Open Geospatial Consortium
Submission Date201806-04
Approval DateTBD
Publication DateTBD
External identifier of this OGEdocumentTBD
Internal reference number of this O&Gocument18-053
Version:1.0
Category:CandidateDGC® Community Standard

Editors:Patrick Cozzi, Sean Lilley, Gabby Getz

3D Tiles Specification 1.0

Copyright notice

Copyright © 20162018 Cesium and Open Geospatial Consortium

Warning

This document is an OGC Menrendorsed international Community standard. This

Community standard was developed outside of the OGC and the originating party may continue
to update their work; however, this document is fixed in content. This document is available on a
royalty free, nordiscriminatory basis. Recipients of this document are invited to submit, with

their comments, notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Documentnumber 18-053

Document type: CandidateDGC® Community Standard
Document subtype:
Document stage: Pending

Document language: English

The companies listed above have granted the Open Geospatial Consortium (OGC) a
nonexclusive, royaltyree, paid up, worldwide license to copy and distribute this document and
to modify this document and distribute copies of the modified version undenilauitn 4.0
International (CC BY 4.0) license (see below).

License Agreement
Copyright© 20162018Cesium and Open Geospatial Consortium

This Specification is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0).

Some part®f this Specification are purely informative and do not define requirements necessary
for compliance and so are outside the Scope of this Specification. These parts of the
Specification are marked as being awmrmative, or identified as Implementation Bt

3D Tiles Format Specification

Version 1.0, June 5th, 2018

This document describes the specification for 3D Tiles, an open standard for streaming
massive heterogeneous 3D geospatial datasets.

Editors :

Patrick Cozzi,pcozzi@agi.com
Sean Lilleyslilley@agi.com
Gabby Getz,ggetz@agi.com

Acknowledgements :
Matt Amato Frederic Houbie
Erik Andersson Christopher Mitchell, Ph.D.
Dan Bagnell Claus Nagel
Ray Bentley JeanPhilippe Pons
Jannes Bolling Carl Reed
Dylan Brown Kevin Ring
Sarah Chow Scott Simmons
Paul Connelly Stan Tillman
Volker Coors Piero Toffanin
Tom Fili Pano Voudouris
Leesa Fini Dave Wesloh
Ralf Gutbell

mailto:pcozzi@agi.com
mailto:slilley@agi.com
mailto:ggetz@agi.com

Contents

(O 0] 51T PO 4..
TADIE OFf fIQUIES ...ttt e e e et e e sk b e e e e e s i b e e e e e aabb e e e e ebbe e e e e anneeeeeannreas 8.
Source of the content for thiS OGC OCUMENTuuiiiiiiiiiie it 10
V2 1o 120 0] 01 =T o | OO 10
FUTUIE WOTK ..ttt ettt et e e st e s e e Rt e s R e e e smn e e s R e e e am et e nnn e e amneeeanreeenee s 10

1 1o To [N Lot i o] o R PRSP PP R PPPRPPPPPP 11
1.1 File extensions and MIME TYPES.........ccoiiiiiiiiiiiiee ettt ettt e e et e e s senre e e e s snnneeeeane 12..
1.2 N 51 @ 1IN =T oo T [o TSR 13..
1.3 LU] R RRPTPTPTP 13
1.4 L1 S PO PP PPPP TP 13
1.5 Coordinate reference SYStEM (CRS).....c.uiiii ittt e e bre e e e s eeeaaes 13.

15.1 oI I PP PPRP PP SPPPP 14
T 1= PO TTEPRPRP 15
16.1 BOUNAING VOIUMES......iiiiiiiiiiiee ettt a e st e e e et e e e sabe e e e e ennees 19
1.6.2 T TFANSTOIII ...ttt s ettt e e sttt e e s aabn e e e e snnneee s 21.
1.6.3 1= =T o [TS AR o] U g = 25
1.6.4 RETINEMENT ... et e e et e e st e s s e e e s snneeeeaa 26..
O A 1 =TT SO PP R R PPPRP 27
1.7.1 EXLEINAL TIESELS......eiiiiiiiee ettt e e e e 29
1.7.2 LCT=To] 14 =T ol =] Ao SO TEPP TP P R STRRPTP 30
1.7.3 Bounding volume spatial CONEIENCE.uuuiec e 31
1.7.4 Spatial data StTUCTUIES.....ccoiiiiiie it e e e st e e sebe e e e e nanes 31
1.8 Specifying extensions and application SPECific @XIras.........c.uviiiiiiiiiiiiiiee e 34
18.1 oA L=] 01T 1 PO PO PUP PRI 34..
1.8.2 1= 36

2 o] 1T gAY (=] (=T =T (ol PSP OTPPPPRPPPPRPN 36..

A A N1 1= = OO PPPRPRTPPIN 36
211 THIESEL.ASSEL. ..ttt e e 37.
21.2 LTS o o] o 1= o 1= PSPPI 37
2.13 L= Mo TTo T g Tt 1 ol =t o PO PP 37
214 =21 oo S PP P PR P PP PP PPN 37..

4

2.15 TileSet.eXtENSIONSUSE........coiiiiiiiei et ne e 38
2.16 Tileset.exteNSIONSREQUITEA.cocuuiiiiiiiii e 38..
2.1.7 RN M Sy (] 4 1] To] 1 S OO P PP P PP PPRRPPN 38
2.1.8 THESEEEXITAS. 1.ttt ettt ettt ettt sttt e st e e s b e e snn e e s re e e sn e e e nnn e s ne e e e nnneen 38.
2.2 AASSH .. e s e e e 38
221 F TS Y =T £ (o] PO EP P PPPPPRN 39.
222 ASSEELEIESEIVEISION.....eiiiiiiiie ittt s et e e s e e e e e anneee s 39
223 ASSELEXIEINSIONS. ...c.veeeeree ettt e st ee et et et e e s e e be e e s r e e ss e e e be e e smre e e anr e e e nr e e nnn e e s anreeennee e 39
224 ASSELEXITAS. ...euviiiiiiie e 39..
2.3 BOUNAING VOIUME ...ttt e e e st e e ekt e e e s ane e e e e e nbe e e e eneee 39.
23.1 BoUNAINGVOIUME.DOXeeiiiiiiiiie ettt e e et e e e e sbn e e e ene 40
2.3.2 BoUNAINGVOIUME.FEOION ...uvuiiiiiiiiiiiii s s s sr s e e e e s s e s s e s e s e e e e e e e e e e e e e e e s e aaaaaaaaaaaaaaaaeas 40.
2.3.3 BoundingVolume.SPhere ... 41.
2.3.4 BoundingVolume.eXtENSIONS.........ueiieiiiiieeiiiiiee et sirree e sireee e sneeeeesnreeesssenneeesseen AL
235 BoundingVoIUME.EXIIaS........ceiiiiiiiieiiiiie et rree e e s snnee e snneee e neene e AL
2.4 (=] 0 1] T o O PP RPN 41
2.5 G = 1 PP 41
2.6 (0] 01T 1= T PP UPPPPRTPI 41
26.1 PropertieS. MaXiMUML.........ueiiiiiiiie e ee e e e e e e s snnneeessnneeeesnnneeessnnneee s B2
2.6.2 PropertieS.MinimuUM ... A2
2.6.3 PrOPEItIES. EXIENSIONS. ... uiiiiiiiiiiiiiiitiiiir e e e r e e e e e s e e e e e e e e e e e e eaeaeaaaanas 42
26.4 [o] LS iR q = L PP PP PPPOPUPPPOY 42
2.7 11RO 57
2.7.1 Tile.boundingVolUmMEt 44
2.7.2 Tile.VIEWEIREQUESTVOIUME.uiiiiiiiieiiiiieieieieieiea e e e e e 44..
2.7.3 THlE.gEOMEIIICEITON. ...t eebee e e e 44
2.7.4 LT = 11 = PP PPPRTRRPPPRRYY. 2
275 BILT= = Tt (o] 1 o TP PP PP R PP PPPRRRPPPPRR 45.
2.7.6 THE.CONEENT. ...ttt e e s e s e e e s snee e e s nnneeeesnnnnee DL
2.7.7 THE.CNIIAIEN ..ttt sb e e s e nb e e e e el 45.
2.7.8 LIS =2 (= g o o T PP PRPY 45
2.7.9 LT S = SO PP PPPRRTPPUPPPRPPPPRPRY 45...
S B N1 (= ©70]] (=] o | SO O PP PPPPPPPPRPPPPRRY | o
28.1 TileContent.boUNdINGVOIUMEcouiiiiiiiiee e 46.
28.2 LT @]) (=] o oAU PP PRPY 46

3

2.8.3 LN (1000] 01 (= a1 A= (=T 1S [0 46

28.4 THECONTENE.EXIIAS. .. eeeeiiiiiee ettt ettt stre e e et e e s sbne e e s snrnneeessnnneeessnnneeessnnnneeesses DT
110 (I] o] [OOSR PU PPN a7
TR R O 1T - PP R PTR TR a7
3.2 =Y o] | PSPPI a7
3.2.1 L= 16 [0 [o o P PP PP P PPPPPP 48
3.2.2 JSON NEAUEN ...ttt e s e st e e s e bt e e e s e e e e saanbe e e e e neee 48.
3.2.3 2T =T o T Lo | SRR RSRRR 49.
3.3 IMPIEMENTALION EXAMPIE ..riiiiii et e e e s e st e e e e e e e s e s nnrrteereeaeeesannnneees 49
3.4 PrOPEITY FEIEIEINCE....cei ittt s et e e st e e s e nne e e e s nnneee s 50.
34.1 FRAIUIE TaADIE......eiie et e e e e 50.
3.4.2 BiNaryBOOYREIEIENCE.......uuuiiiiiiiiiiiiiiii e r e r e e e s e e e s e e e e e e e e e e e e e eaeaeas 50
34.3 [Rd (0] 01=] ¢ Y PP UPPPPTRt 51
2 F 1ol g I =][TP PP PP PP TOPPPPTRPRPPRN 51
4.1 OVBIVIBW.......eeee ettt ettt et e ettt e e e sttt e e okt e oo ek b et e e e e b et e e e e bbbt e e e aa b b e e e e aabbe e e e anbbe e e e e nnbneeeennnnes 51
4.2 =Y 0] | O USSR 51
4.2.1 L= 0 o [T 52
422 JSON NEAUEN ...ttt e e e et bt e e s st b e e e e s bee e e sanbbe e e e eneee h2.
42.3 BNy DOAY ... e 54..
4.3 IMPlemeNntation EXAMPIEvvviiiiiieeeee et 55
4.4 (0 01T YA (=] (=T (= g o = PP 56.
441 BatCh TaDIE. ...t e e 56..
4.4.2 BiNaryBOOYRETEIENCEcii ittt ettt et e st e e sba e e e nnee 56
4.4.3 [Rd (0] 0= 1 Y PSPPSR 51.
Tile format SPECIFICALIONSuvuiiiiiiiiiii e e r e e e e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaeaeeees 58
51 BAtChed 3D MOUEI ...ttt e b e e s rabbe e e e aane e s 58.
51.1 OVEIVIBW. ...ttt ettt et ekttt e 4k bt e e e ettt e e e e b bt e e e e a bbb e e e e aabae e e e anbbeeeeenees 58.
B.1.2 LAYOUL..eveeeieeeeeeeeeeeeeeeeeeeete e s ee s s eees st et et e e eseeeeeesee e et es et e eee e eees e ee e et et et en et et s e et e et eeeeen 58
5.1.3 [[=T=To [T PSP PP P POUPRPPPPPRR 59
514 FEATUIE TaADIE ...t e s e 60.
5.15 BaCh TabIe......coiiieeie e sreeee e 60..
5.1.6 BINAIY QT .ttt e e e e e s e e e et e e e e e e s nbbbe e e e e e e e e e e annbreeeaeaaas 6l..
5.1.7 File extension and MIME fYPe.......ooueuiiiiiiea ettt a e 62
5.1.8 IMpleMENAtioN EXAMPIEuviiii et e e sebeeeeean 62..
5.2 INSEANCEA 3D MOUEL ...ttt e e sttt e e s eabnee e s sneeeee s 65

5.2.1 (@ 1T AV =Y 65..

52.2 L2101 | PP PP TR PPPPPPPPPPRRN 65
5.2.3 [[=T=To [PO P PP OP PP PPPPPY 66
5.2.4 FEAUIE TaAbDIE. ... i e e nnee e 67.
5.2.5 BACH TADIE.....eeieee e s 74.
5.2.6 o I PP URRPT 14
5.2.7 File extension and MIME tYPe........coioiiiiiiiiiiie ettt 75
5.2.8 L (0] LS A (=] (=T (= o =SSR 75
TG T o] o A O (o 0T PSP PP R PR PPR 80
53.1 OVEIVIEW. ...ttt ettt ettt e st e e okttt e 4k b bt e e e ann et e e 4 s b b e e e e e a s b e e e e e b ee e e e anbbeeeeennes 80..
5.3.2 LAY OUL. ..ottt e e r e e e e e e e e e e e e 81
5.3.3 [[>T [T PR 81
534 FRATUIE TaIE ... eeeiie e 82
5.3.5 BatCh TaDIE. ...t ee e 90..
5.3.6 File extension and MIME tYPe........ooi ittt 0.
5.3.7 IMPlemMENLAtioN EXAMPIEu e e e e e e e e e e e e 90..
5.3.8 PrOPEItY FEIEIENCE. ... it r e e e e e e e e e e s e e e e e aaaaaaaaaaaaaaaaaaaeens 90
54 (O70]17] 010171 (= PO P PP PP PPPPRPTPPPPRTN 96
54.1 OVEIVIEW. ...ttt ettt ettt e st e ookt e e e ekt e s e aab et e e s e b bt e e s aa kb e e e e e nbee e e e annbeeeeeneee 96..
B2 LAYOUL..eiveeeieeeeeeeeeeeeeeeeeeeeese e e eeeeeseeees et et et e e esee e eesee e e e e s e eee s e e et et e e et et et ee et e s e et s e e e 97
54.3 [[=T=To [T OO PP PP URPPPPPRPRN 97
54.4 T L= 1] T T PO UTT PR OPPRPPN 98..
54.5 File extension and MIME tYPe........cii ittt 98
5.4.6 IMPlemMENtatioN EXAMPIESoviiiiiieiiiiieie ettt nananananannnnns a8..
Declarative styling SPECIfICALION..........uuuiiiiiiiiiii e r e e e e e e e e e e e e e aaaaaaaaaaaaaaes 99
6.1 OVEBIVIBW..... ..ttt ettt ettt ookt e e a bt e e e sttt e e o b bt e e oo a ket e e e aab bt e e ook b et e e e ea kb e e e e aabb e e e e enbbe e e e e anbaeeeennnee 99
6.2 (70] 8 (o1 =T o] £SO PPEEP TP PPPTPPPPRPPPR 99
6.2.1 Y Lo IR (5= LTSRS 929
6.2.2 1670] oo [11o] 0 £ PP PP PRP 100.
6.2.3 DefiNiNg VANADIES ... e e e e 101
6.2.4 Y LCT E= T o 0] 01T PR 102
6.3 o d o] (=11 (o] £ ST ERRT PR 102
6.3.1 1= 10 F= Lo TP PPPPPPPI 103
6.3.2 L0 01T = 10] PRI 103.
6.3.3 I3 €15 PP PPPPPRPPPRN 103

6.3.4 (00 1= 1 = 1 (o |G (1] LT R 108
6.3.5 TYPE CONVEISIONS. ..ctittieee ittt e ettt e e e ettt e e ekttt e e e e b e e e e e et et e e ek be e e e e aabee e e e anbbe e e e e nbeeeeeanreeeeeannnes 109
6.3.6 SHING CONVEISIONS....eeieittieee ettt ettt e ettt e ettt e e s b e e e s skt e e s aab b e e e e sbre e e e s et be e e e s anbreeeesanreeeeaas 110
6.3.7 (0] 0151 7= 01 £ PP 110
6.3.8 VAITADIES. ... 111
6.3.9 BUIlt-TN VANADIES. ... 113
6.3.10 BUI-IN FUNCHIONSeiiiiiiiiee ittt e e sb e e e s bt e e e e anbb e e e e sanneeeeeaae 113
LR 700 I R [0 121
6.4 POINE CIOUAottt e s r e e s e e e s be e e st e e e sre e e snneesare e e nnrenennneean 121
6.5 File extension and MIME LYPE........cooo ittt e e s eb e e 122
6.6 PrOPEITY FEIEIEINCE......ci ittt s bbbt e e s bt e e e s aanne e e e snnne s 122
B.6.1 SIYIE ettt ettt ettt ettt ettt e ettt ettt et et e e et e e et et et en et et eneeeees 122
6.6.2 oToTo] (Y= Ta ISV o] =11 (o o IS 124
6.6.3 (olo] (o] Q=) o] (=T 1=1 (o] o H PP PPPRTTOPPPPRROt 124
6.6.4 (olo] 9o 111 o] o - S PP PSP PR PP PR 124
6.6.5 Folo] 3T 111 o] PP PU PR PPPRR 125.
6.6.6 20T [o 125
6.6.7 L0 TS] = 125
6.6.8 NUIMDEE EXPIESSION.eiiiitiieei ittt itte ettt ettt e e ssiee e e e s bb et e e sbb et e e saane e e e s aanb et e e ssbeeeesannneeas 125
6.6.9 POINE ClOUA SEYIE......oeeeiieieiiieiiie et s e r e s e s e s e s e s e s e e e e e e e e e e aaeaaaaeas 125

Table of figures

Figure 1: A sample 3D Tiles bounding volume hierarchy

Figure 2: Bounding box

Figure 3: Bounding sphere

Figure 4: Bounding region

Figure 5: Tile JSON properties

Figure 6: A tile bounding volume in red, and a content bounding volume in blue
Figure 7: A bounding region

Figure 8: A bounding box

Figure 9: A bounding sphere

Figure 10: A tileset with transformed children tiles

Figure 11: A parent tile with replacement refinement

Figure 12: A refined child tile of a tile with replacement refinement
Figure 13: A parent tile with additive refinement

Figure 14: A refined child tile of a tile with additive refinement

Figure 15: A tileset JSON file with external tileset JSONlles

Figure 16: A tileset with transforms an external tileset with transforms
Figure 17: A root tile and its four children tiles

Figure 18:
Figure 19:
Figure 20:
Figure 21:
Figure 22:
Figure 23:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 30:
Figure 31:

Two siblingtiles with overlapping bounding volumes
A tileset with an overlapping grid spatial data structure
Feature Table layout

Featwve Table binary body layout

Batch Table layout

Batch Table binary body layout

Batched 3D Model layout

Instanced 3D Model layout

A box in the standard basis

A box transformed into a rotated basis

A quantized volume

Point Cloud layout

A quantized volume

Composite layout

Source of the content for this OGC document

The majority of the content in this OGC document is a direct copy of the content
contained at https://github.com/AnalyticalGraphicsinc/3d -tiles/tree/1.0 (the 1.0 branch
of the 3d-tiles repo). No normative changes have been made to the content. This
OGC document does contain content not contained inthe 1.0 branch of the 3d- tiles
repo.

Note: Some elements (such as Vector Data) containedin

https://github.com/AnalyticalGraphicsinc/3d -tiles (the 3d-tiles repo) have been removed
from the OGC document because they are currently in under development and not a
part of this specification. These elements are identified as future work in this OGC
document.

Validity of content

The Submission Team has reviewed and certifie
Community Standard is true and accurate.

Future work

The 3D Tiles community anticipates that revisions to this Community Standard will be
required to prescribe content appropriate to meet new use cases. These use cases may
arise from either (or both) the external user and developer community or from OGC
review and comments. Further, future revisions will be driven by any submitted change
requests that document community uses cases and requirements.

Additions planned for future inclusion in the 3D Tiles Specification(future work) are
described at https:// github.com/AnalyticalGraphicsinc/3d -tiles/issues/247.

10

https://github.com/AnalyticalGraphicsInc/3d-tiles/tree/1.0
https://github.com/AnalyticalGraphicsInc/3d-tiles
https://github.com/AnalyticalGraphicsInc/3d-tiles/issues/247

1 Introduction

In 3D Tiles, atilesetis a set of tiles organized in a spatial data structure, the tree. The
tree incorporates the concept of Hierarchical Level of Detail (HLoD) for optimal
rendering of spatial data.

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes
(like a Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at
several levels of detail (or zoom levels). However since the content & a tileset is often
non-uniform or may not easily be organized in only two dimensions, the tree can be any
spatial data structure with spatial coherence, including k-d trees, quadtrees, octrees, and
grids.

Ead tile has a bounding volume completely enclosing its content. The tree has spatial
coherence; the content for child tiles are completely inside the parent's bounding
volume.

bounding volume

tile

Figure 1 A sample 3D Tiles bounding volume hierarchy

11

To support tight fitting volumes for a variety of datasets i from regularly divided terrain
to cities not aligned with a line of latitude or longitude to arbitrary point clouds i the
bounding volume may be an oriented bounding box, a bounding sphere, or a
geographic region defined by minimum and maximum latitudes, longitudes, and
heights.

Figure 2: Bounding box Figure 3: Bounding sphere Fjgure 4: Bounding region

A tile references afeature or set of features, such as 3D models representing buildings
or trees, or points in a point cloud. These features may be batched together into
essentially a single feature to reduce client-side load time and rendering draw call
overhead.

A 3D tileset consists of at least one tileset JSON file specifying the metadata and the
tree of tiles, as well as any referenced tile content files which may be any valid tile
format, defined in JSON as described below.

Optionally, a 3D Tile Stylemay be applied to a tileset.

1.1 File extensions and MIME types
3D Tiles uses the following file extensions and MIME types.

9 Tileset files use the.json extension and the application/json MIME type.
1 Tile content files use the file type and MIME format specific to their tile format
specification.

1 Tileset style files use the.json extension and the application/json MIME type.

Explicit file extensions areoptional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

12

1.2 JSON encoding

3D Tiles has the following restrictions on JSON formatting and encoding.

1. JSON must use UTR encoding without BOM.

2. All strings defined in this spec (properties names, enums) use only ASCII charset
and must be written as plain text.

3. Names (keys) within JSON objects must be unique, i.e., duplicate keys aren't
allowed.

1.3 URIs

3D Tiles uses URIs to reference tile content. These URIs may pat to relative external
references (RFC39860r be data URIs that embed resources in the JSON. Embedded
resources usethe "data” URI scheme (RFC2397)

When the URI is relative, its base is always relative to the referring tileset JSON file.

Client implementations are required to support relative external references and
embedded resources. Optionally, client implementations may support other schemes
(such ashttp://). All URIs must be valid and resolvable.

1.4 Units

The unit for all linear distances is meters.

All angles are in radians.

1.5 Coordinate reference system (CRS)

3D Tiles uses a righthanded Cartesian coordinate system; that is, he cross product of x
and yyields z 3D Tiles defines thezaxis as up for local Cartesian coordinate systems. A
tileset's global coordinate system will often be in a WGS 84earth-centered, earth-fixed
(ECEF) reference frame, but it doesn't have to be, e.g., a power plant may be defined
fully in its local coordinate system for use with a modeling tool without a geospatial
context.

An additional tile transform may be applied to transform a tile's local coordinate system
to the parent tile's coordinate system.

Theregion bounding volume specifies bounds using a geographic coordinate system
(latitude, longitu de, height), specifically EPSG 4326

13

https://tools.ietf.org/html/rfc3986#section-4.2
https://tools.ietf.org/html/rfc3986#section-4.2
https://tools.ietf.org/html/rfc2397
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf
http://nsidc.org/data/atlas/epsg_4326.html

1.5.1 gITF

Some tile content types such asBatched 3D Model and Instanced 3D Model embed
gITF. TheglTF specificationdefines a right-handed coordinate system with the y axis as

up.
1.5.1.1 y~up to zup transform

For consistency with the zup coordinate system of 3D Tiles, gITFs must be transformed
from J~up to zup at runtime. This is done by rotating the model aboutthe xaxi s by e/
radians. Equivalently, apply the following matrix transform (shown here as rowmajor):

[
1.0, 0.0, 00, 00,

0.0, 00, -1.0, 0.0,
0.0, 10, 0.0, 0.0,
0.0, 0.0, 0.0, 10

]

1.5.1.2 Order of transformations

Note that gITF defines its own node hierarchy, where each node has a transform. These
transforms are applied before the coordinate system transform is applied. More broadly
the order of transformations is:

1. gITF node hierarchy tranformations
2. gITF)~up to zup transform
3. Any tile format specific transforms.

1 Batched 3D Model Feature Table may defineRTC_CENTERhich is used to
translate model vertices.

1 Instanced 3D Model Feature Table defines perinstance position, normals,
and scales. These are used to create peinstance 4x4 affine transform
matrices that are applied to each instance.

4. Tile transform

Implementation note: when working with source data that is inherentlyzup, such as data in WGS 84
coordinates or in a localzup coordinate system, a common workflow is: * Mesh data, including positions
and normals, are not modified- they remain zup. * The root node matrix specifies a columamajor zup to
J~up transform. This transforms the source data into g+<up coordinate systan as required by gITF. * At
runtime the gITF is transformed back fromy<up to zup with the matrix above. Effectively the transforms
cancel out.

Example gITF root node:

"nodes": |

{
"matrix* : [1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0, 1],

14

TileFormats/Batched3DModel/README.md
TileFormats/Instanced3DModel/README.md
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#coordinate-system-and-units
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#transformations
TileFormats/Batched3DModel/README.md
TileFormats/Instanced3DModel/README.md

"mesh": 0,
"name": "rootNode"

}
]

1.6 Tiles

Tiles consist of metadata used to render the tile, content, and any children tiles.

15

tile

‘ boundingVolume

!

="

box region sphere

geometricError

refine

content

- boundingVolume (box, region, or sphere)

£ F

0, e

I—," = = — = -4 ‘,"

AN Ay

e .
—urj ---------- » Separate file with tile contents,

streamed on demand

children[]

Figure 5: Tile JSON properties

The following example shows one non-leaf tile.

{

"boundingVolume" :
"region”

-

{

-1.2419052957251926 ,
0.7395016240301894 ,

16

-1.2415404171917719,
0.7396563300150859,
0,
20.4
]
3
"geometricError* . 43.88464075650763,
"refine" . "ADD",
"content" : {
"boundingVolume" : {
"region" : |
-1.2418882438584018 ,
0.7395016240301894 ,
-1.2415422846940714,
0.7396461198389616 ,
0,
19.4

]
|3
"uri" : "2/0/0.b3dm"

h
"children” : [...]
}

The boundingVolume defines a volume enclosing the tile content, and is used to
determine which tiles to render at runtime. The above example uses aregion volume,
but other bounding volumes, such asbox or sphere , may be used.

The geometricError property is a nonnegative number that defines the error, in meters,
introduced if this tile is rendered and its children are not. At runtime, the geometric

error is used to compute Screern Space ErroSSE), i.e., the error measured in pixelsThe
SSE determinesHi/erarchical Level of Detai(HLOD) refinement, i.e., if a tile is sufficiently
detailed for the current view or if its children should be considered, see Geometric error.

The optional viewerReques tVolume property (not shown above) defines a volume, using
the same schema asboundingVolume , that the viewer must be inside of before the tile's
content will be requested and before the tile will be refined based on geometricError
See theViewer request volume section.

Therefine property is a string that is either "REPLACE'for replacement refinement or
"ADD" for additive refinement, see Refinement. It is required for the root tile of a tileset;
it is optional for all other tiles. A tileset can use any combination of additive and
replacement refinement. When the refine property is omitted, it is inherited from the
parent tile.

The content property is an object that contains metadata about the tile's content and a
link to the content. content.uri is a uri that points to the tile's content.

17

The uri can be another tileset JISON to create a tileset of tilesets. Seé-xternal tilesets

A file extension is not required for content.uri . A content's tile format can be identified
by the magic field in its header, or else as an external tileset if the content is JSON.

The content.boundingVolume property defines an optional bounding volume similar to
the top -level boundingVolume property. But unlike the top -level boundingVolume
property, content.boundingVolume s a tightly fit bounding vol ume enclosing just the
tile's content. boundingVolume provides spatial coherence and content.boundingVolume
enables tight view frustum culling. When it is not defined, the tile's bounding volume is
still used for culling (see Grids).

The screenshot below shows the bounding volumes for the root tile for Canary Whart
boundingVolume , shown in red, encloses the entire area of the tileset;
content.boundingVolume shown in blue, encloses just the four features (models) in the
root tile.

< S e SIS e € (S
- = TG

A ue W

Figure 6: A tile bounding volume in red, and a content bounding volume in blue

The optional transform property (not shown above) defines a 4x4 affine transformation
matrix that transforms the tile's content , boundingVolume , and viewerRequestVolume as
described in the Tile transform section.

Thechildren property is an array of objects that define child tiles. See the Tileset JSON
section below.

18

http://cesiumjs.org/CanaryWharf/

1.6.1 Bounding volumes

Bounding volume objects are used to defined an enclosing volume, and must specify
exactly one of the following properties.

1.6.1.1 Region

The boundingVolume.region property is an array of six numbers that define the

bounding geographic region with latitude, longitude, and height coordinates with the
order [west, south, east, north, minimum height, maximum height] . Latitudes and
longitudes are in the WGS 84 datum as defined in EPSG 4326nd are in radians. Heights
are in meters above (or below) the WGS 84 ellipsoid

Figure 7: A bounding region

"boundingVolume™: {
"region" : |

-1.3197004795898053,
0.6988582109,
-1.3196595204101946 ,
0.6988897891 ,

0,

20

19

http://nsidc.org/data/atlas/epsg_4326.html
http://earth-info.nga.mil/GandG/publications/tr8350.2/wgs84fin.pdf

1.6.1.2 Box

The boundingVolume.box property is an array of 12 numbers that define an oriented
bounding box in a right -handed 3-axis (X, y, z) Cartesian coordinate system where the-
axis is up. The first three elements define the x, y, and z values for the center of the box.
The next three elements (with indices 3, 4, and 5) define the x-axis direction and half-
length. The next three elements (indices 6, 7, and 8) define they~axis direction and half-
length. The last three elements (indices 9, 10, and 11) define theaxis direction and half-
length.

Figure 8: A bounding box

"boundingVolume™: {

"box" : |
0, 0, 10,
100, O, 0,
0, 100, O,
0, 0, 10

]
}

1.6.1.3 Sphere

The boundingVolume.sphere property is an array of four numbers that define a
bounding sphere. The first three elements define the X, y, and z values for the center of

20

the sphere in a right-handed 3-axis (X, y, z) Cartesian coordinate system where the-axis
is up. The last element(with index 3) defines the radius in meters.

Figure 9: A bounding sphere

"boundingVolume™: {
"sphere” : |
01
01
10,
141.4214

]
}

1.6.2 Tile transform

To support local coordinate systemsii e.g., so a building tileset inside a city tileset can
be defined in its own coordinate system, and a point cloud tileset inside the building
could, again, be defined in its own coordinate systemi each tile has an optional
transform property.

The transform property is a 4x4 affine transformation matrix, stored in column -major
order, that transforms from the tile's local coordinate system to the parent tile's
coordinate systemii or the tileset's coordinate system in the case of the root tile.

21

Thetransform property applies to

A tile.content
A Each feature's position.

A Each feature's normal should be transformed by the top-left 3x3 matrix of the
inverse-transpose of transform to account for correct vector transforms when scale

Is used.

A content.boundingVolume , except when content.boundingVolume.region is defined,
which is explicitly in EPSG:4326 coordinates.

A tile.boundingVolume , except when tile.boundingVolume.region is defined, which
is explicitly in EPSG:4326 coordinates.

A tile.viewerRequestVolume except when tile.viewerRequestVolume.region is

defined, which is explicitly in EPSG:4326 coordinates.

~

Thetransform property does not apply to geometricError i i.e., the scde defined by
transform does not scale the geometric errorfi the geometric error is always defined in
meters.

When transform is not defined, it defaults to the identity matrix:

[
1.0, 0.0, 0.0, 0.0,

0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0

]

The transformation from each tile's local coordinate to the tileset's global coordinate
system is computed by a top-down traversal of the tileset and by post-multiplying a
child's transform with its parent's transform like a traditional scene graph or node
hierarchy in computer graphics.

For an example of the computed transforms (transformToRoot in the code above) for a
tileset, consider:

22

http://www.realtimerendering.com/resources/RTNews/html/rtnews1a.html#art4
http://www.realtimerendering.com/resources/RTNews/html/rtnews1a.html#art4

pnts

T4

b3dm i3dm

Figure 1Q A tileset with transformed children tiles

The computed transform for each tile is:

To o Do To I

TQ[TO]

T1: [TO][T1]
T2:[TO][T2]

T3: [TO][T1][T3]
T4: [TO][T1][T4]

The positions and normals in a tile's content may also have tile-specific transformations
applied to them before the tile's transform (before indicates post-multiplying for affine
transformations). Some examples are:

A

b3dmand i3dm tiles embed gITF, which defines its own node hierarchy and
coordinate system. tile.transform is applied after these transforms are resolved.
Seecoordinate reference system.

i3dm's Feature Table defines perinstance position, normals, and scales. These are
used to create per-instance 4x4 affine transform matrices that are applied to each
instance before tile.transform

Compressed attributes, such asPOSITION_QUANTIZED the Feature Tables fori3dm
and pnts , and NORMAL_OCT18Ppnts should be decompressed before any other
transforms.

23

Therefore, the full computed transforms for the above example are:

TQ[TO]
T1: [TO][T1]
T2:[TO][T2][pnts - specific transform, including RTC_CENTER (if defined)]

T3 [TO][T1][T3][b3dm - specific transform, including RTC_CENTER (if
defined), coordinate system transform, and gITF node hierarchy]

o Do Do Do P>

T4: [TO][T1][T4][i3dm - specific transform, including per - instance
transform, coordinate system transform, and gITF node hierarchy]

1.6.2.1 Implementation example
This section /s nhon-normative

The following JavaScript code shows how to compute this using Cesium'sMatrix4 and
Matrix3 types.

function computeTransforms (tileset) {
var t = tileset .root ;
var transformToRoot = defined (t.transform) ?

Matrix4 . fromArray (t.transform): Matrix4 . IDENTITY;

computeTransform (t , transformToRoot) ;

}

function computeTransform (tile , transformToRoot) {
Il Apply 4x4 transformToRoot to this tile's positions and bounding
volumes

var inverseTransform = Matrix4 . inverse (transformToRoot , new Matrix4 () ;

var normalTransform = Matrix4 . getRotation (inverseTransform , new
Matrix3 () ;

normalTransform = Matrix3 . transpose (normalTransform , normalTransform) ;

Il Apply 3x3 normalTransform to this tile's normals

var children = tile .children ;
var length = children .length ;
for (var i = 0; i <length ; ++) {
var child = children]i] ;
var childToRoot = defined (child .transform) ?
Matrix4 . fromArray (child .transform): Matrix4 . clone (Matrix4 . IDENTITY);
childToRoot = Matrix4 . multiplyTransformation (transformToRoot
childToRoot , childToRoot) ;
computeTransform (child , childToRoot) ;

}

24

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/Matrix4.js
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/Matrix3.js

1.6.3 Viewer request volume

A tile's viewerRequestVolume can be used for combining heterogeneous datasets, and
can be combined with external tilesets.

The following example has a building in a b3dmtile and a point cloud inside the building
in a pnts tile. The point cloud tile's boundingVolume is a sphere with a radius of1.25 . It
also has a larger sphere with a radius of15 for the viewerRequestVolume . Since the
geometricError is zero, the point cloud tile's content is always rendered (and initially
requested) when the viewer isinside the large sphere defined by viewerRequestVolume .

{
"children" : [{

"transform” : [
4.843178171884396, 1.2424271388626869, O, 0,
-0.7993325488216595, 3.1159251367235608, 3.8278032889280675, O,
0.9511533376784163, -3.7077466670407433, 3.2168186118075526, O,
1215001.7612985559, -4736269.697480114, 4081650.708604793, 1
]

"boundingVolume" : {

"box" : [
0, 0, 6.701,
3.738, 0O, 0,
0, 3.72, 0,
0, 0, 13.402
]
}’ .
"geometrickrror" . 32,
"content" : {
"ur" : "building.b3dm"
}
boA
"transform" : |
0.968635634376879 , 0.24848542777253732, O 0

- 0.15986650990768783, 0.6231850279035362, 0.7655606573007809, O,

0.19023066741520941, -0.7415493329385225, 0.6433637229384295, O,

1215002.0371330238, -4736270.772726648, 4081651.6414821907, 1
1.

"viewerRequestVolume" : {
"sphere" : [0, 0, 0, 15]

b

"boundingVolume" : {
"sphere" : [0, 0, 0, 1.25]

h
"geometricError" @ 0,
"content" : {

"uri” "points.pnts"
}

25

}
}

For more on request volumes, see thesample tileset and demo video.

1.6.4 Refinement

Refinement determines how a parent tile renders when its children are selected to be
rendered. Permitted refinement types are replacement ("REPLACE) and additive ("ADD").
A tileset can use replacement refinement exclusively, additive refinement exclusively, or
any combination of add itive and replacement refinement. A refinement type is required
for the root tile of a tileset; it is optional for all other tiles. When omitted, a tile inherits
the refinement type of its parent.

1.6.4.1 Replacement

If a tile uses replacement refinement, when refined it renders its children in place of
itself.

Parent Tile Refined

Figure 11 A parent tile with replacement Figure 12 A refined child tile of a tile with
refinement replacement refinement

1.6.4.2 Additive

If a tile uses additive refinement, when refined it renders itself and its children
simultaneously.

Parent Tile 7 Refined

26

https://github.com/AnalyticalGraphicsInc/3d-tiles-samples/tree/master/tilesets/TilesetWithRequestVolume
https://www.youtube.com/watch?v=PgX756Yzjf4

Figure 13 A parent tile with additive Figure 14 A refined child tile of a tile with
refinement additive refinement

1.7 Tileset JISON

3D Tiles uses one main tileset JSON file as the entry point to define a tileset. Both entry
and external tileset JSON files are not required to follow a specific naming convention.

Here is a subset of the tileset JSON used forCanary Wharf(also see the complete file,
tileset.json):

{

"asset" : {
"version" : "1.0" ,
"tilesetVersion" . "e575c6fl - a45b-420a- b172- 6449fa6e0a59" |,
b
"properties" : {
"Height" : {
"minimum": 1,
"maximum" 241.6
}
b .
"geometricError" . 494.50961650991815,
"root" : {
"boundingVolume" : {

"region" : |
-0.0005682966577418737 ,
0.8987233516605286 ,
0.00011646582098558159
0.8990603398325034 ,

0,
241.6

]
3
"geometricError" : 268.37878244706053,
"refine” : "ADD",
"content" : {

27

http://cesiumjs.org/CanaryWharf/
examples/tileset.json

"uri" : "0/0/0.b3dm"
"boundingVolume" : {
"region" : |
- 0.0004001690908972599,
0.8988700116775743,
0.00010096729722787196,
0.8989625664878067 ,

0,
241.6
]
}
2
"children” : [..]

}
}

The top-level object in the tileset JSON has four properties:asset , properties
geometricError , and root .

asset is an object containing properties with metadata about the entire tileset. The
asset.version property is a string that defines the 3D Tiles version, which specifies the
JSON schema for the tileset and the base set of tile formats. TheilesetVersion

property is an optional string that defines an application -specific version of a tileset, e.g.,
for when an existing tileset is updated.

properties is an object containing objects for each per-feature property in the tileset.
This tileset JSON snippet is for 3D buildings, so each tile has building models, and each
building model has a Height property (see Batch Tabld. The name of each object in
properties matches the name of a per-feature property, and its value defines its
minimumand maximunnumeric values, which are useful, for example, for creatimg color
ramps for styling.

geometricError is a nonnegative number that defines the error, in meters, when the
tileset is not rendered. See Geometric error for how geometric error is used to drive
refinement.

root is anobject that defines the root tile using the JSON described in the above
section. root.geometricError is not the same as the tileset's top-level geometricError
The tileset's geometricError is the error when the entire tileset is not rendered,;
root.geometricError is the error when only the root tile is rendered.

root.children is an array of objects that define child tiles. Each child tile's content is
fully enclosed by its parent tile's boundingVolume and, generally, ageometrick rror less
than its parent tile's geometricError . For leaf tiles, the length of this array is zero, and
children may not be defined.

28

TileFormats/BatchTable/README.md

1.7.1 External tilesets

To create a tree of trees, a tile'scontent.uri can point to an external tileset (the uri of
another tileset JSON file). This enables, for example, storing each city in a tileset and
then having a global tileset of tilesets.

tileset.json

tileset.json tileset.json tileset.json tileset.json

Figure 15 A tileset JSON file with external tileset JSON files

When a tile points to an external tileset, the tile:

A Cannot have any children;tile.children must be undefined or an empty array.

29

A Cannot be used to create cycles, for example, by pointing to the same tileset file
containing the tile or by pointing to another tileset file that then points back to the
initial file containing the tile.

A Will be transformed by both the tile's transform and root tile's transform . For
example, in the following tileset referencing an external tileset, the computed
transform for T3 is[TO][T1][T2][T3]

T1

References
external tileset

Figure 18 A tileset with transforms an external tileset with transforms

1.7.2 Geometric error

Geometric error is a nonnegative number that defines the error, in meters, introduced if
this tile is rendered and its children are not. At runtime, th e geometric error is used to
compute ScreenSpace ErroSSE), i.e., the error measured in pixels. The SSE determines
Hierarchical Level of Detail(HLOD) refinement, i.e., if a tile is sufficiently detailed for the
current view or if its children should be considered.

The geometric error is determined when creating the tileset and based on a metric like
point density, tile sizes in meters, or another factor specific to that tileset. In general, a
higher geometric error means a tile will be refined more aggr essively, and children tiles
will be loaded and rendered sooner.

30

Implementation Note: Typically, a property of the root tile, such as size, is used to determine a geometric
error. Then each successive level of children uses a lower geometric error, witlal¢iles generally having a
geometric error of 0.

1.7.3 Bounding volume spatial coherence

As described above, the tree has spatial coherence; each tile has a bounding volume
completely enclosing its content, and the content for child tiles are completely inside
the parent's bounding volume. This does not imply that a child's bounding volume is
completely inside its parent's bounding volume. For example:

1.7.4 Spatial data structures

3D Tiles incorporates the concept of Hierarchical Level of Detail (HLoD) for optimal
rendering of spatial data. A tileset is composed of a tree, defined by root and,
recursively, itschildren tiles, which can be organized by different types of spatial data
structures.

A tileset may use a 2D spatial tiling scheme similar to raster and vectortiling schemes
(like a Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at
several levels of detail (or zoom levels). However since the content of a tileset is often
non-uniform or may not easily be organized in only two dimensions, o ther spatial data
structures may be more optimal.

It is up to the conversion tool that generates the tileset to define an optimal tree for the
dataset. A runtime engine, such as Cesium, is generic and will render any tree defined by
the tileset.

Additional ly, any combination of tile formats and refinement approaches can be used,
enabling flexibility in supporting heterogeneous datasets, see Refinement.

Included below is a brief description of how 3D Tiles can represent various spatial data
structures.

1.7.4.1 Quadtrees

A quadtree is created when each tile has four uniformly subdivided children (e.g., using
the center latitude and longitude), similar to typical 2D geospatial tiling schemes. Empty
child tiles can be omitted.

3D Tiles enable quadtree variations such as non-uniform subdivision and tight bounding
volumes (as opposed to bounding, for example, the full 25% of the parent tile, which is
wasteful for sparse datasets).

31

For example, here is the root tile and its children for Canary Wharf. Note the bottom left,
where the bounding volume does not include the water on the left where no buildings

will appear:

\
oY Aliajisap

Iy
n
i
E
f

=
o Mudchute <.
7 § Park ®
o =
K — ‘ g
(=] Millwal
= ‘1/,. P

Figure 17 A root tile and its four children tiles

3D Tiles also enable other quadtree variations sich asloose quadtrees, where child tiles
overlap but spatial coherence is still preserved, i.e., a parent tile completely encloses all
of its children. This approach can be useful to avad splitting features, such as 3D

models, across tiles.
Below, the green buildings are in the left child and the purple buildings are in the right
child. Note that the tiles overlap so the two green and one purple building in the center

are not split.

32

http://www.tulrich.com/geekstuff/partitioning.html

West India Docks

Manills s¢r Az
eer dr:/,
|77

C /4
South Quay
=

reat
o
=

o
. [

treprise
Centre

Bsy M
uay

,’tp,
Wais

Figure 18 Two sibling tiles with overlapping bounding volumes

1.7.4.2 K-d trees

A k-d tree is created when each tile has two children separated by asplitting plane
parallel to the x, y, or zaxis (or latitude, longitude, height). The split axis is often round-
robin rotated as levels increase down the tree, and the splitting plane may be selected
using the median split, surface area heuristics, or other approaches.

Note that a k-d tree does not have uniform subdivision like typical 2D geospatial tiling
schemes and, therefore, can create a more balanced tree for sparse and noruniformly
distributed datasets.

3D Tiles enables variations on kd trees such asmulti-way k-d trees where, at each leaf
of the tree, there are multiple splits along an axis. Instead of having two children per tile,
there are n children.

1.7.4.3 Octrees

An octree extends a quadtree by using three orthogonal splitting planes to subdivide a
tile into eight children. Like quadtrees, 3D Tiles allows variations to octrees such as non
uniform subdivision, tight bounding volumes, and overlapping children.

33

http://www.crs4.it/vic/cgi-bin/bib-page.cgi?id=%27Goswami:2013:EMF%27

1.7.4.4 Grids

3D Tiles enables uniform, non-uniform, and overlapping grids by supporting an arbitrary
number of child tiles. For example, here is a top-down view of a non-uniform
overlapping grid of Cambridge:

D . A Eact Arbogh - W @y, PR
T Saue T % 8 B

s
% \
3

STATION T o
LANDING ! Reve(e

pu

il Earid I5s) e Ty
N \
i = 7oA :v. 3 % d ,‘v,‘.,v.n ’ S 7 — “3' D
e P’ 25 AL S ARy 3 » =<3 328 . N 2
< ; & MRS S5 A N N A :
P Y 5 R Rt dy £ > — D
N 1Ko : et | [selFamivibas Jhe-50
W/ . L'"’-vwr-‘.‘,,(» o, :';’ Qg‘* AT -“’Iﬂ," G SN O ¢
W v) i X (R
A ! 2B T SE /i
- g 25y PYeKE w | v
et X0 ¢ Arsenal Bim AVE
> WesY 2 [0
¢S \
\ K b(\é‘g
! Massachusetts TPke Mass iyq @® _ BeACdin HiwL A
oN & \20) CSX*Boston | P Charles River
NER 2 Brigh, > - 1
= TAVEe - B :
OAk Souare ~ BRIGHTON AMMonu. .. Strrea.n Rarw Rav ¥ .

Figure 12 A tileset with an overlapping grid spatial data structure

3D Tiles takes advantage of empty tiles: those tiles that have a bounding volume, but no
content. Since a tile'scontent property does not need to be defined, empty non -leaf
tiles can be used to accelerate non-uniform grids with hierarchical culling. This
essentially creates a quadtree or octree without hierarchical levels of detail (HLOD).

1.8 Specifying extensions and application specific extras

3D Tiles defines extensions to allow the base specification to have extensibility for new
features, as well as extas to allow for application specific metadata.

1.8.1 Extensions

Extensions allow the base specification to be extended with new features. The optional
extensions dictionary property may be added to any 3D Tiles JSON object, which
contains the name of the extensions and the extension specific objects. The following
example shows a tile object with a hypothetical vendor extension which specifies a
separate collision volume.

34

"transform" : |
4.843178171884396 1.2424271388626869, O, 0,
-0.7993325488216595, 3.1159251367235608, 3.8278032889280675, O,
0.9511533376784163, -3.7077466670407433, 3.2168186118075526, O,
1215001.7612985559, -4736269.697480114, 4081650.708604793, 1

]

oundingVolume" : {

"box" : [
0, 0, 6.701,
3.738, 0O, 0,
0, 3.72, 0,
0, 0, 13.402
]
b
"geometricError* . 32,
"content" : {
"uri" : "building.b3dm"
3
"extensions" : {
"VENDOR_ collision_volume" : {
"box" : |
0, 0, 6.8,
3.8, 0, 0,
0, 3.8, 0,
0, 0, 13.5
]
}
}

}

All extensions used in a tileset or any descendant external tilesets must be listed in the
entry tileset JSON in the top-level extensionsUsed array property, e.g.,

{

"extensionsUsed" : [
"VENDOR_ collision_volume™
]

}

All extensions required to load and render a tileset or any descendant external tilesets
must also be listed in the entry tileset JSON in the top-level extensionsRequired array
property, such that extensionsRequired is a subset of extensionsUsed . All values in
extensionsRequired must also exist in extensionsUsed .

35

1.8.2 Extras

Theextras property allows application specific metadata to be added to any 3D Tiles
JSON object. The fdlowing example shows a tile object with an additional application

specific name property.

{

"transform" @ |
4.843178171884396,
-0.7993325488216595,
0.9 511533376784163,
1215001.7612985559,

]

oundingVolume" : {

1.2424271388626869, O 0

3.1159251367235608 ,
-3.7077466670407433,
-4736269.697480114 ,

3.8278032889280675, O,
3.2168186118075526, O,
4081650.708604793, 1

"box" : [
0, 0, 6.701,
3.738, 0, 0,
0, 3.72, 0,
0, 0, 13.402
]
h
"geometricError" 32,
"content” : {
"uri" : "building.b3dm"
3
"extras" @ {
"name”: "Empire State Building"
}

}

2 Property reference

2.1 Tileset
A 3D Tiles tileset.
Properties
Type
asset object
properties any
number

geometricError

Description
Metadata about the entire tileset.

A dictionary object of metadata about per -
feature properties.

The error, in meters, introduced if this tileset
is not rendered. At runtime, the geometric
error is used to compute screen space error

36

Required
No
No

Yes

(SSE), i.e., the error measured in pixels.

root object A tile in a 3D Tiles tileset. No

extensionsUsed string Names of 3D Tiles extensions used No
[1-"1 somewhere in this tileset.

extensionsRequired String Names of 3D Tiles extensions required to No
[1-7] properly load this tileset.

extensions object Dictionary object with extension -specific No

objects.
extras any Application -specific data. No

Additional properties are not allowed.

2.1.1 Tileset.asset
Metadata about the entire tileset.

A Type: object
A Required: No

2.1.2 Tileset.properties
A dictionary object of metadata about per -feature properties.

A Type:any
A Required: No
A Type of each property : object

2.1.3 Tileset.geometricError

The error, in meters, introduced if this tileset is not rendered. At runtime, the geometric
error is used to compute screen space error (SSE), i.e., the error measured in pixels.

A Type: number
A Required: Yes
A Minimum :>=0

2.1.4 Tileset.root

A tile in a 3D Tiles tileset.

A Type: object
A Required: No

37

2.1.5 Tileset.extensionsUsed
Names of 3D Tiles extensions used somewhere in this tileset.

A Type:string [1-%
A Each element in the array must be unique.
A Required: No

2.1.6 Tileset.extensionsRequired

Names of 3D Tiles extensions required to properly load this tileset.

A Type:string [1-7%
A Each element in the array must be unique.
A Required: No

2.1.7 Tileset.extensions

Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

2.1.8 Tileset.extras

Application -specific data.

A Type:any
A Required: No
2.2 Asset
Metadata about the entire tileset.
Properties
Type Description Required
version string The 3D Tiles version. The version defines the Yes
JSON schema for the tilesetJSON and the base
set of tile formats.
tilesetVersion String Application -specific version of this tileset, e.g., No
for when an existing tileset is updated.
extensions object Dictionary object with extension -specific objects. No

38

extras any Application -specific data. No
Additional properties are not allowed.

2.2.1 Asset.version

The 3D Tiles version. The version defines the JSON schema for the tileset JSON and the
base set of tile formats.

A Type: string
A Required: Yes

2.2.2 Asset.tilesetVersion
Application -specific version of this tileset, e.g., for when an existing tileset is updated.

A Type: string
A Required: No

2.2.3 Asset.extensions
Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

2.2.4 Asset.extas
Application -specific data.

A Type:any
A Required: No

2.3 Bounding Volume

A bounding volume that encloses a tile or its content. Exactly one box, region , or sphere
property is required.

Properties

Type Description Required
box FUZTbef An array of 12 numbers that define an oriented No

1

bounding box. The first three elements define the x,
y, and z values for the center of the box. The next

39

three elements (with indices 3, 4, and 5) define the x
axis direction and half-length. The next three
elements (indices 6, 7, and 8) define the y axis
direction and half-length. The last three elements
(indices 9, 10, and 11) define the z axis direction and

half-length.
region number An array of six numbers that define a bounding No
[6] geographic region in EPSG:4326 coordinates with the

order [west, south, east, north, minimum height,
maximum height]. Longitudes and latitudes are in
radians, and heights are in meters above (or below)
the WGS84 ellipsoid.

sphere number An array of four numbers that d efine a bounding No
[4] sphere. The first three elements define the x, y, and z
values for the center of the sphere. The last element
(with index 3) defines the radius in meters.

extensions Object Dictionary object with extension -specific objects. No
extras any Application -specific data. No

Additional properties are not allowed.

2.3.1 BoundingVolume.box

An array of 12 numbers that define an oriented bounding box. The first three elements
define the x, y, and z values for the center of the box. The next three elements (with
indices 3, 4, and 5) define the x axis direction and halflength. The next three elements
(indices 6, 7, and 8) define the y axis direction and halflength. The last three elements
(indices 9, 10, and 11) define the z axis direction and haliength.

A Type:number[12]
A Required: No

2.3.2 BoundingVolume.region

An array of six numbers that define a bounding geographic region in EPSG:4326
coordinates with the order [west, south, east, north, minimum height, maximum height].
Longitudes and latitudes are in radians, and heights are in meters above (or below) the
WGS84 ellipsoid.

A Type: number [6]
A Required: No

40

2.3.3 BoundingVolume.sphere

An array of four numbers that define a bounding sphere. The first three elements define
the x, y, and z values for the center of the sphere. The last element (with index 3) defines
the radius in meters.

A Type: number [4]
A Required: No

2.3.4 BoundingVolume.extensions

Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

2.3.5 BoundingVolume.extra
Application -specific data.

A Type:any
A Required: No

2.4 Extension
Dictionary object with extension -specific objects.
Additional properties are allowed.

A Type of each property : object

2.5 Extras
Application -specific data.
2.6 Properties

A dictionary object of metadata a bout per-feature properties.

Properties

Type Description Required

maximum number The maximum value of this property of all the Yes
features in the tileset.

41

minimum number The minimum value of this property of all the
features in the tileset.

extensions object Dictionary object with extension -specific objects.

extras any Application -specific data.
Additional properties are not allowed.

2.6.1 Properties.maximum
The maximum value of this property of all the features in the tileset.

A Type: number
A Required: Yes

2.6.2 Properties.minimum
The minimum value of this property of all the features in the tileset.

A Type: number
A Required: Yes

2.6.3 Properties.extensions
Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

2.6.4 Properties.extras
Application -specific data.

A Type:any
A Required: No

2.7 Tile
Atile in a 3D Tiles tileset.
Properties
Type Description
boundingVolume object A bounding volume that encloses a tile or

its content. Exactly onebox, region , or

42

Yes

No
No

Required
No

viewerRequestVol
ume

geometricError

refine

transform

content

children

object

number

string

number
[16]

object

array[

sphere property is required.

A bounding volume that encloses a tile or
its content. Exactly onebox, region , or
sphere property is required.

The error, in meters, introduced if this tile

is rendered and its children are not. At
runtime, the geometric error is used to
compute screen space error (SSE), i.e., the
error measured in pixels.

Specifies if additive or replacement
refinement is used when traversing the
tileset for rendering. This property is
required for the root tile of a tileset; it is
optional for all other tiles. The default is to
inherit from the parent tile.

A floating -point 4x4 affine transformation
matrix, stored in column-major order, that
transforms the tile's content--i.e., its
features as well as
content.boundingVolume,
boundingVolume, and
viewerRequestVolume-from the tile's local
coordinate system to the parent tile's
coordinate system, or, in the case of a root
tile, from the tile's local coordinate system
to the tileset's coordinate system.
transform does not apply to
geometricError, nor does it apply any
volume property when the volume is a
region, defined in EPSG:4326 coordinates.

Metadata about the tile's content and a
link to the content.

An array of objects that define child tiles.
Each child tile content is fully enclosed by
its parent tile's bounding volume and,
generally, has a geometricError less than
its parent tile's geometricError. For leaf
tiles, the length of this array is zero, and
children may not be defined.

43

No

Yes

No

No, default:
[1,0,0,0,0
,1,0,0,0,0
,1,0,0 ,0,0
1]

No

No

extensions object Dictionary object with extension -specific ~ No
objects.

extras any Application -specific data. No
Additional properties are not allowed.

2.7.1 Tile.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region , or sphere
property is required.

A Type: object
A Required: No

2.7.2 Tile.viewerRequestVolume

A bounding volume that encloses a tile or its content. Exactly one box, region , or sphere
property is required.

A Type: object
A Required: No

2.7.3 Tile.geometricError

The error, in meters, introduced if this tile is rendered and its children are not. At
runtime, the geometric error is used to compute screen space error (SSE), i.e., the error
measured in pixels.

A Type: number
A Required: Yes
A Minimum :>=0

2.7.4 Tile.refine

Specifies if additive or replacement refinement is used when traversing the tileset for
rendering. This property is required for the root tile of a tileset; it is optional for all other
tiles. The default is to inherit from the parent tile.

A Type: string

A Required: No

A Allowed values :
o "ADD"
0 "REPLACE"

44

2.7.5 Tile.transform

A floating -point 4x4 affine transformation matrix, stored in column -major order, that
transforms the tile's content--i.e., its features as well as content.boundingVolume,
boundingVolume, and viewerRequestVolume--from the tile's local coordinate system to
the parent tile's coordinate system, or, in the case of a root tile, from the tile's local
coordinate system to the tileset's coordinate system. transform does not apply to
geometricError, nor does it apply any volume property when the volume is a region,
defined in EPSG:4326 coordinates.

A Type: number [16]
A Required : No, default: [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]

2.7.6 Tile.content

Metadata about the tile's content and a link to the content.

A Type: object
A Required: No

2.7.7 Tile.children

An array of objects that define child tiles. Each child tile content is fully enclosed by its

parent tile's bounding volume and, generally, has a geometricError less than its parent
tile's geometricError. For leaf tiles, the length of this array is zero, and children may not
be defined.

A Type:array]]
0 Each element in the array must be unique.
A Required: No

2.7.8 Tile.extensions
Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

2.7.9 Tile.extras
Application -specific data.

A Type:any

45

A Required: No

2.8 Tile Content

Metadata about the tile's content and a link to the content.

Properties
Type Description Required
boundingVolume object A bounding volume that encloses a tile orits ~ No
content. Exactly onebox, region , or sphere
property is required.
uri string A uri that points to the tile's content. When Yes
the uri is relative, it is relative to the referring
tileset JSON file.
extensions object Dictionary object with extension -specific No
objects.
extras any Application-specific data. No

Additional properties are not allowed.

2.8.1 TileContent.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region , or sphere

property is required.

A Type: object
A Required: No

2.8.2 TileContent.uri

A uri that points to the tile's content. When the uri is relative, it is relative to the

referring tileset JSON file.

A Type: string
A Required: Yes

2.8.3 TileContent.extensions
Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each pro perty : Extension

46

2.8.4 TileContent.extras
Application-specific data.

A Type:any
A Required: No

3 Feature Table

3.1 Overview

A Feature Tabledescribes position and appearance properties for each feature in a tile.
The Batch Tablg on the other hand, contains per-feature application-specific metadata
not necessarily used for rendering.

A Feature Table is used by tile formats likeBatched 3D Model (b3dm) where each model
is a feature, and Point Cloud (pnts) where each point is a feature.

Per-feature properties are defined using tile format -specific semantics defined in each
tile format's specification. For example, for /nstanced 3D Model, SCALENON_UNIFORM
defines the non-uniform scale applied to each 3D model instance.

3.2 Layout

A Feature Table is composed of two parts: a JSON header and an optional binary body
in little endian. The JSON property names are tile format specific semantics, and their
values can either be defined directly in the JSON, or refer to sections in the binary body.
It is more efficient to store long numeric arrays in the binary body. The following figure
shows the Feature Table layout:

Feature Table

- S
- -

JSOH Header Binary Body
(UTE-£) |

Figure 20: Feature Table layout

When a tile format includes a Feature Table, the Feature Table immediately follows the
tile's header. The header will also containfeatureTableJSONByteLength and
featureTableBinaryByteLength uint32 fields, which can be used to extracteach
respective part of the Feature Table.

a7

../BatchTable/README.md
../Batched3DModel/README.md
../PointCloud/README.md

3.2.1 Padding

The JSON header must end on an 8byte boundary within the containing tile binary. The
JSON header must be padded with trailing Space characters {x20) to satisfy this
requirement.

The binary body must start and end on an 8-byte boundary within the containing tile
binary. The binary body must be padded with additional bytes, of any value, to satisfy
this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property's implicit component type. For example, a property with the implicit
component type FLOAThas 4 bytes per element, and therefore must start at an offset
that is a multiple of 4. Preceding binary properties must be padded with additional
bytes, of any value, to satisfy this requirement.

3.2.2 JSON header
Feature Table values can be represented in the JSON header in three different ways:

1. A single value or object, e.g.,"INSTANCES_LENGTH": 4

1 This is used for global semantics like"INSTANCES_LENGTHWVhich defines

the number of model instances in an Instanced 3D Model tile.
2. An array of values, e.g.,'POSITION" : [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 1.0]

1 This is used for perfeature semantics like"POSITION" in Instanced 3D
Model. Above, each POSITIONrefers to a float32[3] data type so there are
three features: Feature 0's position =(1.0, 0.0, 0.0) , Feature 1's
position =(0.0, 1.0, 0.0) , Feature 2's position =(0.0,0.0,1.0)

3. Areference to data in the binary body, denoted by an object with a byteOffset
property, e.g.,"SCALE" : { "byteOffset" : 24}

1 byteOffset specifies a zerobased offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of
the property's implicit component type, e.g., the "POSITION' property has
the component type FLOAT(4 bytes), so the value ofbyteOffset must be
of a multiple of 4.

1 The semantic defines the allowed data type, e.g., when'POSITION" in
Instanced 3D Model refers to the binary body, the component type is
FLOATand the number of components is 3.

1 Some semantics allow for overriding the implicit component type. These
cases are specified in each tile format, e.g.;BATCH_ID" : { "byteOffset"

: 24, "componentType" : "UNSIGNED_BYTE"}

48

The only valid properties in the JSON header are the defined semantics by
the tile format and optional extras and extensions properties.
Application -specific data should be stored in the Batch Table.

SeeProperty reference for the full ISON header schema reference. The full JSON schema
can be found in featureTable.schema.json

3.2.3 Binary body

When the JSON header includes a reference to the binary, the providedbyteOffset is
used to index into th e data. The following figure shows indexing into the Feature Table
binary body:

JSCH Header Binary Body

POSITION: ~ ! !
{byteCfisetc: 16} | ! |
|

Figure 21 Feature Table binary body layout

Values can be retrieved using the number of features,featuresLength ; the desired
feature id, featureld ; and the data type (component type and number of components)
for the feature semantic.

3.3 Implementation example
This section is non-normative

The following example accesses the position property using the POSITIONsemantic,
which has afloat32[3] data type:

var byteOffset = featureTableJSON . POSITION byteOffset

var positionArray = new Float32Array (featureTableBinary . buffer , byteOffset
featuresLength * 3); // There are three components for each POSITION feature.
var position = positionArray .subarray (featureld * 3, featureld * 3 + 3); //

Using subarray creates a view into the array, and not a new array.

Code for reading the Feature Table can be found in Cesium3DTileFeatureTable.jin the
Cesium implementation of 3D Tiles.

49

../../schema/featureTable.schema.json
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Cesium3DTileFeatureTable.js

3.4 Property reference

3.4.1 Feature Table

A set of semantics containing per-tile and per-feature values defining the position and
appearance properties for features in a tile.

Properties

Type Description Required
extensions Object Dictionary object with extension -specific objects. No
extras any Application -specific data. No

Additional properties are allowed.

A Type of each property : Property

3.4.1.1 FeatureTable.extensions

Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

3.4.1.2 FeatureTable.extras
Application -specific data.

A Type:any
A Required: No

3.4.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table
where the property values are stored if not defined directly in the JSON.

Properties

Type Description Required
byteOffset humber The offset into the buffer in bytes. Yes

Additional properties are allowed.

50

3.4.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

A Type: number
A Required: Yes
A Minimum :>=0

3.4.3 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can bedefined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReferenceobject.

4 Batch Table

4.1 Overview

A Batch Tablecontains per-feature application-specific metadata in a tile. These
properties may be queried at runtime for declarative styling and application -specific use
cases such as populating a Ul or issuing a REST API request. Some example Batch Table
properties are building heights, geographic coordinates, and database primary keys.

A Batch Table is used by the following tile formats:

A Batched 3D Model (b3dm)
A Instanced 3D Model (i3dm)
A Point Cloud (pnts)

4.2 Layout

A Batch Table is composed of two parts: a JSON header and an optional binary body in
little endian. The JSON describes the properties, whose values either can be defined
directly in the JSON as an array, or can refer tosections in the binary body. It is more
efficient to store long numeric arrays in the binary body. The following figure shows the
Batch Table layout:

51

../Batched3DModel/README.md
../Instanced3DModel/README.md
../PointCloud/README.md

Batch Tabkle
= ™
T -

JECHN Header Einary Body I
(UTE-8) |

Figure 22: Batch Table layout

When a tile format includes a Batch Table, the Bach Table immediately follows the tile's
Feature Table.

The header will also contain batchTableJSONByteLength and
batchTableBinaryByteLength uint32 fields, which can be used to extract each
respective part of the Batch Table.

4.2.1 Padding

The JSON header mustend on an 8-byte boundary within the containing tile binary. The
JSON header must be padded with trailing Space characters §x20) to satisfy this
requirement.

The binary body must start and end on an 8-byte boundary within the containing tile
binary. The binary body must be padded with additional bytes, of any value, to satisfy
this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property's componentType. For example, a property with the component type FLOAThas
4 bytes per element, and therefore must start at an offset that is a multiple of 4.
Preceding binary properties must be padded with additional bytes, of any value, to
satisfy this requirement.

4.2.2 JSON header
Batch Table values can be representedn the JSON header in two different ways:

1. An array of values, e.g.,'name": [namel’, 'name2', 'name3'] or "height" :
[10.0, 20.0, 15.0]
1 Array elements can be any valid JSON data type, including objects and
arrays. Elements may benull .
1 The length of each array is equal to batchLength , which is specified in each
tile format. This is the number of features in the tile. For example,
batchLength may be the number of models in a b3dm tile, the number of

52

instances in a i3dm tile, or the number of points (or num ber of objects) in
a pnts tile.

2. A reference to data in the binary body, denoted by an object with byteOffset
componentType, and type properties, e.g.,"height" : { "byteOffset" : 24,
"componentType" : "FLOAT", "type" : "SCALAR"}

1 byteOffset specifies a zerobased offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of
the property's componentType, €e.g., a property with the component type
FLOATmust have abyteOffset value that is a multiple of 4.

1 componentType is the datatype of components in the attribute. Allowed
values are"BYTE", "UNSIGNED_BYTE"SHORT;, "UNSIGNED_SHORTINT" ,
"UNSIGNED_INT;""FLOAT", and "DOUBLE

1 type specifies if the property is a scalar or vector. Allowedvalues are
"SCALAR "VEC2", "VEC3", and "VEC4".

The Batch Table JSON is &TF 8 string containing JSON.

Implementation Note: In JavaScript, the Batch Table JSON can be extracted from AnrayBuffer using
the TextDecoder JavaScript API and transformed to davaScript object withJSON.parse.

A batchld is used to access elements in each array and extract the corresponding
properties. For example, the following Batch Table has properties for a batch of two
features:

{

“id" : ["uniqueid” , "another uniquei d'],

"displayName" . ["Building name" , "Another building name"],

"yearBuilt" : [1999, 2015],

"address" . [{"street" . "Main Street” , "houseNumber" : "1"}, {"street"
"Main Street" , "houseNumber" : "2"}]
}

The properties for the feature with batchid =0 are

id[0] = 'uniqueid" ;

displayName[0] = 'Building name' ;

yearBuiltf 0] = 1999;

address[0] = {street : 'Main Street’ , houseNumber : '1' };

The properties for batchid=1 are

id[1] = 'another unique id' ;

displayName[1] = 'Another building name' ;

yearBuiltff 1] = 2015;

address[1] = {street : 'Main Street' , houseNumber : '2' };

53

SeeProperty reference for the full ISON header schema reference. The full JSON schema
can be found in batchTable.schema.json

4.2.3 Binary body

When the JSON header includes a reference to the binary section, the provided
byteOffset is used to index into the data, as shown in the following figure:

J5CH Header Binary Body

id: { - ! I
conponentType: “INT™, | ! |
type: “SCALAR”, e
byteCffser: 16 4] 16 batchTableBinaryByteLength

-

Figure 23: Batch Table binary body layout

Values can be retrieved using the number of features, batchLength ; the desired batch id,
batchld ; and the componentType and type defined in the JSON header.

The following tables can be used to compute the byte size of a property.

componentType Size in bytes

"BYTE"
"UNSIGNED_BYTE"
"SHORT"
"UNSIGNED_SHOR
"INT"
"UNSIGNED_INT"
"FLOAT"
"DOUBLE"

o A A B DNMNDN PP

type Number of components
"SCALAR"

"VEC2"
"VEC3"
"VEC4"

A WD

54

../../schema/batchTable.schema.json

4.3 Implementation example
This section isnon-normative

The following examples access the"height” and "geographic”
the following Batch Table JSON withbatchLength of 10:

{
"height" : {
"byteOffset" o0,
"componentType" : "FLOAT",
"type" : "SCALAR"

}

eographic" : {
"byteOffset" .40,
"componentType" : "DOUBLE,
"type" : "VEC3"

}
To get the "height" values:

var height = batchTableJSON. height ;

var byteOffset = height . byteOffset

var componentType = height . componentType;
var type = height . type ;

values respectively given

var heightArrayByteLength = batchLength * sizelnBytes (componentType) *

numberOfComponentgtype) ; //10*4*1

var heightArray = new Float32Array (batchTableBinary . buffer | byteOffset

heightArrayBytelLength)
var heightOfFeature = heightArray[batchlid]

To get the "geographic" values:

var geographic = batchTableJSON. geographic ;

var byteOffset = geographic . byteOffset

var componentType = geographic . componentType;

var type = geographic . type ;

var componentSizelnByt es = sizelnBytes (componentType)
var numberOfComponents = numberOfComponentgtype) ;

var geographicArrayByteLength = batchLength * componentSizelnBytes *

numberOfComponents // 10 * 8 * 3
var geographicArray = new Float64Array (batchTableBinary
geographicArrayByteLength)

// Using subarray creates a view into the array, and not a new array.
var geographicOfFeature = positionArray . subarray (batchld

. buffer , byteOffset |,

*

numberOfComponents batchld * numberOfComponents + numberOfComponents);

55

Code for reading the Batch Table can be found in Cesium3DTileBatchTable.jén the
Cesium implementation of 3D Tiles.

4.4 Property reference

4.4.1 Batch Table
A set of properties defining application -specific metadata for features in a tile.

Properties

Type Description Required
extensions Object Dictionary object with extension -specific objects. No
extras any Application -specific data. No

Additional properties are allowed.

A Type of each property : Property
BatchTable.extensions

Dictionary object with extension -specific objects.

A Type: object
A Required: No
A Type of each property : Extension

4.4.1.1 BatchTable.extras
Application -specific data.

A Type:any
A Required: No

4.4.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the batch table
where the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes
componentType String The datatype of components in the property. Yes
type string Specifies if the property is a scalar or vector. Yes

56

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Cesium3DTileBatchTable.js

Additional properties are allowed.
4.4.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

A Type: number
A Required: Yes
A Minimum :>=0

4.4.2.2 BinaryBodyReference.componentType
The datatype of components in the property.

A Type: string
A Required: Yes
A Allowed values :

o0 "BYTE"
"UNSIGNED_BYTE"
"SHORT"
"UNSIGNED_SHORT"
"INT"
"UNSIGNED_INT"
"FLOAT"
"DOUBLE"

X Ox Ox Ox Ox Ox O«

4.4.2.3 BinaryBodyReference.type
Specifies if the property is a scalar or vector.

A Type: string
A Required: Yes
A Allowed values :

0 "SCALAR"
o0 "VEC2"
0 "VEC3"
0 "VEC4"

4.4.3 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReferenceobject.

57

5 Tile format specifications

Each tile'scontent.uri property points to a tile that is one of the formats listed in the
table below.

Format Uses

Batched 3D Model Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D
(b3dm) building exteriors and interiors, massive models.

Instanced 3D Model 3D model instances. E.g. trees, windmills, bolts.
(i3dm)

Point Cloud (pnts) Massive number of points.

Composite (cmpt) Concatenate tiles of different formats into one tile.

A tileset can contain any combination of tile formats. 3D Tiles may also support different
formats in the same tile using a Composite tile.

5.1 Batched 3D Model

5.1.1 Overview

Batched 3D Modelallows offline batching of heterogeneous 3D models, such as
different buildings in a city, for efficient streaming to a web client for rendering and
interaction. Efficiency comes from transferring multiple models in a single request and
rendering them in the least number of WebGL draw calls necessary. Using the core 3D
Tiles spec language, each model is afeature.

Per-model properties, such as IDs, enable individual models to be identified and
updated at runtime, e.g., show/hide, highlight color, etc. Prop erties may be used, for
example, to query a web service to access metadata, such as passing a building's ID to
get its address. Or a property might be referenced on the fly for changing a model's
appearance, e.g., changing highlight color based on a property value.

A Batched 3D Model tile is a binary blob in little endian.

5.1.2 Layout

A tile is composed of two sections: a header immediately followed by a body. The
following figure shows the Batched 3D Model layout (dashes indicate optional fields):

58

28-byte header (first 20 bytes)

magic version byteLength featureTableJSCHBytelLength featureTableBinaryBytelength
(unsigned char[4]) (uinc32) (uint32) (uint32) (uint32)

28-byte header (next 8 bytes)

batchTableJSCHEyteLength batchTableBinaryByteLength

(uint32) {uint32)

featureTable | batchTakle Binary glTF

{ data /
-

Figure 24: Batched 3D Model layout
5.1.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table
and Batch Tablemust conform to their respective padding requirement.

The binary gITF must start and end on an 8-byte boundary so that gITF's byte-alignment
guarantees are met. This can be done by padding the Feature Take or Batch Table if
they are present.

5.1.3 Header

The 28-byte header contains the following fields:

Field name Data type Description
magic 4-byte ANSI "b3dm". This can be used to identify
string the content as a Batched 3D Model

tile.

version uint32 The version of the Batched 3D Model
format. It is currently 1.

byteLength uint32 The length of the entire tile, including
the header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON
section in bytes.

featureTableBinaryByteLength uint32 The length of the Feature Table binary

59

../FeatureTable/README.md#padding
../BatchTable/README.md#padding

section in bytes.

batchTableJSONByteLength uint32 The length of the Batch Table JSON
section in bytes. Zero indicates there is
no Batch Table.

batchTableBinaryByteLength uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero,
this will also be zero.

The body section immediately follows the header section, and is composed of three
fields: Feature Table , Batch Table , and Binary gITF

5.1.4 Feature Table

Contains values forb3dmsemantics.

More information is available in the Feature Table specification
5.1.4.1 Semantics

5.1.4.1.1 Feature semantics

There are currently no per-feature semantics.

5.1.4.1.2 Global semantics

Thesesemantics define global properties for all features.

Semantic Data Type Description Required

BATCH_LENGT uint32 The number of distinguishable models, also Yes.
called features, in the batch. If the Binary gITF
does not have abatchld attribute, this field
must be 0.

RTC_CENTER float32[3] A 3-component array of numbers defining No.
the center position when positions are
defined relative-to-center, (seeCoordinate
system).

5.1.5 Batch Table

The Batch Tablecontains per-model application -specific metadata, indexable by
batchld , that can be used for declarative styling and application-specific use cases such
as populating a Ul or issuing a REST API request. In the hary gITF section, each vertex

60

../FeatureTable/README.md
../../Styling/README.md

has an numericbatchld attribute in the integer range [0, number of models in the
batch - 1]. Thebatchld indicates the model to which the vertex belongs. This allows
models to be batched together and still be identifiable.

See the Batch Tablereference for more information.

5.1.6 Binary gITF
Batched 3D Model usesg!TF 2.0to embed model data.

The binary glTFimmediately follows the Feature Table and Batch Table. It may embed all
of its geometry, texture, and animations, or it may refer to external sources for some or
all of these data.

As described above, each vertex has @atchld attribute indicating the model to which it
belongs. For example, vertices for a batch with three models may look like this:

batchid: [0, 0, O, ..,1, 1, 1, . w2, 2, 2, ..]
position: [Xyz, Xyz, Xyz, ..., XYz, XyZ, XYz, ..., XyZ, Xyz, Xyz, ...]
normal: [Xyz, Xyz, Xyz, ..., XYz, Xyz, Xyz, ..., Xyz, Xyz, Xyz, ...]

Vertices do not need to be ordered by batchld , so the following is also OK:

batchld: [0, 1, 2, ..,2, 1, 0, ...,1, 2, 0, ..]
position: [Xyz, xXyz, Xyz, ..., Xyz, Xyz, Xyz, ..., Xyz, Xyz, Xyz, ...]
normal: [Xyz, Xyz, Xyz, ..., XYz, Xyz, Xyz, ..., Xyz, Xyz, Xyz, ...]

Note that a vertex can't belong to more than one model; in that case, the vertex needs
to be duplicated so the batchld s can be assigned.

The batchld parameter is specified in a gITF meshprimitive by providing the _BATCHID
attribute semantic, along with the index of the batchld accessor For example

"primitives": [
{
"attributes” |
" BATCHID" 0
}

"accessors" : |

{
"pufferView" : 1,

"byteOffset" : O,
"componentType" : 5125,
"count" : 4860,

"max": [2],

61

../BatchTable/README.md
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#binary-gltf-layout
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#reference-primitive
https://github.com/KhronosGroup/glTF/tree/master/specification/2.0#accessors

"min" : [0],
"type" . "SCALAR"

}

The accessor.type must be a value of "SCALAR! All other properties must conform to
the gITF schema, but have no additional requirements.

When a Batch Table is present or tre BATCH_LENGTHoperty is greater than 0, the
_BATCHIDattribute is required; otherwise, it is not.

5.1.6.1 Coordinate system

By default embedded gITFs use a right handed coordinate system where the)~axis is up.
For consistency with the zup coordinate system of 3D Tiles, gITFs must be transformed
at runtime. See coordinate reference system for more details.

Vertex positions may be defined relative-to-center for high -precision rendering, see
Precisions, Precisionslf defined, RTC_CENTE$pecifies the center position that all vertex
positions are relative to after the coordinate system transform and gITF node hierarchy
transforms have been applied.

5.1.7 File extension and MIME type

Batched 3D Model tiles use the .b3dm extension and application/octet - stream MIME
type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

5.1.8 Implementation example
This section is nor-normative

Code for reading the header can be found in
Batched3DModelTileContent.js
in the Cesium implementation of 3D Tiles.

5.1.8.1 Property reference
5.1.8.1.1 Batched 3D Model Feature Table

A set of Batched 3D Model semantics that contain additional information about features
in atile.

Properties

62

../../README.md#gltf
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm
https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Scene/Batched3DModel3DTileContent.js

Type
extensions object
extras any
BATCH_LENGTH object ,

number[1] ,

number

RTC_CENTER object ,
number [3]

Additional properties are allowed.

Description Required

Dictionary object with extension-specific No
objects.

Application -specific data. No

A GlobalPropertyScalarobject defininga Yes
numeric property for all features. See the
corresponding property semantic in

Semantics

A GlobalPropertyCartesian3object No
defining a 3-component numeric

property for all features. See the
corresponding property semantic in
Semantics

A Type of each property : Property

5.1.8.1.1.1Batched3DModelFeatureTable.extensions

Dictionary object with extension -specific objects.

A Type: object
A Required: No

A Type of each property : Extension

5.1.8.1.1.2Batched3DModelFeatureTable.extras

Application -specific data.

A Type:any
A Required: No

5.1.8.1.1.3Batched3DModelFeatureTable. BATCH LENGTH

A GlobalPropertyScalarobject defining a numeric property for all features. See the
corresponding property semantic in Semantics

A Type: object , number[1] , number

A Required: Yes

63

/specification/TileFormats/Batched3DModel/README.md#semantics
/specification/TileFormats/Batched3DModel/README.md#semantics
/specification/TileFormats/Batched3DModel/README.md#semantics

5.1.8.1.1.4Batched3DModelFeatureTable. RTC_CENTER

A GlobalPropertyCartesian3object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics

A Type:object , number[3]
A Required: No

5.1.8.1.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table
where the property values are stored if not defined directly in the JSON.

Properties

Type Description Required
byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.
5.1.8.1.2.1BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

A Type: number
A Required: Yes
A Minimum :>=0

5.1.8.1.3 GlobalPropertyCartesian3

An object defining a global 3 -component numeric property values for all features.
5.1.8.1.4 GlobalPropertyScalar

An object defining a global numeric pr operty values for all features.

5.1.8.1.5 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReferene object.

64

/specification/TileFormats/Batched3DModel/README.md#semantics

5.2 Instanced 3D Model

5.2.1 Overview

Instanced 3D Modelis a tile format for efficient streaming and rendering of a large
number of models, called /nstances with slight variations. In the simplest case, the same
tree model, for example, may be locatedfi or /nstancedh in several places. Each instance
references the same model and has perinstance properties, such as position. Using the
core 3D Tiles spec language, each instance is afeature.

In addition to trees, Instanced 3D Model is useful for exterior features such as fire
hydrants, sewer caps, lamps, and traffic lights, and for interior CAD features such as
bolts, valves, and electrical outlets.

An Instanced 3D Model tile is a binary blob in little endian.

Implementation Note: A Composite tile can be used to create tiles with different types of instanced models,
e.g., trees and traffic lights by combing two Instanced B Model tiles.

Implementation Note: Instanced 3D Model maps well to theANGLE instanced_arrayextension for efficient
rendering with WebGL.

5.2.2 Layout

A tile is composed of a header section immediately followed by a binary body. The
following figure shows the Instanced 3D Model layout (dashes indicate optional fields):

32-byte header (fizst 20 bytes)

version | byteLength

{uint32)

featureTableJSONBytelength

{uintc32)

featureTableBinaryBytelength |

(uint32)

32-byte header (next 12 bytes)

batchTableJSONByteLength

batchTableBinaryByteLength
(uint32) int32

(uint32)

gltfFormat |

(zint32)

Figure 25: Instanced 3D Model layout

5.2.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table
and Batch Tablemust conform to their respective padding requirement.

65

../Composite/README.md
https://www.khronos.org/registry/webgl/extensions/ANGLE_instanced_arrays/
../FeatureTable/README.md#padding
../BatchTable/README.md#padding

The binary gITF (if present) must start and end on an 8-byte boundary so that gITF's
byte-alignment guarantees are met. This can be done by padding the Feature Table or

Batch Table if they are present.

Otherwise, if the gITF field isa UTF8 string, it must be padded with trailing Space
characters 0x20) to satisfy alignment requirements of the tile, which must be removed
at runtime before requesting the gITF asset.

5.2.3 Header

The 32-byte header contains the following fields:

Field name Data type Description
magic 4-byte "i3dm" . This can be used to identify the
ANSI string content as an Instanced 3D Model tile.

version uint32 The version of the Instanced 3D Model
format. It is currently 1.

byteLength uint32 The length of the entire tile, including
the header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table JSON
section in bytes.

featureTableBinaryByteLength uint32 The length of the Feature Table binary
section in bytes.

batchTableJSONByteLength uint32 The length of the Batch Table JSON
section in bytes. Zero indicates that
there is no Batch Table.

batchTableBinaryByteLength uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero, this
will also be zero.

gltfFo rmat uint32

Indicates the format of the gITF field of
the body. 0 indicates itis a uri, 1
indicates it is embedded binary gITF.
See the g/ TFsection below.

The body section immediately follows the header section and is composed of three
fields: Feature Table , Batch Table , and gITF.

66

5.2.4 Feature Table

The Feature Table contains values foii3dm semantics used to create instanced models.
More information is available in the Feature Tablespecification.

5.2.4.1 Semantics
5.2.4.1.1 Instance semantics

These semantics map to an array of feature values that are used to create instances. The
length of these arrays must be the same for all semantics and is equal to the number of
instances.

The value for each instance semantic must be a reference to the Feature Table binary
body; they cannot be embedded in the Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined.
If both SCALEand SCALE_NON_UNIFO&M defined for an instance, both scaling
operations will be applied.

If both POSITIONand POSITION_QUANTIZE&re defined for an instance, the higher
precision POSITIONwill be used.

If NORMAL_URORMAL_RIGHYORMAL_UP_OCT3aRd NORMAL_RIGHT_OCT22e defined
for an instance, the higher precision NORMAL_uihd NORMAL_RIGHill be used.

Semantic Data Type Description Required

POSITION float32[3] A 3-component array of Yes, unless
numbers containing x,y, POSITION_QUANTIZED
and z Cartesian is defined.

coordinates for the
position of the ins tance.

POSITION_QUANTIZEL uint16[3] A 3-component array of Yes, unlessPOSITION
numbers containing x,y, is defined.
and z in quantized
Cartesian coordinates for
the position of the

instance.

NORMAL_UP float32[3] A unit vector defining the No, unless
up direction for the NORMAL_RIGHS
orientation of the defined.
instance.

NORMAL_RIGHT float32[3] A unit vector defining the No, unlessNORMAL_UI
right direction for the is defined.

67

../FeatureTable/README.md

NORMAL_UP_OCT32P uint16[2]

NORMAL_RIGHT_OCT: uint16[2]

orientation of the
instance. Must be
orthogonal to up.

An oct-encoded unit
vector with 32-bits of
precision defining the up
direction for the
orientation of the
instance.

An oct-encoded unit
vector with 32-bits of
precision defining the
right direction for the
orientation of the
instance. Must be
orthogonal to up.

No, unless
NORMAL_RIGHT_OCT:

is defined.

No, unless
NORMAL_UP_OCT3gP
defined.

SCALE float32 A number defining a No.
scale to apply to all axes
of the instance.
SCALE_NON_UN”:ORI\ f|08.t32[3] A 3_C0mp0nent array of No.
numbers defining the
scale to apply to the x, vy,
and z axes of the
instance.
BATCH_ID uint8 Thebatchid of the No.
uint16 instance that can be used
(default), to retrieve metadata
Or uint32 from the Batch Table .
5.2.4.1.2 Global semantics
These semantics define global properties for all instances.
Semantic Data Type Description Required
INSTANCES_LENGTH uint32 The number of instances Yes.

to generate. The length

of each array value for an

instance semantic should
be equal to this.

68

RTC_CENTER float32[3]

QUANTIZED_VOLUME_ float32[3]
FSET

QUANTIZED_VOLUME_ float32[3]
ALE

EAST _NORTH_UP boolean

A 3-component array of
numbers defining the
center position when
instance positions are
defined relative-to-
center.

A 3-component array of
numbers defining the
offset for the quantized
volume.

A 3-component array of
numbers defining the
scale for the quantized
volume.

When true and per-

instance orientation is not

defined, each instance
will default to the
east/north/up reference

frame's orientation on the

WGS8¢llipsoid.

No.

No, unless
POSITION_QUANTIZEiB
defined.

No, unless
POSITION_QUANTIZEiB
defined.

No.

Examples using thesesemantics can be found in the examples section

5.2.4.2 Instance orientation

An instance's orientation is defined by an orthonormal basis created by an up and right

vector. The orientation will be transformed by the tile transform.

The x vector in the standard basis maps to the right

and the y vector maps to the up vector.
The z vector would map to a forward vector, but it is omitted because it will always be

the cross product of right

and up.

69

vector in the transformed basis,

../../README.md#tile-transform

Figure 26: A box in the standard basis

Figure 27: A box transformed into a rotated basis

5.2.4.2.1 Oct-encoded normal vectors

If NORMAL_U#nd NORMA RIGHTare not defined for an instance, its orientation may be
stored as oct-encoded normals in NORMAL_UP_OCTz2ZRl NORMAL_RIGHT_OCT32P
These defineup and right using the oct-encoding described in A Survey of Efficient
Representations of Independent Unit Vectors. Oct-encoded values are stored in
unsigned, unnormalized range ([0, 65535]) and then mapped to a signed normalized
range ((- 1.0, 1.0]) at runtime.

70

http://jcgt.org/published/0003/02/01/
http://jcgt.org/published/0003/02/01/

An implementation for encoding and decoding these unit vectors can be found in Cesium's
AttributeCompression
module.

5.2.4.2.2 Default orientation

If NORMAL_Uihd NORMAL_RIGHT NORMAL_UP_OCT32Rl NORMAL_RIGHT_OCT?2®2E not
present, the instance will not have a custom orientation. If EAST_NORTH_i#Rrue , the
instance is assumed to be on the WGS8llipsoid and its orientation will defa ult to the
east/north/up reference frame at its cartographic position.

This is suitable for instanced models such as trees whose orientation is always facing up
from their position on the ellipsoid's surface.

5.2.4.3 Instance position
POSITIONdefines the location for an instance before any tile transforms are applied.
52431 RTC _CENTER

Positions may be defined relative-to-center for high -precision rendering, see Precisions,
Precisions If defined, RTC_CENTE$pecifies the center position and all instance positions
are treated as relative to this value.

5.2.4.3.2 Quantized positions

If POSITIONIs not defined for an instance, its position may be stored in
POSITION_QUANTIZE®hich defines the instance position relative to the quantized
volume.

If neither POSITIONor POSITION_QUANTIZEAre defined, the instance will not be created.

A quantized volume is defined by offset and scale to map quantized positions into
local space, as shown in the following figure:

71

https://github.com/AnalyticalGraphicsInc/cesium/blob/master/Source/Core/AttributeCompression.js
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm
http://help.agi.com/AGIComponents/html/BlogPrecisionsPrecisions.htm

Figure 28: A quantized volume

offset is stored in the global semantic QUANTIZED _VOLUME_OFE@&RT scale is stored in
the global semantic QUANTIZED_VOLUME_SCALE
If those global semantics are not defined, POSITION_QUANZIED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 +
QUANTIZED_VOLUME_OFFSET

5.2.4.4 Instance scaling

Scaling can be applied to instances using the SCALEand SCALE_NON_UNIFOs&mantics.
SCALEpplies a uniform scale along all axes, andSCALE_NON_UNIFO&bplies scaling to
the x,y, and z axes independently.

5.2.4.5 Examples

These examples show how to generate JSON and binary buffers for the Feature Table.
72

