H., Masinter, L., Leach, P.,, Berners-Lee, T.: IETF RFC
2616, HTTP/1.1, http://tools.ietf.org/rfc/rfc2616.txt

» Rescorla, E.: IETF RFC 2818, HTTP Over TLS, http://tools.ietf.org/rfc/rfc2818.txt

* Klyne, G., Newman, C.: IETF RFC 3339, Date and Time on the Internet: Timestamps,
http://tools.ietf.org/rfc/rfc3339.txt

* Berners-Lee, T, Fielding, R., Masinter, L: IETF RFC 3896, Uniform Resource Identifier (URI):
Generic Syntax, http://tools.ietf.org/rfc/rfc3896.txt

* Butler, H., Daly, M., Doyle, A,, Gillies, S., Hagen, S., Schaub, T.: IETF RFC 7946, The GeoJSON
Format, https://tools.ietf.org/rfc/rfc7946.txt

* Nottingham, M.: IETF RFC 8288, Web Linking, http://tools.ietf.org/rfc/rfc8288.txt
* W3C: HTML5, W3C Recommendation, http://www.w3.org/TR/html5/

* Schema.org: http://schema.org/docs/schemas.html

11

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md
http://tools.ietf.org/rfc/rfc2616.txt
http://tools.ietf.org/rfc/rfc2818.txt
http://tools.ietf.org/rfc/rfc3339.txt
http://tools.ietf.org/rfc/rfc3896.txt
https://tools.ietf.org/rfc/rfc7946.txt
http://tools.ietf.org/rfc/rfc8288.txt
http://www.w3.org/TR/html5/
http://schema.org/docs/schemas.html

Chapter 5. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of OGC Web Services Common (OGC 06-
121r9), which is based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used to
indicate a requirement to be strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

5.1. Conformance Module; Conformance Test Module

set of related tests, all within a single conformance test class (OGC 08-131)

NOTE: When no ambiguity is possible, the word ‘test' may be omitted. i.e. conformance
test module is the same as conformance module. Conformance modules may be nested in a
hierarchical way.

5.2. Conformance Class; Conformance Test Class

set of conformance test modules that must be applied to receive a single certificate of conformance
(0GC 08-131)

NOTE: When no ambiguity is possible, the word _test_ may be left out, so conformance
test class maybe called a conformance class.

5.3. dataset

collection of data, published or curated by a single agent, and available for access or download in
one or more formats (DCAT)

5.4. Distribution

represents an accessible form of a dataset (DCAT)

EXAMPLE: a downloadable file, an RSS feed or a web service that provides the data.

5.5. Executable Test Suite (ETS)

A set of code (e.g. Java and CTL) that provides runtime tests for the assertions defined by the ATS.
Test data required to do the tests are part of the ETS (OGC 08-134)

12

https://portal.opengeospatial.org/files/?artifact_id=38867
https://portal.opengeospatial.org/files/?artifact_id=55234

5.6. Recommendation

expression in the content of a document conveying that among several possibilities one is
recommended as particularly suitable, without mentioning or excluding others, or that a certain
course of action is preferred but not necessarily required, or that (in the negative form) a certain
possibility or course of action is deprecated but not prohibited (OGC 08-131)

5.7. Requirement

expression in the content of a document conveying criteria to be fulfilled if compliance with the
document is to be claimed and from which no deviation is permitted (OGC 08-131)

5.8. Requirements Class

aggregate of all requirement modules that must all be satisfied to satisfy a conformance test class
(OGC 08-131)

5.9. Requirements Module

aggregate of requirements and recommendations of a specification against a single standardization
target type (OGC 08-131)

5.10. Standardization Target

entity to which some requirements of a standard apply (OGC 08-131)

NOTE: The standardization target is the entity which may receive a certificate of
conformance for a requirements class.

13

Chapter 6. Conventions

6.1. Identifiers

The normative provisions in this draft standard are denoted by the URI http://www.opengis.net/
spec/ogcapi-common/1.0.

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

6.2. Link relations

To express relationships between resources, RFC 8288 (Web Linking) and registered link relation
types are used.

6.3. Use of HTTPS

For simplicity, this document in general only refers to the HTTP protocol. This is not meant to
exclude the use of HTTPS and simply is a shorthand notation for "HTTP or HTTPS". In fact, most
servers are expected to use HTTPS, not HTTP.

6.4. API definition

6.4.1. General remarks

Good documentation is essential for every API so that developers can more easily learn how to use
the APIL In the best case, documentation would be available both in HTML for human consumption
and in a machine readable format that can be processed by software for run-time binding.

This standard specifies requirements and recommendations for APIs that share spatial resources
and want to follow a standard way of doing so. In general, APIs will go beyond the requirements
and recommendations stated in this standard. They will support additional operations, parameters,
etc. that are specific to the API or the software tool used to implement the API.

6.4.2. Role of OpenAPI

This document uses OpenAPI 3.0 fragments as examples and to formally state requirements. Using
OpenAPI 3.0 is not required for implementing an OGC API. Other API definition languages may be
used along with, or instead of OpenAPI. However, any API definition language used should have an
associated conformance class advertised through the /conformance path.

This approach is used to avoid lock-in to a specific approach to defining an API. This standard
includes a conformance class for API definitions that follow the OpenAPI specification 3.0.
Conformance classes for additional API definition languages will be added as the API landscape
continues to evolve.

In this document, fragments of OpenAPI definitions are shown in YAML since YAML is easier to

14

http://www.opengis.net/spec/ogcapi-common/1.0
http://www.opengis.net/spec/ogcapi-common/1.0

format than JSON and is typically used in OpenAPI editors.

6.4.3. References to OpenAPI components in normative statements

Some normative statements (requirements, recommendations and permissions) use a phrase that a
component in the API definition of the server must be "based upon" a schema or parameter
component in the OGC schema repository.

In this case, the following changes to the pre-defined OpenAPI component are permitted:
* If the server supports an XML encoding, xml properties may be added to the relevant OpenAPI

schema components.

* The range of values of a parameter or property may be extended (additional values) or
constrained (if a subset of all possible values are applicable to the server). An example for a
constrained range of values is to explicitly specify the supported values of a string parameter or
property using an enum.

* Additional properties may be added to the schema definition of a Response Object.

* Informative text may be changed or added, like comments or description properties.

For API definitions that do not conform to the OpenAPI Specification 3.0 the normative statement
should be interpreted in the context of the API definition language used.

6.4.4. Paths in OpenAPI definitions

All paths in an OpenAPI definition are relative to the base URL of a server. Unlike Web Services, an
API is decoupled from the server(s). Some ramifications of this are:

* An API may be hosted (replicated) on more than one server.

» Parts of an API may be distributed across multiple servers.

Example 1. URL of the OpenAPI definition

If the OpenAPI Server Object looks like this:

servers:
- url: https://dev.example.org/

description: Development server

- url: https://data.example.org/
description: Production server

The path "/mypath" in the OpenAPI definition of the API would be the URL
https://data.example.org/mypath for the production server.

6.4.5. Reusable OpenAPI components

Reusable components for OpenAPI definitions for a OGC API are referenced from this document.

15

https://data.example.org/mypath

16

CAUTION

During the development phase, these components use a base URL of
"https://raw.githubusercontent.com/opengeospatial/oapi_common/master/", but
eventually they are expected to be available under the base URL
"http://schemas.opengis.net/ogcapi_common/1.0/openapi/".

Chapter 7. Overview

7.1. Evolution from OGC Web Services

OGC Web Service (OWS) standards implement a Remote-Procedure-Call-over-HTTP architectural
style using XML for payloads. This was the state-of-the-art when OGC Web Services (OWS) were
originally designed in the late 1990s. However, times have changed. New Resource-Oriented APIs
have begun to replace Service-Oriented Web Services. And new OGC API standards are under
development to provide API alternatives to the OWS standards.

OGC API (OAPI) Common specifies the common Kernel of this API approach to services that follows
the current Web architecture. In particular, the W3C/OGC best practices for sharing Spatial Data on
the Web as well as the W3C best practices for sharing Data on the Web.

Beside the general alignment with the architecture of the Web (e.g., consistency with HTTP/HTTPS,
hypermedia controls), another goal for OGC API standards is modularization. This goal has several
facets:

* Clear separation between common core requirements and more resource specific capabilities.
This document specifies the core or common requirements that are relevant for almost
everyone who wants to build a spatial API. Additional capabilities that several communities are
using today will be specified as extensions to the Common API.

» Technologies that change more frequently are decoupled and specified in separate modules
("conformance classes" in OGC terminology). This enables, for example, the use/re-use of new
encodings for spatial data or API descriptions.

* Modularization is not just about a single "service". OGC APIs will provide building blocks that
can be reused in APIs in general. In other words, a server supporting the OGC-Feature API
should not be seen as a standalone service. Rather it should be viewed as a collection of API
building blocks which together implement API-Feature capabilities. A corollary of this is that it
should be possible to implement an API that simultaneously conforms to conformance classes
from the Feature, Coverage, and other OGC Web API standards.

Implementations of OGC API Common are intended to support two different approaches for how
clients can use the APIL

In the first approach, clients are implemented with knowledge about this standard and its resource
types. The clients navigate the resources based on this knowledge and based on the responses
provided by the API. The API definition may be used to determine details, e.g., on filter parameters,
but this may not be necessary depending on the needs of the client. These are clients that are in
general able to use multiple APIs as long as they implement OGC API Common.

The other approach targets developers that are not familiar with the OGC API standards, but want
to interact with spatial data provided by an API that happens to implement OGC API Common. In
this case the developer will study and use the API definition, typically an OpenAPI document, to
understand the API and implement client code to interact with the API. This assumes familiarity
with the API definition language and the related tooling, but it should not be necessary to study the
OGC API standards.

17

7.2. Encodings

Arguably this requires a conformance class for every possible encoding. Do we
NOTE really want a conformance class for GeoTIFF? or NITF?, or Protobuf? Should this
requirement be limited to those resources defined in this standard?

This standard does not mandate any encoding or format. But it does provide extensions for
encodings which are commonly used in OGC APIs. In addition to HTML as the standard encoding
for Web content, rules for commonly used encodings for spatial data on the web are provided
(GeoJSON).

None of these encodings is mandatory. An implementation of the Core requirements class does not
have to support any of them. It may instead implement an entirely different set of encodings.

Support for HTML is recommended. HTML is the core language of the World Wide Web. An API that
supports HTML will support browsing the spatial resources with a web browser and will also
enable search engines to crawl and index those resources.

GeoJSON is a commonly used format that is simple to understand and well supported by tools and
software libraries. Since most Web developers are comfortable with using a JSON-based format,
GeoJSON is recommended for APIs which expose feature data and where Geo]JSON is capable of
supporting the intended use.

Some examples of cases that are out-of-scope for GeoJSON are:

* When solids are used for geometries (e.g. in a 3D city model),

* Geometries that include non-linear curve interpolations that cannot be simplified (e.g., use of
arcs in authoritative geometries),

* Geometries that have to be represented in a coordinate reference system that is not based on
WGS 84 longitude/latitude (e.g. an authoritative national reference system),

» Features that have more than one geometric property.

The recommendations for using HTML and GeoJSON reflect the importance of HTML and the
current popularity of JSON-based data formats. As the practices in the Web community evolve,
these recommendations will likely be updated in future versions of this standard to provide
guidance on using other encodings.

This part of the OAPI standard does not provide any guidance on other encodings. The supported
encodings, or more precisely the media types of the supported encodings, can be determined from
the API definition. The desired encoding is selected using HTTP content negotiation.

For example, if the server supports GeoJSON Text Sequences an encoding that is based on JSON text
sequences and GeoJSON to support streaming by making the data incrementally parseable, the
media type application/geo+json-seq would be used.

18

https://tools.ietf.org/html/rfc8142

Chapter 8. Requirement Class "Core"

Requirements Class
http://www.opengis.net/spec/ogcapi_common/1.0/req/core
Target type Web API

Dependency RFC 2616 (HTTP/1.1)

Dependency RFC 2818 (HTTP over TLS)

Dependency RFC 8288 (Web Linking)

8.1. Overview

8.1.1. Resources

An OGC API provides a lighweight interface to access one or more resources. The resources
addressed by OGC APIs fall into three categories; Foundation Resources, Spatial Resources, and
Information Resources.

Foundation Resources are those resources which are common across all OGC APIs. Those resources
are defined in this OGC API-Common standard. Other OGC API standards re-use these resources
and, where necessary, extend them to address their unique requirements.

Spatial Resources are the resources which we usually think of as Geospatial Data. They include
Features, Coverages, and Images. This Standard defines basic patterns for accessing Spatial
Resources. Additional OGC API Standards have been developed to address specific API
requirements for each Spatial Resource type.

Information Resources are non-spatial resources which support the operation of the API or the
access and use of the Spatial Resources.

8.1.2. Modular APIs

A goal of OGC API standards is to provide rapid and easy access to spatial resources. To meet this
goal, the needs of both the resource provider and the resource consumer must be considered. Our
approach is to provide a modular framework of API components. This framework provides a
consistent "look and feel" across all OGC APIs. When API servers and clients are built from the same
set of modules, the likelyhood that they will integrate at run-time is greatly enhanced.

A more detailed discussion of modular APIs can be found in the API-Common Best Practices
document.

8.1.3. Navigation

OGC APIs are designed to support two access patterns; Hypermedia Access, and Direct Access. OGC
APIs support both access patterns through the use of API Definition documents, standardized paths,
and standardized hypermedia schemas.

19

http://www.opengis.net/spec/ogcapi_common/1.0/req/core
https://github.com/opengeospatial/oapi_common/blob/master/19-072BP.html#modular-api

Hypermedia Access

Hypermedia Access is the use of hypermedia links to navigate from one resource to another. This
pattern is typical of the Web Browser environment. A resource consumer (typically a human) starts

from a landing page, selects a link on that page, then moves on to the referenced resource.

Navigation of hyperlinks is facilitated if the hyperlink includes information about the resource type
at the link destination. Therefore, OGC APIs use a set of common link relationships. These link

relationships are described in Table 2.

Table 2. Link Relations

Link Relation

alternate

conformance
data

describedBy

items

self
service-desc

service-doc

Purpose

links to this resource in another media type (the media type is
specified in the type link attribute)

links to conformance information
links to an information resource

links to external resources which further describe the subject
resource

links to each individual resource which is included in a collection
resource

links to this resource,
links to the API Definition

an alternative to service-desc

OGC API hyperlinks are defined using the following Hyperlink Schema.

20

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/link.json

Hyperlink Schema

{
"$§schema": "http://json-schema.org/draft-07/schema#",
"title": "Link Schema",
"description”: "Schema for external references",
"type": "object",
"required": [
"href"
1
"properties": {
"href": {
"type": "string"
}
"rel": {
"type": "string"
s
"hreflang": {
"type": "string"
s
"title": {
"type": "string"
}
}
}
Direct Access

Direct Access requires that the resource consumer possesses knowlege of the path to the resouce
prior to attempting access. Typically this knowlege comes from the use of standard paths, receiving
the path from another entity, or by processing an API definition resource. Direct access is
particularly applicable to software analytics where there is no human in the loop.

Direct access is facilitated by the use of standard URL paths. The requirements in this Requirements
Class are organized around these standard paths.

8.2. Foundation Resources
Foundation resources are those resources which are provided by every OGC API.
The standard paths defined in this Standard for Foundation Resources are:

1. "/" - the landing page
2. "[api" - the API Definition document for this API

3. "/conformance" - the conformance information for this API

21

8.2.1. API landing page

Each OGC API has a single LandingPage (path /).

The purpose of the landing page is to provide users with the basic information they need to use this
API as well as links to the resources exposed through the API.

Operation

Requirement 1

A

Response

Requirement 2

A

/req/core/root-op

The server SHALL support the HTTP GET operation at the path /.

/req/core/root-success

A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

The content of that response SHALL be based upon the schema

landingPage.json and include links to the following resources:
 the API definition (relation type 'service-desc' or 'service-doc’)
» /conformance (relation type 'conformance’)

* one or more information resources (relation type 'data’)

In addition to the required resources, links to additional resources may be included in the Landing

Page.

The landing page returned by this operation is based on the following Landing Page Schema.
Examples of OGC landing pages are provided in Example Landing Pages.

22

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/landingPage.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/landingPage.json

Landing Page Schema

{
"$schema": "http://json-schema.org/draft-07/schema#",
“title": "Landing Page Schema",
"description”: "JSON schema for the 0GC API-Common landing page",
"type": "object",
"required": [
"links"
1,
"properties": {
"title": {
"description”: "The title of the API",
"type": "string"
I#
"description": {
"description": "A textual description of the API",
"type": "string"
},
"links": {
"description": "Links to the resources exposed through this API.",
"type": "array",
"items": {"$href": "link.json"}

}

b

"patternProperties": {
"/\X_": {}

b

"additionalProperties": true

Error Situations

See HTTP Status Codes for general guidance.

8.2.2. API Definition

Every API is expected to provide a definition that describes capabilities provided by the API. This
document can be used by developers to understand the API, by software clients to connect to the
server, and by development tools to support the implementation of servers and clients.

Operation

Requirement 3 /req/core/api-definition-op

A The URIs of all API definitions referenced from the landing page
SHALL support the HTTP GET method.

23

Response

Requirement4 /req/core/api-definition-success

A A GET request to the URI of an API definition linked from the
landing page (link relations service-desc or service-doc) with an
Accept header with the value of the link property type SHALL
return a document consistent with the requested media type.

Recommendation 1 /rec/core/api-definition-oas

A If the API definition document uses the OpenAPI Specification 3.0,
the document SHOULD conform to the OpenAPI Specification 3.0
requirements class.

If multiple API definition formats are supported, use content negotiation to select the desired
representation.

Error Situations

See HTTP Status Codes for general guidance.

8.2.3. Declaration of Conformance Classes

To support "generic" clients that want to accessing OGC APIs in general - and not "just” a specific API
/ server, the API has to declare the conformance classes it implements and conforms to.

Operation

Requirement5 /req/core/conformance-op

A The API SHALL support the HTTP GET operation at the path
/conformance.

Response

Requirement 6 /req/core/conformance-success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

B The content of that response SHALL be based upon the OpenAPI
3.0 schema confClasses.json and list all OGC API conformance
classes that the API conforms to.

24

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/confClasses.json

The conformance resource returned by this operation is based on the following Conformance
Schema. Examples of OGC conformance resources are provided in Conformance Examples.

Conformance Schema

{
"$schema": "http://json-schema.org/draft-07/schema#",
"title": "Conformance Classes Schema",
"description": "This schema defines the resource returned from the /Conformance path",
"type": "object",
"required": [
"conformsTo"

1,
"properties": {
"conformsTo": {
"type": "array",
"description": "ConformsTo is an array of URLs. Each URL should correspond to
a defined 0GC Conformance class. Unrecognized URLs should be ignored",
"items": {
"type": "string",
"example": "http://www.opengis.net/spec/0OAPI_Common/1.0/req/core"
¥

Error situations

See HTTP Status Codes for general guidance.

8.3. Spatial Resources

There is no requirement that every OGC API support Spatial Resources. Therefore, Spatial
Resources are addressed in a separate Collections Requirement Class. This class is described in the
Collections section.

8.4. Information Resources

Information Resources are non-spatial resources which support the operation of the API or the
access and use of the Spatial Resources. These resources are usually specific to a spatial resource
type and will be defined in the appropriate API standards.

Information Resources can exposed using two path templates:

* /collections/{collectionId}/{resourceType}

» {resourceType}

Where

25

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/confClasses.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/confClasses.json

{collectionld} = a unique identifier for a Spatial Resource collection.
{resourceType} = a text string identifying the Information Resource type.

Information Resources associated with a specific collection should be accessed through the
/collections path. Those which are not associated with a specific collection should use the
/{resourceType} template.

The OGC API-Common standard does not define any Information Resource types. However Table 3
provides a maping of the know Information Resource types to the standard where they are defined.

Table 3. Information Resource Types
Resource Type API Standard
TBD TBD

8.5. General Requirements

The following general requirements and recomendations apply to all OGC APIs.

8.5.1. HTTP 1.1

The standards used for Web APIs are built on the HTTP protocol. Therefore, conformance with
HTTP or a closely related protocol is required.

Requirement 7 /req/core/http
A The API SHALL conform to HTTP 1.1.

B If the API supports HTTPS, then the API SHALL also conform to
HTTP over TLS.

8.5.2. HTTP Status Codes

Table 4 lists the main HTTP status codes that clients should be prepared to receive. This includes
support for specific security schemes or URI redirection. In addition, other error situations may
occur in the transport layer outside of the server.

Table 4. Typical HTTP status codes

Status code Description

200 A successful request.

304 An entity tag was provided in the request and the resource has not been changed
since the previous request.

400 The server cannot or will not process the request due to an apparent client error.
For example, a query parameter had an incorrect value.

26

Status code Description

401 The request requires user authentication. The response includes a WWW-Authenticate
header field containing a challenge applicable to the requested resource.

403 The server understood the request, but is refusing to fulfill it. While status code 401
indicates missing or bad authentication, status code 403 indicates that
authentication is not the issue, but the client is not authorised to perform the
requested operation on the resource.

404 The requested resource does not exist on the server. For example, a path parameter
had an incorrect value.

405 The request method is not supported. For example, a POST request was submitted,
but the resource only supports GET requests.

406 Content negotiation failed. For example, the Accept header submitted in the request
did not support any of the media types supported by the server for the requested
resource.

500 An internal error occurred in the server.

More specific guidance is provided for each resource, where applicable.

Permission 1 /per/core/additional-status-codes

A Servers MAY support other capabilities of the HTTP protocol and,
therefore, MAY return other status codes than those listed in
Table 4, too.

8.5.3. Web Caching

Entity tags are a mechanism for web cache validation and for supporting conditional requests to
reduce network traffic. Entity tags are specified by HTTP/1.1 (RFC 2616).

Recommendation 2 /rec/core/etag

A The service SHOULD support entity tags and the associated
headers as specified by HTTP/1.1.

8.5.4. Support for Cross-Origin Requests

Access to data from a HTML page is by default prohibited for security reasons, if the data is located
on another host than the webpage ("same-origin policy"). A typical example is a web-application
accessing feature data from multiple distributed datasets.

Recommendation 3 /rec/core/cross-origin

27

A If the server is intended to be accessed from the browser, cross-
origin requests SHOULD be supported. Note that support can also
be added in a proxy layer on top of the server.

Two common mechanisms to support cross-origin requests are:
» Cross-origin resource sharing (CORS)
* JSONP (JSON with padding)

8.5.5. Encodings

While the OAPI Common standard does not specify any mandatory encoding, the following
encodings are recommended. See Clause 7 (Overview) for a discussion of this issue.

HTML encoding recomendation:

Recommendation 4 /rec/core/html

A To support browsing a API with a web browser and to enable
search engines to crawl and index the dataset, implementations
SHOULD consider to support an HTML encoding.

GeoJSON encoding recomendation:

Recommendation 5 /rec/core/geojson

A If the resource can be represented for the intended use in
GeoJSON, implementations SHOULD consider to support GeoJSON
as an encoding.

Requirement /req/core/http implies that the encoding of a response is determined using content
negotiation as specified by the HTTP RFC.

The section Media Types includes guidance on media types for encodings that are specified in this
document.

Note that any API that supports multiple encodings will have to support a mechanism to mint
encoding-specific URIs for resources in order to express links, for example, to alternate
representations of the same resource. This document does not mandate any particular approach
how this is supported by the API.

As clients simply need to dereference the URI of the link, the implementation details and the
mechanism how the encoding is included in the URI of the link are not important. Developers
interested in the approach of a particular implementation, for example, to manipulate ("hack") in
the browser address bar, can study the API definition.

28

https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://en.wikipedia.org/wiki/JSONP

Two common approaches are:

* an additional path for each encoding of each resource (this can be expressed,

NOTE for example, using format specific suffixes like ".html");
* an additional query parameter (for example, "accept” or "f") that overrides the
Accept header of the HTTP request.
8.5.6. Link Headers

Recommendation 6 /rec/core/link-header

A

Links included in payload of responses SHOULD also be included
as Link headers in the HTTP response according to RFC 8288,
Clause 3.

This recommendation does not apply, if there are a large number
of links included in a response or a link is not known when the
HTTP headers of the response are created.

29

Chapter 9. Requirement Class "Collections"

Requirements Class

http://www.opengis.net/spec/ogcapi_common/1.0/req/collections

Target type Web API
Dependency Requirements Class "OAPI Core"
Dependency RFC 3339 (Date and Time on the Internet: Timestamps)

9.1. Overview

Spatial Resources are the resources which we usually think of as Geospatial Data. They include
Features, Coverages, and Images. This Conformance Class defines basic patterns for accessing
Spatial Resources. Additional OGC API Standards have been developed to address specific API
requirements for each Spatial Resource type.

OGC APIs are designed to support two access patterns; Hypermedia Access, and Direct Access. OGC
APIs support both access patterns through the use of API Definition documents, standardized paths,
and standardized hypermedia schemas.

Hypermedia Access was described in the Navigation section of Clause 8. For Spatial Resources,
hypermedia navigation is enabled through the links included in each schema defined by this
Reqirement Class.

Direct access is the use of know URL paths to access a resource directly. The requirements in this
Requirement Class are organized around the standard paths for Spatial Data.

9.2. Spatial Resources

Detailed requirements for each Spatial Resource type are dealt with in the resource-specific API
standards. However, this API Common standard has the responsiblity to see that all OGC API
standards work together by:

1. Providing specifications for the description of each collection (/collections/{collectionId}), and
the list of collections (/collections)

2. Providing a consistent framework for serving spatial data from the OGC API, regardless of the
type. Consistent means that #1 works exactly the same (potentially with type-specific additional
properties) and that the different types of data can all be collections on the same OGC API end-
point.

3. Providing a tie point for other OGC API modules to connect to and reference (processes inputs &
outputs, cataloging, searching and filtering collections, detailed metadata, tiles, styles, clipping
and intersecting bounding boxes in common) Just by virtue of understanding that
/collections/{collectionId} points to a spatial data layer.

Spatial Resources are exposed using the path template.

30

http://www.opengis.net/spec/ogcapi_common/1.0/req/collections

/collections/{collectionId}/items

The resources returned from each node in this template are described in Table 5.

Table 5. Spatial Resource Paths
Path Template Resource

/collections Metadata describing the spatial collections
available from this API.

/collections/{collectionId} Metadata describing the collection with the
unique identifier {collectionId}

/collections/{collectionId}/items The spatial collection resource identified by the
{collectionld} parameter.

9.2.1. Collections Metadata

OGC APIs typically organize their Spatial Resources into collections. Information about those
collections is accessed through the /collections path.

Operation

Requirement 8 /req/collections/rc-md-op

A The API SHALL support the HTTP GET operation at the path
/collections.

Response

Requirement 9 /req/collections/rc-md-success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

B The content of that response SHALL be based upon the JSON
schema collections.json.

The collections metadata returned by this operation is based on the Collections Metadata Schema.
Examples of collections metadata are provided in Collections Metadata Examples.

31

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collections.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collections.json

Collections Metadata Schema

"$§schema": "http://json-schema.org/draft-07/schema#",
"title": "Collections Schema",
"description”: "This schema defines the metadata resource returned from
/collections.”,
"type": "object",
"required": [
"links",
"collections"

IE
"properties": {

"links": {
"type": "array",
"items": {"$href": "link.json"}
s

"collections": {
"type": "array",
"items": {"$href": "collectionInfo.json"}

}

This schema is further constrained by the following requirements and recomendations.

To support hypermedia navigation, the 1inks property must be populated with sufficient hyperlinks
to navigate through the whole dataset.

Requirement 10 /req/collections/rc-md-links

A A 200-response SHALL include the following links in the links
property of the response:

* alink to this response document (relation: self),

* a link to the response document in every other media type
supported by the API (relation: alternate).

B All links SHALL include the rel and type link parameters.

Additional information may be available to assist in understanding and using this dataset. Links to
those resources should be provided as well.

Recomendation 7 /rec/collections/rc-md-descriptions

32

A If external schemas or descriptions exist that provide additional
information about the structure or semantics for the resource, a
200-response SHOULD include links to each of those resources in
the 1inks property of the response (relation: describedBy).

B The type link parameter SHOULD be provided for each link. This
applies to resources that describe to the whole dataset.

The collections property of the Collections Metadata provides a description of each collection.
These descriptions are based on the Collection Information Schema. This schema is described in
detail in the Collection Information section of this Standard. The following requirements and
recommendations govern the use of Collection Information in the Collections Metadata.

Requirement 11 /req/collections/rc-md-items

A For each spatial resource collection accessible through this API,
metadata describing that collection SHALL be provided in the
collections property of the Collections Metadata.

B This metadata shall be based on the same schema as the
Collection Information resource.

While it is prefered that the Collections Metadata describe all of the collections accessible through
the API, in some cases that is impractical. Developers have an option to only return a subset, as long
as they provide a way to retrieve the remaining metadata as well.

Permission 2 /per/collections/rc-md-items

A To support servers with many collections, servers MAY limit the
number of items included in the collections property.

Error situations

See HTTP Status Codes for general guidance.

9.2.2. Collection Information

Each resource collection is described by a set of metadata. That metadata is accessed directly using
the /collections/{collectionId} path or as an entry in the collections property of the Collections
Metadata resource.

Operation

Requirement 12 /req/collections/src-md-op

33

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collectionInfo.json

A The API SHALL support the HTTP GET operation at the path
/collections/{collectionId}.

B The parameter collectionId is each id property in the resource
collections response (JSONPath: $.collections[*].id).

Response

Requirement 13 /req/collections/src-md-success

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

B The content of that response SHALL be based upon the JSON
schema collectionInfo.json.

C The content of that response SHALL be consistent with the
content for this resource collection in the /collections response.
That is, the values for id, title, description and extent SHALL be
identical.

Collection Information is based on the Collection Information Schema. Examples of Collection
Information are provided in Collection Information Examples.

34

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collectionInfo.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collectionInfo.json

Collection Information Schema

{
"$§schema": "http://json-schema.org/draft-07/schema#",
“title": "Collection Information Schema",
"description”: "This schema defines metadata resource returned from
/collections/{collectionId}.",
"type": "object",
"required": [
"id",
"links"
1.
"properties": {
"id": {
"type": "string"
1
"title": {
"type": "string"
)
"description": {
"type": "string"
1,
"links": {
"type": "array",
"items": {"$href": "link.json"}

+,
"extent": {"$href": "extent.json"},
"itemType": {

"type": "string",

"default": "unknown"

)

"ers": {
"description": "the list of coordinate reference systems supported by the
API; the first item is the default coordinate reference system",

"type": "array",

"items": {
"type": "string"
e

"default": [
"http://www.opengis.net/def/crs/06C/1.3/CRS84"
1

"example": [
"http://www.opengis.net/def/crs/06C/1.3/CRS84",
"http://www.opengis.net/def/crs/EPSG/0/4326"
]

This schema is further constrained by the following requirements and recomendations.

35

To support hypermedia navigation, the 1inks property must be polulated with sufficient hyperlinks
to navigate through the whole dataset.

Requirement 14 /req/collections/rc-md-items-links

A 200-response SHALL include the following links in the links
property of the response:

* alink to this response document (relation: self),

* a link to the response document in every other media type
supported by the API (relation: alternate).

B The links property of the response SHALL include an item for
each supported encoding of that collection with a link to the
collection resource (relation: items).

B All links SHALL include the rel and type properties.

Additional information may be available to assist in understanding and using this dataset. Links to
those resources should be provided as well.

Recomendation 8 /rec/core/rc-md-items-desciptions

A If external schemas or descriptions exist that provide additional
information about the structure or semantics of the collection, a
200-response SHOULD include links to each of those resources in
the links property of the response (relation: describedBy).

B The type link parameter SHOULD be provided for each link.

Additional requirements and recomendations apply to the extent propery of the Collection
Information.

Requirement 15 /req/collections/rc-md-extent

A For each spatial resource collection, the extent property, if
provided, SHALL provide bounding boxes that include all spatial
geometries and time intervals that include all temporal
geometries in this collection. The temporal extent may use null
values to indicate an open time interval.

36

B If a spatial resource has multiple properties with spatial or
temporal information, it is the decision of the API implementation
whether only a single spatial or temporal geometry property is
used to determine the extent or all relevant geometries.

Recommendation 9 /rec/core/rc-md-extent-single

A While the spatial and temporal extents support multiple
bounding boxes (bbox array) and time intervals (interval array)
for advanced use cases, implementations SHOULD provide only a
single bounding box or time interval unless the use of multiple
values is important for the use of the dataset and agents using the
API are known to be support multiple bounding boxes or time

intervals.
Permission 3 /per/collections/rc-md-extent-extensions
A The Core only specifies requirements for spatial and temporal

extents. However, the extent object MAY be extended with
additional members to represent other extents, for example,
thermal or pressure ranges.

B The Core only supports spatial extents in WGS84
longitude/latitude and temporal extents in the Gregorian calendar
(these are the only enum values in extent.yaml).

C Extensions to the Core MAY add additional reference systems to
the extent object.

Error situations

See HTTP Status Codes for general guidance.

If the parameter collectionId does not exist on the server, the status code of the response will be
404 (see Table 4).

9.2.3. Collection Resource

A collection resource is the content of the collection as opposed to metadata about that collection.
This standard defines the general behavior of this operation, but detailed requirements are the
purvue of the API standard for that resource type.

Operation

37

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/extent.yaml

Requirement 16 /req/collections/rc-op

A For every resource collection identified in the resource collections
response (path /collections), the API SHALL support the HTTP
GET operation at the path /collections/{collectionId}/items.

* The parameter collectionIld is each id property in the
resource collections response (JSONPath:
$.collections[*].1d).

Response

Requirement 17 /req/collections/rc-response

A A successful execution of the operation SHALL be reported as a
response with a HTTP status code 200.

B The response SHALL only include resources selected by the
request.

Error situations

See HTTP Status Codes for general guidance.

9.3. Information Resources

Information Resources are non-spatial resources which support the operation of the API or the
access and use of the Spatial Resources. They are described in the Information Resources section.

Information Resources related to Spatial Resources can exposed using the path template:
* /collections/{collectionld}/{resourceType}

The resources returned from each node in this template are described in Table 6.

Table 6. Information Resource Paths
Path Template Resource

/collections The root resource describing the spatial collections
available from this APIL.

/collections/{collectionlId} Identifies a collection with the unique identifier
{collectionId}

/collections/{collectionId}/{r Identifies an Information Resource of type {resourceType}
esourceType} associated with the {collectionId} collection.

The OGC API-Common standard does not define any Information Resource types. However Table 3

38

provides a mapping of the known Information Resource types to the standard where they are
defined.

9.4. Parameter Modules

Query parameters are used in URLs to limit the resources which are returned on a GET request. The
API Common standard defines two standard parameters for use in OGC API standards.

9.4.1. Parameter bbox

Requirement 18 /req/collections/rc-bbox-definition

A The bbox parameter SHALL possess the following characteristics
(using an OpenAPI Specification 3.0 fragment):

name: bbox
in: query
required: false
schema:
type: array
minItems: 4
maxItems: 6
items:
type: number
style: form

explode: false

Requirement 19 /req/collections/rc-bbox-response

A If the bbox parameter is provided, only resources that have a
spatial geometry that intersects the bounding box SHALL be part
of the result set.

B If a resource has multiple spatial geometry properties, it is the
decision of the server whether only a single spatial geometry
property is used to determine the extent or all relevant
geometries.

C The bbox parameter SHALL also match all resources in the
collection that are not associated with a spatial geometry.

39

"Intersects" means that the rectangular area specified in the parameter bbox includes a coordinate
that is part of the (spatial) geometry of the resource. This includes the boundaries of the geometries

The bounding box is provided as four or six numbers, depending
on whether the coordinate reference system includes a vertical
axis (height or depth):

e Lower left corner, coordinate axis 1

Lower left corner, coordinate axis 2

Lower left corner, coordinate axis 3 (optional)
» Upper right corner, coordinate axis 1
» Upper right corner, coordinate axis 2

» Upper right corner, coordinate axis 3 (optional)

The coordinate reference system of the values on axis 1 and 2
SHALL be interpreted as WGS84 longitude/latitude
(http://www.opengis.net/def/crs/OGC/1.3/CRS84) unless a different
coordinate reference system is specified in a parameter bbox-crs.

The coordinate values SHALL be within the extent specified for
the coordinate reference system.

(e.g. for curves the start and end position and for surfaces the outer and inner rings).

This standard does not specify requirements for the parameter bbox-crs. Those requirements will

be specified in a later version of this specification.

For WGS84 longitude/latitude the bounding box is in most cases the sequence of minimum
longitude, minimum latitude, maximum longitude and maximum latitude. However, in cases
where the box spans the anti-meridian the first value (west-most box edge) is larger than the third

value (east-most box edge).

Example 2. The bounding box of the New Zealand Exclusive Economic Zone

The bounding box of the New Zealand Exclusive Economic Zone in WGS84 (from 160.6°E to
170°W and from 55.95°S to 25.89°S) would be represented in JSON as [160.6, -55.95, -170,

-25.89] and in a query as bbox=160.6,-55.95,-170,-25.89.

A template for the definition of the parameter in YAML according to OpenAPI 3.0 is available at

bbox.yaml.

9.4.2. Parameter datetime

Requirement 20

40

/req/collections/rc-time-definition

http://www.opengis.net/def/crs/OGC/1.3/CRS84
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/parameters/bbox.yaml

A The datetime parameter SHALL have the following characteristics
(using an OpenAPI Specification 3.0 fragment):

name: datetime
in: query
required: false
schema:

type: string
style: form
explode: false

Requirement 21 /req/collections/rc-time-response

A If the datetime parameter is provided, only resources that have a
temporal geometry that intersects the temporal information in
the datetime parameter SHALL be part of the result set.

B If a resourcee has multiple temporal properties, it is the decision
of the API whether only a single temporal property is used to
determine the extent or all relevant temporal properties.

C The datetime parameter SHALL match all resources in the
collection that are not associated with a temporal geometry.

D The temporal information is either a date-time or a time interval.
The parameter value SHALL conform to the following syntax
(using ABNF):

interval-closed = date-time "/" date-time
interval-open-start = "../" date-time
interval-open-end date-time "/.."

interval interval-closed / interval-open-
start / interval-open-end

datetime = date-time / interval

E The syntax of date-time is specified by RFC 3339, 5.6.

F Open ranges in time intervals at the start or end SHALL be
supported using a double-dot (. .).

"Intersects" means that the time (instant or period) specified in the parameter datetime includes a
timestamp that is part of the temporal geometry of the resource (again, a time instant or period).
For time periods this includes the start and end time.

41

https://tools.ietf.org/html/rfc2234
https://tools.ietf.org/html/rfc3339#section-5.6

Example 3. A date-time

February 12, 2018, 23:20:52 GMT:

time=2018-02-12T723%3A20%3A52Z
For resources with a temporal property that is a timestamp (like lastUpdate in the building
features), a date-time value would match all resources where the temporal property is identical.

For resources with a temporal property that is a date or a time interval, a date-time value would
match all resources where the timestamp is on that day or within the time interval.

Example 4. Intervals

February 12, 2018, 00:00:00 GMT to March 18, 2018, 12:31:12 GMT:
datetime=2018-02-12T00%3A00%3A00Z%2F2018-03-18T12%3A31%3A12Z
February 12, 2018, 00:00:00 UTC or later:
datetime=2018-02-12T00%3A00%3A00Z%2F . .

March 18, 2018, 12:31:12 UTC or earlier:
datetime=..%2F2018-03-18T12%3A31%3A12Z

A template for the definition of the parameter in YAML according to OpenAPI 3.0 is available at
datetime.yaml.

9.5. General Requirements

The following general requirements and recomendations apply to all OGC APIs which host Spatial
Resources.

9.5.1. Coordinate Reference Systems

As discussed in Chapter 9 of the W3C/OGC Spatial Data on the Web Best Practices document, how to
express and share the location of resources in a consistent way is one of the most fundamental
aspects of publishing geographic data and it is important to be clear about the coordinate reference
system that coordinates are in.

For the reasons discussed in the Best Practices, OGC APIs use WGS84 longitude and latitude as the
default coordinate reference system.

Requirement 22 /req/collections/crs84

42

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/parameters/datetime.yaml

A Unless the client explicitly requests a different coordinate
reference system, all spatial geometries SHALL be in the CRS84
(WGS 84 longitude/latitude) coordinate reference system for
geometries without height information and CRS84h (WGS 84
longitude/latitude plus ellipsoidal height) for geometries with
height information.

The implementations compliant with the Core are not required to support publishing geometries in
coordinate reference systems other than http:/www.opengis.net/def/crs/OGC/1.3/CRS84. The Core
also does not specify a capability to request geometries in a different reference system than the
native one of the published resource. Such a capability will be specified in other OGC API
standards.

43

http://www.opengis.net/def/crs/OGC/1.3/CRS84
http://www.opengis.net/def/crs/OGC/0/CRS84h
http://www.opengis.net/def/crs/OGC/1.3/CRS84

Chapter 10. Requirements classes for
encodings

10.1. Overview

This clause specifies two pre-defined requirements classes for encodings to be used by an OGC API
implementation. These encodings are commonly used encodings for spatial data on the web:

« HTML

* GeoJSON
Neiter of these encodings are mandatory and an implementation of the Core requirements class

may implement either, both, or none of them. Clause 7 (Overview) includes a discussion about
recommended encodings.

10.2. Requirement Class "HTML"

Geographic information that is only accessible in formats like GeoJSON or GML has two issues:
* The data is not discoverable using the most common mechanism for discovering information,
that is the search engines of the Web,
* The data can not be viewed directly in a browser - additional tools are required to view the

data.

Therefore, sharing data on the Web should include publication in HTML. To be consistent with the
Web, it should be done in a way that enables users and search engines to access all data.

This is discussed in detail in W3C Best Practice. This standard therefore recommends supporting
HTML as an encoding.

Requirements Class
http://www.opengis.net/spec/ogcapi_common/1.0/req/html
Target type Web API

Dependency Requirements Class "OAPI Core"
Dependency HTML5

Dependency Schema.org
Requirement 23 /req/html/definition

A Every 200-response of an operation of the API SHALL support the
media type text/html.

44

http://www.opengis.net/spec/ogcapi_common/1.0/req/html

Requirement 24 /req/html/content

A Every 200-response of the API with the media type "text/html"
SHALL be a HTML 5 document that includes the following
information in the HTML body:

* all information identified in the schemas of the Response
Object in the HTML <body/>, and
e all links in HTML <a/> elements in the HTML <body/>.

Recommendation /rec/html/schema-org
10

A A 200-response with the media type text/html, SHOULD include
Schema.org annotations.

10.3. Requirement Class "GeoJSON"

GeoJSON is a commonly used format that is simple to understand and well supported by tools and
software libraries. Since most Web developers are comfortable with using a JSON-based format,
supporting GeoJSON is recommended if the resource can be represented in GeoJSON for the
intended use.

Requirements Class
http://www.opengis.net/spec/ogcapi_common/1.0/req/geojson
Target type Web API

Dependency Requirements Class "OAPI Core"

Dependency GeoJSON
Requirement 25 /req/geojson/definition

A 200-responses of the server SHALL support the following media
types:

» application/geo+json for resources that include feature
content, and

» application/json for all other resources.

Requirement 26 /req/geojson/content

45

https://www.w3.org/TR/html5/
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#responseObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.2.md#responseObject
http://www.opengis.net/spec/ogcapi_common/1.0/req/geojson

A Every 200-response with the media type application/geo+json
SHALL be

* a GeoJSON FeatureCollection Object for feature collections,
and

* a Geo]JSON Feature Object for features.

B The schema of all responses with the media type application/json
SHALL conform with the JSON Schema specified for that resource.

NOTE The following schema names are from API-Features and need to be updated.

Templates for the definition of the schemas for the GeoJSON responses in JSON Schema definitions
are available at collections.yaml and collectionInfo.yaml.

These are generic schemas that do not include any application schema information about specific
resource types or their properties.

46

https://tools.ietf.org/html/rfc7946#section-3.3
https://tools.ietf.org/html/rfc7946#section-3.2
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collections.yaml
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collectionInfo.yaml

Chapter 11. Requirements class "OpenAPI
3.0"

11.1. Basic requirements

APIs conforming to this requirements class document themselves by an OpenAPI Document.

Requirements Class
http://www.opengis.net/spec/ogcapi_common/1.0/req/oas30
Target type Web API

Dependency Requirements Class "OAPI Core"

Dependency OpenAPI Specification 3.0.2
Requirement 27 /req/oas30/oas-definition-1

A An OpenAPI definition in JSON wusing the media type
application/vnd.oai.openapi+json;version=3.0 and a HTML
version of the API definition using the media type text/html
SHALL be available.

CAUTION ISSUE 117

The OpenAPI media type has not been registered yet with IANA and will likely change. We need to
update the media type after registration.

Requirement 28 /req/oas30/oas-definition-2

A The JSON representation SHALL conform to the OpenAPI
Specification, version 3.0.

Two example OpenAPI documents are included in Annex B.

Requirement 29 /req/oas30/oas-impl

A The API SHALL implement all capabilities specified in the
OpenAPI definition.

11.2. Complete definition

Requirement 30 /req/oas30/completeness

47

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#oasDocument
http://www.opengis.net/spec/ogcapi_common/1.0/req/oas30
https://github.com/opengeospatial/WFS_FES/issues/117

A The OpenAPI definition SHALL specify for each operation all
HTTP Status Codes and Response Objects that the API uses in
responses.

B This includes the successful execution of an operation as well as
all error situations that originate from the server.

Note that APIs that, for example, are access-controlled (see Security), support web cache validation,
CORS or that use HTTP redirection will make use of additional HTTP status codes beyond regular
codes such as 200 for successful GET requests and 400, 404 or 500 for error situations. See HTTP
Status Codes.

Clients have to be prepared to receive responses not documented in the OpenAPI definition. For
example, additional errors may occur in the transport layer outside of the server.

11.3. Exceptions

Requirement 31 /req/oas30/exceptions-codes

A For error situations that originate from an API server, the API
definition SHALL cover all applicable HTTP Status Codes.

Example 5. An exception response object definition

description: An error occurred.
content:
application/json:
schema:
$ref:
https://raw.githubusercontent.com/opengeospatial/0API/openapi/schemas/exception.ya
ml
text/html:
schema:
type: string

11.4. Security

Requirement 32 /req/oas30/security

A For cases, where the operations of the API are access-controlled,
the security scheme(s) and requirements SHALL be documented
in the OpenAPI definition.

48

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject

The OpenAPI specification currently supports the following security schemes:

e HTTP authentication,
* an API key (either as a header or as a query parameter),

* OAuth2’s common flows (implicit, password, application and access code) as defined in
RFC6749, and

* OpenlID Connect Discovery.

49

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#security-scheme-object

Chapter 12. Media Types

JSON media types that would typically be used in on OGC API that supports JSON are

* application/geo+json for feature collections and features, and

 application/json for all other resources.
XML media types that would typically occur in on OGC API that supports XML are

» application/gml+xml;version=3.2 for any GML 3.2 feature collections and features,

» application/gml+xml;version=3.2;profile=http://www.opengis.net/def/profile/ogc/2.0/gml-sf0
for GML 3.2 feature collections and features conforming to the GML Simple Feature Level 0
profile,

» application/gml+xml;version=3.2;profile=http://www.opengis.net/def/profile/ogc/2.0/gml-sf2
for GML 3.2 feature collections and features conforming to the GML Simple Feature Level 2
profile, and

» application/xml for all other resources.
The typical HTML media type for all "web pages" in an OGC API would be text/html.

The media types for an OpenAPI definition are vnd.oai.openapi+json;version=3.0 (JSON) and
application/vnd.oai.openapi;version=3.0 (YAML).

NOTE The OpenAPI media type has not been registered yet with IANA and may change.

50

Annex A: Abstract Test Suite (Normative)

A.1. Introduction

OGC Web APIs are not a Web Services in the traditional sense. Rather, they define the behavior and
content of a set of Resources exposed through a Web Application Programing Interface (Web API).
Therefore, an API may expose resources in addition to those defined by the standard. A test engine
must be able to traverse the API, identify and validate test points, and ignore resource paths which
are not to be tested.

A.2. Conformance Class Core

Conformance Class
http://www.opengis.net/spec/ogcapi-common/1.0/conf/core
Target type Web API

Requirements http://www.opengis.net/spec/ogcapi_common/1.0/req/core
Class

A.2.1. General Tests
HTTP

Abstract Test1 /ats/core/http

Test Purpose Validate that the resource paths advertised through the API
conform with HTTP 1.1 and, where approprate, TLS.

Requirement /req/core/http

Test Method 1. All compliance tests shall be configured to use the HTTP 1.1
protocol exclusively.

2. For APIs which support HTTPS, all compliance tests shall be
configured to use HTTP over TLS (RFC 2818) with their HTTP
1.1 protocol.

A.2.2. Landing Page {root}/

Abstract Test2 /ats/core/root-op

Test Purpose Validate that a landing page can be retrieved from the expected
location.

31

http://www.opengis.net/spec/ogcapi-common/1.0/conf/core

Requirement /req/core/root-op

Test Method 1. Issue an HTTP GET request to the URL {root}/
2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test
/ats/core/root-success.

Abstract Test 3 /ats/core/root-success

Test Purpose Validate that the landing page complies with the require structure
and contents.

Requirement /req/core/root-success

Test Method Validate the landing page for all supported media types using the
resources and tests identified in Table 7

For formats that require manual inspection, perform the
following:

a. Validate that the landing page includes a "service-desc" and/or
"service-doc" link to an API Definition

b. Validate that the landing page includes a "conformance" link
to the conformance class declaration

c. Validate that the landing page includes a "data" link to the
Feature contents.

The landing page may be retrieved in a number of different formats. The following table identifies
the applicable schema document for each format and the test to be used to validate the landing
page against that schema. All supported formats should be exercised.

Table 7. Schema and Tests for Landing Pages

Format Schema Document Test ID
HTML landingPage.json /ats/html/content
JSON landingPage.json /ats/geojson/content

A.2.3. API Definition Path {root}/api (link)

Abstract Test4 /ats/core/api-definition-op

Test Purpose Validate that the API Definition document can be retrieved from
the expected location.

32

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/landingPage.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/landingPage.json

Requirement

Test Purpose

Test Method

Abstract Test 5

Test Purpose

Requirement

Test Method

/req/core/api-definition-op

Validate that the API Definition document can be retrieved from
the expected location.

1. Construct a path for each API Definition link on the landing
page
2. Issue a HTTP GET request on each path

3. Validate that a document was returned with a status code 200

4. Validate the contents of the returned document using test
/ats/core/api-definition-success.

/ats/core/api-definition-success

Validate that the API Definition complies with the required
structure and contents.

/req/core/api-definition-success

Validate the API Definition document against an appropriate
schema document.

A.2.4. Conformance Path {root}/conformance

Abstract Test 6

Test Purpose

Requirement

Test Method

Abstract Test 7

/ats/core/conformance-op

Validate that a Conformance Declaration can be retrieved from
the expected location.

/req/core/conformance-op

1. Construct a path for each "conformance" link on the landing
page as well as for the {root}/conformance path.

2. Issue an HTTP GET request on each path
3. Validate that a document was returned with a status code 200

4. Validate the contents of the returned document using test
/ats/core/conformance-success.

/ats/core/conformance-success

33

Test Purpose Validate that the Conformance Declaration response complies
with the required structure and contents.

Requirement /req/core/conformance-success

Test Method 1. Validate the response document against OpenAPI 3.0 schema
confClasses.yaml

2. Validate that the document includes the conformance class
"http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core"”

3. Validate that the document list all OGC API conformance
classes that the API implements.

A.3. Conformance Class Collections

Conformance Class
http://www.opengis.net/spec/ogcapi-common/1.0/conf/collections
Target type Web API

Requirements http://www.opengis.net/spec/ogcapi_common/1.0/req/collections
Class

Dependency Conformance Class "OAPI Core"

A.3.1. General Tests
CRS 84

Abstract Test 8 /ats/collections/crs84

Test Purpose Validate that all spatial geometries provided through the API are
in the CRS84 spatial reference system unless otherwise requested
by the client.

Requirement /reqg/collections/crs84

Test Method 1. Do not specify a coordinate reference system in any request.
All spatial data should be in the CRS84 reference system.

2. Validate retrieved spatial data using the CRS84 reference
system.

A.3.2. Feature Collections {root}/collections

54

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/confClasses.yaml
http://www.opengis.net/spec/ogcapi-common/1.0/conf/collections

Abstract Test9 /ats/collections/rc-md-op

Test Purpose Validate that information about the Collections can be retrieved
from the expected location.

Requirement /req/collections/rc-md-op

Test Method 1. Issue an HTTP GET request to the URL {root}/collections
2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test
/ats/collections/rc-md-success.

Abstract Test 10 /ats/collections_rc-md-success

Test Purpose Validate that the Collections content complies with the required
structure and contents.

Requirement /req/collections/rc-md-success, /req/collections/crs84

Test Method 1. Validate that all response documents comply with
/ats/collections/rc-md-links

2. In case the response includes a "crs" property, validate that
the first value is either
"http://www.opengis.net/def/crs/OGC/1.3/CRS84" or
"http://www.opengis.net/def/crs/OGC/0/CRS84h"

3. Validate the collections content for all supported media types
using the resources and tests identified in Table 8

The Collections content may be retrieved in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the
against that schema. All supported formats should be exercised.

Table 8. Schema and Tests for Collections content

Format Schema Document Test ID
HTML collections.json /ats/html/content
JSON collections.json /ats/geojson/content

A.3.3. Feature Collection {root}/collections/{collectionId}

Abstract Test 11 /ats/collections/src-md-op

55

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collections.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collections.json

Test Purpose

Requirement

Test Method

Abstract Test 12

Test Purpose

Requirement

Test Method

Validate that the Collection content can be retrieved from the
expected location.

/reqg/collections/src-md-op

For every Feature Collection described in the Collections content,
issue an HTTP GET request to the URL
/collections/{collectionId} where {collectionId} is the id
property for the collection. . Validate that a Collection was
returned with a status code 200 . Validate the contents of the
returned document using test /ats/collections/src-md-success.

/ats/collections/src-md-success

Validate that the Collection content complies with the required
structure and contents.

/req/collections/src-md-success

Verify that the content of the response is consistent with the
content for this Resource Collection in the /collections response.
That is, the values for id, title, description and extent are
identical.

A.3.4. Features {root}/collections/{collectionld}/items

NOTE This test is too Feature centric. Will need to be greatly reduced in scope.

Abstract Test 13

Test Purpose

Requirement

36

/ats/collections/rc-op

Validate that resources can be identified and extracted from a
Collection using query parameters.

/req/collections/rc-op

Test Method

Abstract Test 14

Test Purpose

Requirement

1. For every resource collection identified in Collections, issue an
HTTP GET request to the URL
/collections/{collectionId}/items where {collectionId} is
the id property for a Collection described in the Collections
content.

2. Validate that a document was returned with a status code 200.
Repeat these tests using the following parameter tests:
Bounding Box:

* Parameter /ats/collections/rc-bbox-definition

* Response /ats/collections/rc-bbox-response
DateTime:

e Parameter /ats/collections/rc-time-definition

* Response /ats/collections/rc-time-response

Execute requests with combinations of the "bbox" and "datetime"
query parameters and verify that only features are returned that
match both selection criteria.

/ats/collections/rc-bbox-definition

Validate that the bounding box query parameters are constructed
correctly.

/req/collections/rc-bbox-definition

57

38

Test Method

Abstract Test 15

Test Purpose

Requirement

Test Method

Verify that the bbox query parameter complies with the following
definition (using an OpenAPI Specification 3.0 fragment):

name: bbox
in: query
required: false
schema:
type: array
minltems: 4
maxItems: 6
items:
type: number
style: form

explode: false

Use a bounding box with four numbers in all requests:
* Lower left corner, WGS 84 longitude
e Lower left corner, WGS 84 latitude
» Upper right corner, WGS 84 longitude
» Upper right corner, WGS 84 latitude

/ats/collections/rc-bbox-response

Validate that the bounding box query parameters are processed
corrrectly.

/reqg/collections/rc-bbox-response

1. Verify that only resources that have a spatial geometry that

intersects the bounding box are returned as part of the result
set.

. Verify that the bbox parameter matched all resources in the

collection that were not associated with a spatial geometry
(this is only applicable for datasets that include resources
without a spatial geometry).

. Verify that the coordinate reference system of the geometries

is WGS 84 longitude/latitude
("http://www.opengis.net/def/crs/OGC/1.3/CRS84" or
"http://www.opengis.net/def/crs/OGC/0/CRS84h") since no
parameter bbox-crs was specified in the request.

Abstract Test 16

Test Purpose

Requirement

Test Method

Abstract Test 17

Test Purpose

Requirement

Test Method

Abstract Test 18

Test Purpose

Requirement

/ats/collections/rc-time-definition

Validate that the dateTime query parameters are constructed
correctly.

/req/collections/rc-time-definition

Verify that the datetime query parameter complies with the
following definition (using an OpenAPI Specification 3.0
fragment):

name: datetime
in: query
required: false
schema:

type: string
style: form
explode: false

/ats/collections/rc-time-response

Validate that the dataTime query parameters are processed
correctly.

/req/collections/rc-time-response

1. Verify that only resources that have a temporal geometry that
intersects the temporal information in the datetime parameter
were included in the result set

2. Verify that all resources in the collection that are not
associated with a temporal geometry are included in the
result set

3. Validate that the dateime parameter complies with the syntax
described in /reqg/collections/rc-time-response.

/ats/collections/rc-response

Validate that the Resource Collection complies with the require
structure and contents.

/req/collections/rc-response

39

Test Method

The test method is specific to the resource type returned.

A.3.5. Second Tier Tests

These tests are invoked by other tests.

Extent

Abstract Test 19

Test Purpose

Requirement

Test Method

Items

Abstract Test 20

Test Purpose

Requirement

Test Method

/ats/coollections/rc-md-extent

Validate that the extent property if it is present

/req/collections/rc-md-extent

1. Verify that the extent provides bounding boxes that include all
spatial geometries

2. Verify that if the extent provides time intervals that include all
temporal geometries in this collection.

3. A temporal extent of null indicates an open time interval.

/ats/collections/rc-md-items

Validate that each collection provided by the server is described
in the Collections Metadata.

/reqg/collections/rc-md-items

1. Verify that there is an entry in the collections array of the
Collections Metadata for each feature collection provided by
the APL.

2. Verify that each collection entry includes an identifier.

3. Verify that each collection entry includes links in accordance
with /collections/rc-md-items-links.

4. Verify that if the collection entry includes an extent property,
that that property complies with /collections/rc-md-extent

5. Validate each collection entry for all supported media types
using the resources and tests identified in Table 9

The collection entries may be encoded in a number of different formats. The following table
identifies the applicable schema document for each format and the test to be used to validate the

60

against that schema. All supported formats should be exercised.

Table 9. Schema and Tests for Collection Entries

Format
HTML
JSON

Abstract Test 21

Test Purpose

Requirement

Test Method

Links

Abstract Test 22

Test Purpose

Requirement

Test Method

Schema Document Test ID
collectionInfo.json /ats/html/content
collectionInfo.json /ats/geojson/content

/ats/collections/rc-md-items-links

Validate that each Feature Collection metadata entry in the
Collections Metadata document includes all required links.

/req/collections/rc-md-items-links

1. Verify that each Collection item in the Collections Metadata
document includes a link property for each supported
encoding.

2. Verify that the links properties of the collection includes an
item for each supported encoding with a link to the features
resource (relation: items).

3. Verify that all links include the rel and type link parameters.

/ats/collections/rc-md-links

Validate that the required links are included in the Collections
Metadata document.

/req/collections/rc-md-links

Verify that the response document includes:

1. alink to this response document (relation: self),

2. a link to the response document in every other media type
supported by the server (relation: alternate).

Verify that all links include the rel and type link parameters.

A.4. Conformance Class GeoJSON

Conformance Class

https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collectionInfo.json
https://raw.githubusercontent.com/opengeospatial/oapi_common/master/standard/openapi/schemas/collectionInfo.json

http://www.opengis.net/spec/ogcapi-common/1.0/conf/geojson
Target type Web API

Requirements http://www.opengis.net/spec/ogcapi_common/1.0/req/geojson
Class

Dependency Conformance Class "OAPI Core"
A.4.1. Geo]JSON Definition
Abstract Test 23 /ats/geojson/definition

Test Purpose Verify support for JSON and GeoJSON

Requirement /req/geojson/definition
Test Method 1. A resource is requested with response media type of
application/geo+json

2. All 200-responses SHALL support the following media types:

o application/geo+json for resources that include feature
content, and

o application/json for all other resources.

A.4.2. GeoJSON Content

Abstract Test 24 /ats/geojson/content

Test Purpose Verify the content of a GeoJSON document given an input
document and schema.

Requirement /req/geojson/content

Test Method 1. Validate that the document is a GeoJSON document.

2. Validate the document against the schema using an JSON
Schema validator.

A.5. Conformance Class HTML

Conformance Class
http://www.opengis.net/spec/ogcapi-common/1.0/conf/html

Target type Web API

62

http://www.opengis.net/spec/ogcapi-common/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-common/1.0/conf/html

Requirements
Class

Dependency

http://www.opengis.net/spec/ogcapi_common/1.0/req/html

Conformance Class "OAPI Core"

A.5.1. HTML Definition

Abstract Test 25 /ats/html/definition

Test Purpose

Requirement

Test Method

Verify support for HTML
/req/html/definition

Verify that every 200-response of every operation of the API
where HTML was requested is of media type text/html

A.5.2. HTML Content

Abstract Test 26 /ats/html/content

Test Purpose

Requirement

Test Method

Verify the content of an HTML document given an input
document and schema.

/reg/html/content

1. Validate that the document is an HTML 5 document

2. Manually inspect the document against the schema.

A.6. Conformance Class OpenAPI 3.0

Conformance Class

http://www.opengis.net/spec/ogcapi-common/1.0/conf/oas3

Target type

Requirements
Class

Dependency

Web API

http://www.opengis.net/spec/ogcapi_common/1.0/req/oas3

Conformance Class "OAPI Core"

Abstract Test 27 /ats/oas30/completeness

Test Purpose

Verify the completeness of an OpenAPI document.

63

https://www.w3.org/TR/html5/
http://www.opengis.net/spec/ogcapi-common/1.0/conf/oas3

Requirement

Test Method

Abstract Test 28

Test Purpose

Requirement

Test Method

Abstract Test 29

Test Purpose

Requirement

Test Method

Abstract Test 30

Test Purpose

Requirement

Test Method

Abstract Test 31

64

/req/oas30/completeness

Verify that for each operation, the OpenAPI document describes
all HTTP Status Codes and Response Objects that the API uses in
responses.

/ats/oas30/exceptions-codes

Verify that the OpenAPI document fully describes potential
exception codes.

/req/oas30/exceptions-codes

Verify that for each operation, the OpenAPI document describes
all HTTP Status Codes that may be generated.

/ats/oas30/oas-definition-1

Verify that JSON and HTML versions of the OpenAPI document
are available.

/req/oas30/oas-definition-1

1. Verify that an OpenAPI definition in JSON is available using
the media type application/vnd.oai.openapi+json;version=3.0
and link relation service-desc

2. Verify that an HTML version of the API definition is available
using the media type text/html and link relation service-doc.

/ats/oas30/oas-definition-2

Verify that the OpenAPI document is valid JSON.

/req/oas30/oas-definition-2

Verify that the JSON representation conforms to the OpenAPI
Specification, version 3.0.

/ats/oas30/oas-impl

https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#responseObject
https://github.com/OAI/OpenAPI-Specification/blob/master/versions/3.0.0.md#httpCodes

Test Purpose

Requirement

Test Method

Abstract Test 32

Test Purpose

Requirement

Test Method

Verify that all capabilities specified in the OpenAPI definition are
implemented by the API.

/req/oas30/oas-impl

1. Construct a path from each URL template including all server
URL options and all enumerated path parameters.

2. For each path defined in the OpenAPI document, validate that
the path performs in accordance with the API definition and
the API-Features standard.

/ats/oas30/security

Verify that any authentication protocols implemented by the API
are documented in the OpenAPI document.

/req/oas30/security

1. Identify all authentication protocols supported by the API.

2. Validate that each authentication protocol is described inthe
OpenAPI document by a Security Schema Object and its' use
specified by a Security Requirement Object.

65

Annex B: Examples (Informative)

B.1. Example Landing Pages

Example 6. JSON Landing Page

{
"links": [
{ "href": "http://data.example.org/",
"rel": "self", "type": "application/json", "title": "this document" },
{ "href": "http://data.example.org/api",
"rel": "service", "type": "application/openapi+json;version=3.0", "title":
"the API definition" },
{ "href": "http://data.example.org/conformance",
"rel": "conformance", "type": "application/json", "title": "0GC conformance
classes implemented by this API" },
{ "href": "http://data.example.org/collections"”,
"rel": "data", "type": "application/json", "title": "Metadata about the
resource collections" }
]
¥

B.2. API Description Examples

NOTE include::examples/thd.adoc[]

B.3. Conformance Examples

Example 7. Conformance Response

This example response in JSON is for an OGC API Features that supports OpenAPI 3.0 for the
API definition and HTML and GeoJSON as encodings for resources.

{

"conformsTo": [
"http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core",
"http://www.opengis.net/spec/ogcapi-features-1/1.0/req/0as30",
"http://www.opengis.net/spec/ogcapi-features-1/1.0/req/html",
"http://www.opengis.net/spec/ogcapi-features-1/1.0/req/geojson"

66

B.4. Collections Metadata Examples

67

Example 8. Collection metadata response document

68

This feature collection metadata example response in JSON is for a dataset with a single
collection "buildings". It includes links to the collection resource in all formats that are
supported by the API (link relation type: "items").

There is a link to the feature collections response itself (link relation type: "self").

Representations of this resource in other formats are referenced using link relation type
"alternate".

An additional link is to a GML application schema for the dataset -
using:https://www.iana.org/assignments/link-relations/link-relations.xhtml[link relation type]
"describedBy".

A bulk download of all the features in the dataset is referenced using link relation type
"enclosure”

Finally there are also links to the license information for the building data
(using:https://www.iana.org/assignments/link-relations/link-relations.xhtml[link relation type]
"license").

Reference system information is not provided as the service provides geometries only in the
default system (spatial: WGS 84 longitude/latitude; temporal: Gregorian calendar).

https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.iana.org/assignments/link-relations/link-relations.xhtml

{
"links": [
{ "href": "http://data.example.org/collections.json",
"rel": "self", "type": "application/json", "title": "this document" },
{ "href": "http://data.example.org/collections.html",
"rel": "alternate", "type": "text/html", "title": "this document as HTML" },
{ "href": "http://schemas.example.org/1.0/foobar.xsd",
"rel": "describedBy", "type": "application/xml", "title": "XML schema for
Acme Corporation data" }

1,
"collections": [
{
"id": "buildings",
"title": "Buildings",
"description": "Buildings in the city of Bonn.",
"extent": {
"spatial": [7.01, 50.63, 7.22, 50.78],
"temporal": ["2010-02-15T12:34:56Z", "2018-03-18T12:11:007"]
b
"links": [
{ "href": "http://data.example.org/collections/buildings/items",
"rel": "items", "type": "application/geo+json",
"title": "Buildings" },
{ "href": "http://example.org/concepts/building.html"”,
"rel": "describedBy", "type": "text/html",
"title": "Feature catalogue for buildings" }
]
}
]

B.5. Collection Information Examples

NOTE include::examples/thd.adoc[]

69

Annex C: Revision History

Date Release Editor Primary Description
clauses
modified
2019-10-31 October 2019 C. Heazel all Baseline update
snapshot

70

Annex D: Bibliography

Open Geospatial Consortium: The Specification Model — A Standard for Modular specifications,
0OGC08-131

W3C/OGC: Spatial Data on the Web Best Practices, W3C Working Group Note 28 September 2017,
https://www.w3.org/TR/sdw-bp/

W3C: Data on the Web Best Practices, W3C Recommendation 31 January 2017,
https://www.w3.org/TR/dwbp/

W3C: Data Catalog Vocabulary, W3C Recommendation 16 January 2014, https://www.w3.0rg/TR/
vocab-dcat/

IANA: Link Relation Types, https://www.iana.org/assignments/link-relations/link-relations.xml

71

https://portal.opengeospatial.org/files/?artifact_id=34762
https://www.w3.org/TR/sdw-bp/
https://www.w3.org/TR/dwbp/
https://www.w3.org/TR/vocab-dcat/
https://www.w3.org/TR/vocab-dcat/
https://www.iana.org/assignments/link-relations/link-relations.xml

	{Title}
	Table of Contents
	Chapter 1. Introduction
	Chapter 2. Scope
	Chapter 3. Conformance
	Chapter 4. References
	Chapter 5. Terms and Definitions
	5.1. Conformance Module; Conformance Test Module
	5.2. Conformance Class; Conformance Test Class
	5.3. dataset
	5.4. Distribution
	5.5. Executable Test Suite (ETS)
	5.6. Recommendation
	5.7. Requirement
	5.8. Requirements Class
	5.9. Requirements Module
	5.10. Standardization Target

	Chapter 6. Conventions
	6.1. Identifiers
	6.2. Link relations
	6.3. Use of HTTPS
	6.4. API definition
	6.4.1. General remarks
	6.4.2. Role of OpenAPI
	6.4.3. References to OpenAPI components in normative statements
	6.4.4. Paths in OpenAPI definitions
	6.4.5. Reusable OpenAPI components

	Chapter 7. Overview
	7.1. Evolution from OGC Web Services
	7.2. Encodings

	Chapter 8. Requirement Class "Core"
	8.1. Overview
	8.1.1. Resources
	8.1.2. Modular APIs
	8.1.3. Navigation

	8.2. Foundation Resources
	8.2.1. API landing page
	8.2.2. API Definition
	8.2.3. Declaration of Conformance Classes

	8.3. Spatial Resources
	8.4. Information Resources
	8.5. General Requirements
	8.5.1. HTTP 1.1
	8.5.2. HTTP Status Codes
	8.5.3. Web Caching
	8.5.4. Support for Cross-Origin Requests
	8.5.5. Encodings
	8.5.6. Link Headers

	Chapter 9. Requirement Class "Collections"
	9.1. Overview
	9.2. Spatial Resources
	9.2.1. Collections Metadata
	9.2.2. Collection Information
	9.2.3. Collection Resource

	9.3. Information Resources
	9.4. Parameter Modules
	9.4.1. Parameter bbox
	9.4.2. Parameter datetime

	9.5. General Requirements
	9.5.1. Coordinate Reference Systems

	Chapter 10. Requirements classes for encodings
	10.1. Overview
	10.2. Requirement Class "HTML"
	10.3. Requirement Class "GeoJSON"

	Chapter 11. Requirements class "OpenAPI 3.0"
	11.1. Basic requirements
	11.2. Complete definition
	11.3. Exceptions
	11.4. Security

	Chapter 12. Media Types
	Annex A: Abstract Test Suite (Normative)
	A.1. Introduction
	A.2. Conformance Class Core
	A.2.1. General Tests
	A.2.2. Landing Page {root}/
	A.2.3. API Definition Path {root}/api (link)
	A.2.4. Conformance Path {root}/conformance

	A.3. Conformance Class Collections
	A.3.1. General Tests
	A.3.2. Feature Collections {root}/collections
	A.3.3. Feature Collection {root}/collections/{collectionId}
	A.3.4. Features {root}/collections/{collectionId}/items
	A.3.5. Second Tier Tests

	A.4. Conformance Class GeoJSON
	A.4.1. GeoJSON Definition
	A.4.2. GeoJSON Content

	A.5. Conformance Class HTML
	A.5.1. HTML Definition
	A.5.2. HTML Content

	A.6. Conformance Class OpenAPI 3.0

	Annex B: Examples (Informative)
	B.1. Example Landing Pages
	B.2. API Description Examples
	B.3. Conformance Examples
	B.4. Collections Metadata Examples
	B.5. Collection Information Examples

	Annex C: Revision History
	Annex D: Bibliography

