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Source of the content for this OGC document

The majority of the content in this OGC document is a direct copy of the content
contained at https://github.com/AnalyticalGraphicsinc/3d-tiles/tree/1.0 (the 1.0 branch
of the 3d-tiles repo). No normative changes have been made to the content. This
OGC document does contain content not contained in the 1.0 branch of the 3d-tiles
repo.

Note: Some elements (such as Vector Data) contained in

https://github.com/AnalyticalGraphicsinc/3d-tiles (the 3d-tiles repo) have been removed
from the OGC document because they are currently in under development and not a
part of this specification. These elements are identified as future work in this OGC
document.

Validity of content

The Submission Team has reviewed and certified that the “snapshot” content in this
Community Standard is true and accurate.

Future work

The 3D Tiles community anticipates that revisions to this Community Standard will be
required to prescribe content appropriate to meet new use cases. These use cases may
arise from either (or both) the external user and developer community or from OGC
review and comments. Further, future revisions will be driven by any submitted change
requests that document community uses cases and requirements.

Additions planned for future inclusion in the 3D Tiles Specification (future work) are
described at https://github.com/AnalyticalGraphicsinc/3d-tiles/issues/247.
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1 Introduction

In 3D Tiles, a tileset is a set of tiles organized in a spatial data structure, the tree. The
tree incorporates the concept of Hierarchical Level of Detail (HLoD) for optimal
rendering of spatial data.

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes
(like a Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at
several levels of detail (or zoom levels). However since the content of a tileset is often
non-uniform or may not easily be organized in only two dimensions, the tree can be any
spatial data structure with spatial coherence, including k-d trees, quadtrees, octrees, and
grids.

Each tile has a bounding volume completely enclosing its content. The tree has spatial
coherence; the content for child tiles are completely inside the parent's bounding
volume.

bounding volume

tile

Figure 1: A sample 3D Tiles bounding volume hierarchy

M



To support tight fitting volumes for a variety of datasets—from regularly divided terrain
to cities not aligned with a line of latitude or longitude to arbitrary point clouds—the
bounding volume may be an oriented bounding box, a bounding sphere, or a
geographic region defined by minimum and maximum latitudes, longitudes, and
heights.

Figure 2: Bounding box  Figure 3: Bounding sphere  Figure 4: Bounding region

A tile references a feature or set of features, such as 3D models representing buildings
or trees, or points in a point cloud. These features may be batched together into
essentially a single feature to reduce client-side load time and rendering draw call
overhead.

A 3D tileset consists of at least one tileset JSON file specifying the metadata and the
tree of tiles, as well as any referenced tile content files which may be any valid tile
format, defined in JSON as described below.

Optionally, a 3D Tile Style may be applied to a tileset.

1.1 File extensions and MIME types
3D Tiles uses the following file extensions and MIME types.

o Tileset files use the .json extension and the application/json MIME type.
o Tile content files use the file type and MIME format specific to their tile format
specification.

o Tileset style files use the . json extension and the application/json MIME type.

Explicit file extensions are optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

12



1.2 JSON encoding

3D Tiles has the following restrictions on JSON formatting and encoding.

1. JSON must use UTF-8 encoding without BOM.

2. All strings defined in this spec (properties names, enums) use only ASCII charset
and must be written as plain text.

3. Names (keys) within JSON objects must be unique, i.e., duplicate keys aren't
allowed.

1.3 URIs

3D Tiles uses URIs to reference tile content. These URIs may point to relative external
references (RFC3986) or be data URIs that embed resources in the JSON. Embedded
resources use the "data” URI scheme (RFC2397).

When the URI is relative, its base is always relative to the referring tileset JSON file.

Client implementations are required to support relative external references and
embedded resources. Optionally, client implementations may support other schemes
(such as http://). All URIs must be valid and resolvable.

1.4 Units

The unit for all linear distances is meters.

All angles are in radians.

1.5 Coordinate reference system (CRS)

3D Tiles uses a right-handed Cartesian coordinate system; that is, the cross product of x
and yyields z 3D Tiles defines the zaxis as up for local Cartesian coordinate systems. A
tileset's global coordinate system will often be in a WGS 84 earth-centered, earth-fixed
(ECEF) reference frame, but it doesn't have to be, e.g., a power plant may be defined
fully in its local coordinate system for use with a modeling tool without a geospatial
context.

An additional tile transform may be applied to transform a tile's local coordinate system
to the parent tile's coordinate system.

The region bounding volume specifies bounds using a geographic coordinate system
(latitude, longitude, height), specifically EPSG 4326.

13
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1.5.1 gITF

Some tile content types such as Batched 3D Model and Instanced 3D Model embed
glTF. The gITF specification defines a right-handed coordinate system with the y axis as

up.
1.5.1.1  y~up to z-up transform

For consistency with the z-up coordinate system of 3D Tiles, gITFs must be transformed
from y~up to z-up at runtime. This is done by rotating the model about the x-axis by /2
radians. Equivalently, apply the following matrix transform (shown here as row-major):

[

1.0, 0.0, 0.0, 0.0,
0.0, 0.0, -1.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 9.0, 0.0, 1.0
]

1.5.1.2 Order of transformations

Note that gITF defines its own node hierarchy, where each node has a transform. These
transforms are applied before the coordinate system transform is applied. More broadly
the order of transformations is:

1. gITF node hierarchy tranformations
2. gITF y~up to zup transform
3. Any tile format specific transforms.

e Batched 3D Model Feature Table may define RTC_CENTER which is used to
translate model vertices.

e Instanced 3D Model Feature Table defines per-instance position, normals,
and scales. These are used to create per-instance 4x4 affine transform
matrices that are applied to each instance.

4. Tile transform

Implementation note: when working with source data that is inherently z-up, such as data in WGS 84
coordinates or in a local z-up coordinate system, a common workflow is: * Mesh data, including positions
and normals, are not modified - they remain z-up. * The root node matrix specifies a column-major z-up to
y-up transform. This transforms the source data into a y~up coordinate system as required by gITF. * At
runtime the gITF is transformed back from j~up to z-up with the matrix above. Effectively the transforms
cancel out.

Example gITF root node:

"nodes": [

{
"matrix": [1,0,0,0,0,0,-1,0,0,1,0,0,0,0,0,1],

14
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"mesh": 0,
"name": "rootNode"

}
]

1.6 Tiles

Tiles consist of metadata used to render the tile, content, and any children tiles.

15



tile

‘ boundingVolume

!

="

box region sphere

geometricError

refine

content

- boundingVolume (box, region, or sphere)
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Figure 5: Tile JSSON properties

The following example shows one non-leaf tile.

{

"boundingVolume": {

"region": [

-1.2419052957251926,
0.7395016240301894,
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-1.2415404171917719,
0.7396563300150859,

9,
20.4
]
}s
"geometricError": 43.88464075650763,
"refine" : "ADD",

"content": {
"boundingVolume": {
"region": [

-1.2418882438584018,
0.7395016240301894,
-1.2415422846940714,
0.7396461198389616,
9,

19.4

"uri": "2/0/0.b3dm"

"children": [...]
}

The boundingVolume defines a volume enclosing the tile content, and is used to
determine which tiles to render at runtime. The above example uses a region volume,
but other bounding volumes, such as box or sphere, may be used.

The geometricError property is a nonnegative number that defines the error, in meters,
introduced if this tile is rendered and its children are not. At runtime, the geometric

error is used to compute Screen-Space Error (SSE), i.e., the error measured in pixels. The
SSE determines Hierarchical Level of Detail (HLOD) refinement, i.e., if a tile is sufficiently
detailed for the current view or if its children should be considered, see Geometric error.

The optional viewerRequestVolume property (not shown above) defines a volume, using
the same schema as boundingVolume, that the viewer must be inside of before the tile's
content will be requested and before the tile will be refined based on geometricError.
See the Viewer request volume section.

The refine property is a string that is either "REPLACE" for replacement refinement or
"ADD" for additive refinement, see Refinement. It is required for the root tile of a tileset;
it is optional for all other tiles. A tileset can use any combination of additive and
replacement refinement. When the refine property is omitted, it is inherited from the
parent tile.

The content property is an object that contains metadata about the tile's content and a
link to the content. content.uri is a uri that points to the tile's content.
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The uri can be another tileset JSON to create a tileset of tilesets. See External tilesets.

A file extension is not required for content.uri. A content's tile format can be identified
by the magic field in its header, or else as an external tileset if the content is JSON.

The content.boundingVolume property defines an optional bounding volume similar to
the top-level boundingvolume property. But unlike the top-level boundingVolume
property, content.boundingVolume is a tightly fit bounding volume enclosing just the
tile's content. boundingVolume provides spatial coherence and content.boundingVolume
enables tight view frustum culling. When it is not defined, the tile's bounding volume is
still used for culling (see Grids).

The screenshot below shows the bounding volumes for the root tile for Canary Wharf.
boundingVolume, shown in red, encloses the entire area of the tileset;
content.boundingVolume shown in blue, encloses just the four features (models) in the
root tile.

77 -—
[ - il =
e, L, 3

il L

SRS o~

e

P 7("""»‘,___“_77”“ -rr"""n»,,_u__z_.j‘ Ty —= e ¥

A e

Figure 6: A tile bounding volume in red, and a content bounding volume in blue

The optional transform property (not shown above) defines a 4x4 affine transformation
matrix that transforms the tile's content, boundingVolume, and viewerRequestVolume as
described in the Tile transform section.

The children property is an array of objects that define child tiles. See the Tileset JSON
section below.
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1.6.1 Bounding volumes

Bounding volume objects are used to defined an enclosing volume, and must specify
exactly one of the following properties.

1.6.1.1  Region

The boundingVolume.region property is an array of six numbers that define the
bounding geographic region with latitude, longitude, and height coordinates with the
order [west, south, east, north, minimum height, maximum height]. Latitudes and
longitudes are in the WGS 84 datum as defined in EPSG 4326 and are in radians. Heights
are in meters above (or below) the WGS 84 ellipsoid.

Figure 7: A bounding region

"boundingVolume": {
"region": [

-1.3197004795898053,
0.6988582109,
-1.3196595204101946,
0.6988897891,

9,

20
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1.6.1.2  Box

The boundingVolume.box property is an array of 12 numbers that define an oriented
bounding box in a right-handed 3-axis (x, y, z) Cartesian coordinate system where the =
axis is up. The first three elements define the x, y, and z values for the center of the box.
The next three elements (with indices 3, 4, and 5) define the x-axis direction and half-
length. The next three elements (indices 6, 7, and 8) define the y-axis direction and half-
length. The last three elements (indices 9, 10, and 11) define the zaxis direction and half-
length.

Figure 8: A bounding box

"boundingVolume": {

"box": [
9, 9, 10,
100, 0, O,
9, 100, 0O,
9, 9, 10

]
}

1.6.1.3  Sphere

The boundingVolume.sphere property is an array of four numbers that define a
bounding sphere. The first three elements define the x, y, and z values for the center of
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the sphere in a right-handed 3-axis (x, y, z) Cartesian coordinate system where the z-axis
is up. The last element (with index 3) defines the radius in meters.

Figure 9: A bounding sphere

"boundingVolume": {
"sphere": [
9,
9,
10,
141.4214

]
}

1.6.2 Tile transform

To support local coordinate systems—e.g., so a building tileset inside a city tileset can
be defined in its own coordinate system, and a point cloud tileset inside the building
could, again, be defined in its own coordinate system—each tile has an optional
transform property

The transform property is a 4x4 affine transformation matrix, stored in column-major
order, that transforms from the tile's local coordinate system to the parent tile's
coordinate system—or the tileset's coordinate system in the case of the root tile.
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The transform property applies to

. tile.content

«  Each feature's position.

«  Each feature's normal should be transformed by the top-left 3x3 matrix of the
inverse-transpose of transform to account for correct vector transforms when scale
is used.

e content.boundingVolume, except when content.boundingVolume.region is defined,
which is explicitly in EPSG:4326 coordinates.

e tile.boundingVolume, except when tile.boundingVolume.region is defined, which
is explicitly in EPSG:4326 coordinates.

. tile.viewerRequestVolume, except when tile.viewerRequestVolume.region is
defined, which is explicitly in EPSG:4326 coordinates.

The transform property does not apply to geometricError—i.e., the scale defined by
transform does not scale the geometric error—the geometric error is always defined in
meters.

When transform is not defined, it defaults to the identity matrix:

[

1.0, 0.0, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
]

The transformation from each tile's local coordinate to the tileset's global coordinate
system is computed by a top-down traversal of the tileset and by post-multiplying a
child's transform with its parent's transform like a traditional scene graph or node
hierarchy in computer graphics.

For an example of the computed transforms (transformToRoot in the code above) for a
tileset, consider:
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pnts

T4

b3dm i3dm

Figure 10: A tileset with transformed children tiles

The computed transform for each tile is:

TO: [TO]

T1: [TO][T1]

T2: [TO][T2]

T3: [TO][T1][T3]
T4: [TO][T1][T4]

The positions and normals in a tile's content may also have tile-specific transformations
applied to them before the tile's transform (before indicates post-multiplying for affine
transformations). Some examples are:

b3dm and i3dm tiles embed gITF, which defines its own node hierarchy and
coordinate system. tile.transform is applied after these transforms are resolved.
See coordinate reference system.

i3dm's Feature Table defines per-instance position, normals, and scales. These are
used to create per-instance 4x4 affine transform matrices that are applied to each
instance before tile.transform.

Compressed attributes, such as POSITION_QUANTIZED in the Feature Tables for i3dm
and pnts, and NORMAL_OCT16P in pnts should be decompressed before any other
transforms.
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Therefore, the full computed transforms for the above example are:

. TO:[TO]
. T1. [TO][T1]
e T2:[TO][T2][pnts-specific transform, including RTC_CENTER (if defined)]

. T3: [TO][T1][T3][b3dm-specific transform, including RTC_CENTER (if
defined), coordinate system transform, and glTF node hierarchy]

. T4: [TO][T1][T4][i3dm-specific transform, including per-instance
transform, coordinate system transform, and glTF node hierarchy]

1.6.2.1 Implementation example
This section is non-normative

The following JavaScript code shows how to compute this using Cesium's Matrix4 and
Matrix3 types.

function computeTransforms(tileset) {

var t = tileset.root;

var transformToRoot = defined(t.transform) ?
Matrix4.fromArray(t.transform) : Matrix4.IDENTITY;

computeTransform(t, transformToRoot);

function computeTransform(tile, transformToRoot) {
// Apply 4x4 transformToRoot to this tile's positions and bounding
volumes

var inverseTransform = Matrix4.inverse(transformToRoot, new Matrix4());

var normalTransform = Matrix4.getRotation(inverseTransform, new
Matrix3());

normalTransform = Matrix3.transpose(normalTransform, normalTransform);

// Apply 3x3 normalTransform to this tile's normals

var children = tile.children;
var length = children.length;
for (var i = 9; i < length; ++i) {
var child = children[i];
var childToRoot = defined(child.transform) ?
Matrix4.fromArray(child.transform) : Matrix4.clone(Matrix4.IDENTITY);
childToRoot = Matrix4.multiplyTransformation(transformToRoot,
childToRoot, childToRoot);
computeTransform(child, childToRoot);

}
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1.6.3 Viewer request volume

A tile's viewerRequestVolume can be used for combining heterogeneous datasets, and
can be combined with external tilesets.

The following example has a building in a b3dm tile and a point cloud inside the building
in a pnts tile. The point cloud tile's boundingVolume is a sphere with a radius of 1.25. It
also has a larger sphere with a radius of 15 for the viewerRequestVolume. Since the
geometricError is zero, the point cloud tile's content is always rendered (and initially
requested) when the viewer is inside the large sphere defined by viewerRequestVolume.

{
"children": [{

"transform": [
4.843178171884396, 1.2424271388626869, 0, Q,
-0.7993325488216595, 3.1159251367235608, 3.8278032889280675, O,
0.9511533376784163, -3.7077466670407433, 3.2168186118075526, 0O,
1215001.7612985559, -4736269.697480114, 4081650.708604793, 1

1,
"boundingVolume": {
"box": [
Q, o, 6.701,
3.738, 0, 0,
Q, 3.72, 0,
Q, 9, 13.402
]
¥

"geometricError": 32,
"content": {
"uri": "building.b3dm"

}
b A

"transform": [
0.968635634376879, 0.24848542777253732, 0, Q,
-0.15986650990768783, 0.6231850279035362, ©0.7655606573007809, O,
0.19023066741520941, -0.7415493329385225, 0©.6433637229384295, 0,
1215002.0371330238, -4736270.772726648, 4081651.6414821907, 1

1,

"viewerRequestVolume": {
"sphere": [0, 0, 0, 15]
}s
"boundingVolume": {
"sphere": [0, 0, 0, 1.25]
s
"geometricError": 0,
"content": {
"uri": "points.pnts"
}
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1]
}

For more on request volumes, see the sample tileset and demo video.

1.6.4 Refinement

Refinement determines how a parent tile renders when its children are selected to be
rendered. Permitted refinement types are replacement ("REPLACE") and additive ("ADD").
A tileset can use replacement refinement exclusively, additive refinement exclusively, or
any combination of additive and replacement refinement. A refinement type is required
for the root tile of a tileset; it is optional for all other tiles. When omitted, a tile inherits
the refinement type of its parent.

1.6.4.1 Replacement

If a tile uses replacement refinement, when refined it renders its children in place of
itself.

Parent Tile Refined

Figure 11: A parent tile with replacement Figure 12: A refined child tile of a tile with
refinement replacement refinement

1.6.4.2 Additive

If a tile uses additive refinement, when refined it renders itself and its children
simultaneously.

Parent Tile 7 Refined
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https://github.com/AnalyticalGraphicsInc/3d-tiles-samples/tree/master/tilesets/TilesetWithRequestVolume
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Figure 13: A parent tile with additive Figure 4. A refined child tile of a tile with
refinement additive refinement

1.7 Tileset JSON

3D Tiles uses one main tileset JSON file as the entry point to define a tileset. Both entry
and external tileset JSON files are not required to follow a specific naming convention.

Here is a subset of the tileset JSON used for Canary Wharf (also see the complete file,
tileset.json):

{

"asset" : {
"version": "1.0",
"tilesetVersion": "e575c6f1-a45b-420a-b172-6449fa6e0a59",
}s
"properties": {
"Height": {
"minimum": 1,
"maximum": 241.6

}
}s
"geometricError": 494.50961650991815,
"root": {

"boundingVolume": {
"region": [
-0.0005682966577418737,
0.8987233516605286,
0.00011646582098558159,
0.8990603398325034,
9,
241.6
]
¥
"geometricError": 268.37878244706053,
"refine": "ADD",
"content": {
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"uri": "@/0/0.b3dm",
"boundingVolume": {
"region": [
-0.0004001690908972599,
0.8988700116775743,
0.00010096729722787196,
0.8989625664878067,

9,
241.6
]
}
¥
"children": [..]
}
}

The top-level object in the tileset JSON has four properties: asset, properties,
geometricError,and root.

asset is an object containing properties with metadata about the entire tileset. The
asset.version property is a string that defines the 3D Tiles version, which specifies the
JSON schema for the tileset and the base set of tile formats. The tilesetVersion
property is an optional string that defines an application-specific version of a tileset, e.g.,
for when an existing tileset is updated.

properties is an object containing objects for each per-feature property in the tileset.
This tileset JSON snippet is for 3D buildings, so each tile has building models, and each
building model has a Height property (see Batch Table). The name of each object in
properties matches the name of a per-feature property, and its value defines its
minimum and maximum numeric values, which are useful, for example, for creating color
ramps for styling.

geometricError is a nonnegative number that defines the error, in meters, when the
tileset is not rendered. See Geometric error for how geometric error is used to drive
refinement.

root is an object that defines the root tile using the JSON described in the above
section. root.geometricError is not the same as the tileset's top-level geometricError.
The tileset's geometricError is the error when the entire tileset is not rendered;
root.geometricError is the error when only the root tile is rendered.

root.children is an array of objects that define child tiles. Each child tile's content is
fully enclosed by its parent tile's boundingVolume and, generally, a geometricError less
than its parent tile's geometricError. For leaf tiles, the length of this array is zero, and
children may not be defined.
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1.7.1 External tilesets

To create a tree of trees, a tile's content.uri can point to an external tileset (the uri of
another tileset JSON file). This enables, for example, storing each city in a tileset and
then having a global tileset of tilesets.

tileset.json

tileset.json tileset.json tileset.json tileset.json

Figure 15: A tileset JSON file with external tileset JSSON files

When a tile points to an external tileset, the tile:

« Cannot have any children; tile.children must be undefined or an empty array.
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« Cannot be used to create cycles, for example, by pointing to the same tileset file
containing the tile or by pointing to another tileset file that then points back to the
initial file containing the tile.

«  Will be transformed by both the tile's transform and root tile's transform. For
example, in the following tileset referencing an external tileset, the computed
transform for T3 is [TO][T1][T2][T3].

T1

References
external tileset

Figure 16: A tileset with transforms an external tileset with transforms
1.7.2 Geometric error

Geometric error is a nonnegative number that defines the error, in meters, introduced if
this tile is rendered and its children are not. At runtime, the geometric error is used to
compute Screen-Space Error (SSE), i.e., the error measured in pixels. The SSE determines
Hierarchical Level of Detail (HLOD) refinement, i.e., if a tile is sufficiently detailed for the
current view or if its children should be considered.

The geometric error is determined when creating the tileset and based on a metric like
point density, tile sizes in meters, or another factor specific to that tileset. In general, a
higher geometric error means a tile will be refined more aggressively, and children tiles
will be loaded and rendered sooner.

30



Implementation Note: Typically, a property of the root tile, such as size, is used to determine a geometric
error. Then each successive level of children uses a lower geometric error, with leaf tiles generally having a
geometric error of 0.

1.7.3 Bounding volume spatial coherence

As described above, the tree has spatial coherence; each tile has a bounding volume
completely enclosing its content, and the content for child tiles are completely inside
the parent's bounding volume. This does not imply that a child's bounding volume is
completely inside its parent's bounding volume. For example:

1.7.4 Spatial data structures

3D Tiles incorporates the concept of Hierarchical Level of Detail (HLoD) for optimal
rendering of spatial data. A tileset is composed of a tree, defined by root and,
recursively, its children tiles, which can be organized by different types of spatial data
structures.

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes
(like @ Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at
several levels of detail (or zoom levels). However since the content of a tileset is often
non-uniform or may not easily be organized in only two dimensions, other spatial data
structures may be more optimal.

It is up to the conversion tool that generates the tileset to define an optimal tree for the
dataset. A runtime engine, such as Cesium, is generic and will render any tree defined by
the tileset.

Additionally, any combination of tile formats and refinement approaches can be used,
enabling flexibility in supporting heterogeneous datasets, see Refinement.

Included below is a brief description of how 3D Tiles can represent various spatial data
structures.

1.7.41 Quadtrees

A quadtree is created when each tile has four uniformly subdivided children (e.g., using
the center latitude and longitude), similar to typical 2D geospatial tiling schemes. Empty
child tiles can be omitted.

3D Tiles enable quadtree variations such as non-uniform subdivision and tight bounding
volumes (as opposed to bounding, for example, the full 25% of the parent tile, which is
wasteful for sparse datasets).
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For example, here is the root tile and its children for Canary Wharf. Note the bottom left,
where the bounding volume does not include the water on the left where no buildings

will appear:

Mudchute
Park
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Millwall

.

ifg
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Figure 17: A root tile and its four children tiles

3D Tiles also enable other quadtree variations such as loose quadtrees, where child tiles
overlap but spatial coherence is still preserved, i.e., a parent tile completely encloses all
of its children. This approach can be useful to avoid splitting features, such as 3D

models, across tiles.

Below, the green buildings are in the left child and the purple buildings are in the right
child. Note that the tiles overlap so the two green and one purple building in the center

are not split.
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Figure 18: Two sibling tiles with overlapping bounding volumes

1742 K-d trees

A k-d tree is created when each tile has two children separated by a sp/itting plane
parallel to the x, ;, or zaxis (or latitude, longitude, height). The split axis is often round-
robin rotated as levels increase down the tree, and the splitting plane may be selected
using the median split, surface area heuristics, or other approaches.

Note that a k-d tree does not have uniform subdivision like typical 2D geospatial tiling
schemes and, therefore, can create a more balanced tree for sparse and non-uniformly

distributed datasets.

3D Tiles enables variations on k-d trees such as multi-way k-d trees where, at each leaf
of the tree, there are multiple splits along an axis. Instead of having two children per tile,
there are n children.

1.7.4.3 QOctrees

An octree extends a quadtree by using three orthogonal splitting planes to subdivide a
tile into eight children. Like quadtrees, 3D Tiles allows variations to octrees such as non-
uniform subdivision, tight bounding volumes, and overlapping children.
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1.7.4.4 Grids

3D Tiles enables uniform, non-uniform, and overlapping grids by supporting an arbitrary
number of child tiles. For example, here is a top-down view of a non-uniform
overlapping grid of Cambridge:
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Figure 19: A tileset with an overlapping grid spatial data structure

3D Tiles takes advantage of empty tiles: those tiles that have a bounding volume, but no
content. Since a tile's content property does not need to be defined, empty non-leaf
tiles can be used to accelerate non-uniform grids with hierarchical culling. This
essentially creates a quadtree or octree without hierarchical levels of detail (HLOD).

1.8 Specifying extensions and application specific extras

3D Tiles defines extensions to allow the base specification to have extensibility for new
features, as well as extras to allow for application specific metadata.

1.8.1 Extensions

Extensions allow the base specification to be extended with new features. The optional
extensions dictionary property may be added to any 3D Tiles JSON object, which
contains the name of the extensions and the extension specific objects. The following
example shows a tile object with a hypothetical vendor extension which specifies a
separate collision volume.

34



"transform": [
4.843178171884396, 1.2424271388626869, 0, Q,
-0.7993325488216595, 3.1159251367235608, 3.8278032889280675, 09,
0.9511533376784163, -3.7077466670407433, 3.2168186118075526, O,
1215001.7612985559, -4736269.697480114, 4081650.708604793, 1

1,
"boundingVolume": {
"box": [
0, 0, 6.701,
3.738, 9, Q,
Q, 3.72, 0,
0, 0, 13.402
]
}s

"geometricError": 32,
"content": {
"uri": "building.b3dm"
s
"extensions": {
"VENDOR_collision_volume": {

"box": [
0, 9, 6.8,
3.8, o, 0,
0, 3.8, 0,
0, 9,  13.5

]

All extensions used in a tileset or any descendant external tilesets must be listed in the
entry tileset JSON in the top-level extensionsUsed array property, e.g.,

{

"extensionsUsed": [
"VENDOR_collision_volume"

]
}

All extensions required to load and render a tileset or any descendant external tilesets
must also be listed in the entry tileset JSON in the top-level extensionsRequired array
property, such that extensionsRequired is a subset of extensionsUsed. All values in
extensionsRequired must also exist in extensionsUsed.
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1.8.2 Extras

The extras property allows application specific metadata to be added to any 3D Tiles
JSON object. The following example shows a tile object with an additional application

specific name property.

{

"transform": [
4.843178171884396,
-0.7993325488216595,
0.9511533376784163,
1215001.7612985559,

1,
"boundingVolume": {
"box": [
0, 0, 6.701,
3.738, 0, 0,
9, 3.72, 0,
0, 0, 13.402
]
}s

"geometricError": 32,
"content": {

1.2424271388626869, 0O,
3.1159251367235608,
-3.7077466670407433,
-4736269.697480114,

"uri": "building.b3dm"
}s
"extras": {
"name": "Empire State Building"
}
}

2 Property reference

2.1 Tileset
A 3D Tiles tileset.
Properties

Type
asset object
properties any
geometricError number

Description
Metadata about the entire tileset.

A dictionary object of metadata about per-
feature properties.

The error, in meters, introduced if this tileset
is not rendered. At runtime, the geometric
error is used to compute screen space error
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9,
3.8278032889280675, 0,
3.2168186118075526, O,
4081650.708604793, 1

Required
No
No

Yes



(SSE), i.e., the error measured in pixels.

root object A tile in a 3D Tiles tileset. No

extensionsUsed string Names of 3D Tiles extensions used No
[1-*] " somewhere in this tileset.

extensionsRequired string Names of 3D Tiles extensions required to No
[1-*] properly load this tileset.

extensions object Dijctionary object with extension-specific No

objects.
extras any Application-specific data. No

Additional properties are not allowed.

211 Tileset.asset
Metadata about the entire tileset.

« Type:object
* Required: No

2.1.2 Tileset.properties

A dictionary object of metadata about per-feature properties.

« Type: any
* Required: No
«  Type of each property: object

2.1.3 Tileset.geometricError

The error, in meters, introduced if this tileset is not rendered. At runtime, the geometric
error is used to compute screen space error (SSE), i.e., the error measured in pixels.

+  Type: number
* Required: Yes
*  Minimum: >= o

2.1.4 Tileset.root

A tile in a 3D Tiles tileset.

+ Type: object
* Required: No
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2.1.5 Tileset.extensionsUsed
Names of 3D Tiles extensions used somewhere in this tileset.

« Type:string [1-*]
« Each element in the array must be unique.
* Required: No

2.1.6 Tileset.extensionsRequired

Names of 3D Tiles extensions required to properly load this tileset.

« Type: string [1-*]
« Each element in the array must be unique.
* Required: No

2.1.7 Tileset.extensions

Dictionary object with extension-specific objects.

 Type: object
* Required: No
«  Type of each property: Extension

2.1.8 Tileset.extras
Application-specific data.

+ Type:any
* Required: No

2.2 Asset
Metadata about the entire tileset.
Properties
Type Description Required
version string The 3D Tiles version. The version defines the Yes
JSON schema for the tileset JSON and the base
set of tile formats.
tilesetVersion string Application-specific version of this tileset, e.g., No
for when an existing tileset is updated.
extensions object Dictionary object with extension-specific objects. No
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extras any Application-specific data. No
Additional properties are not allowed.

2.2.1 Asset.version

The 3D Tiles version. The version defines the JSON schema for the tileset JSON and the
base set of tile formats.

« Type:string
* Required: Yes

2.2.2 Asset.tilesetVersion

Application-specific version of this tileset, e.g., for when an existing tileset is updated.

+ Type: string
* Required: No

2.2.3 Asset.extensions

Dictionary object with extension-specific objects.

 Type: object
* Required: No
«  Type of each property: Extension

2.2.4 Asset.extras
Application-specific data.

+ Type: any
* Required: No

2.3 Bounding Volume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

Properties
Type Description Required
box f[lumt])ef‘ An array of 12 numbers that define an oriented No
12

bounding box. The first three elements define the x,
y, and z values for the center of the box. The next
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three elements (with indices 3, 4, and 5) define the x
axis direction and half-length. The next three
elements (indices 6, 7, and 8) define the y axis
direction and half-length. The last three elements
(indices 9, 10, and 11) define the z axis direction and
half-length.

region number - An array of six numbers that define a bounding No
6] geographic region in EPSG:4326 coordinates with the
order [west, south, east, north, minimum height,
maximum height]. Longitudes and latitudes are in
radians, and heights are in meters above (or below)
the WGS84 ellipsoid.

sphere number  An array of four numbers that define a bounding No

[4] sphere. The first three elements define the x, y, and z
values for the center of the sphere. The last element
(with index 3) defines the radius in meters.
extensions object Dictionary object with extension-specific objects. No
extras any Application-specific data. No

Additional properties are not allowed.

2.3.1 BoundingVolume.box

An array of 12 numbers that define an oriented bounding box. The first three elements
define the x, y, and z values for the center of the box. The next three elements (with
indices 3, 4, and 5) define the x axis direction and half-length. The next three elements
(indices 6, 7, and 8) define the y axis direction and half-length. The last three elements
(indices 9, 10, and 11) define the z axis direction and half-length.

«  Type: number [12]
* Required: No

2.3.2 BoundingVolume.region

An array of six numbers that define a bounding geographic region in EPSG:4326
coordinates with the order [west, south, east, north, minimum height, maximum height].
Longitudes and latitudes are in radians, and heights are in meters above (or below) the
WGS84 ellipsoid.

+  Type: number [6]
* Required: No
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2.3.3 BoundingVolume.sphere

An array of four numbers that define a bounding sphere. The first three elements define
the x, y, and z values for the center of the sphere. The last element (with index 3) defines
the radius in meters.

Type: number [4]
* Required: No

2.3.4 BoundingVolume.extensions

Dictionary object with extension-specific objects.

 Type: object
* Required: No
«  Type of each property: Extension

2.3.5 BoundingVolume.extras
Application-specific data.

+ Type: any
* Required: No

2.4 Extension

Dictionary object with extension-specific objects.
Additional properties are allowed.

«  Type of each property: object

2.5 Extras

Application-specific data.

2.6 Properties

A dictionary object of metadata about per-feature properties.

Properties

Type Description Required

maximum number  The maximum value of this property of all the Yes
features in the tileset.
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minimum  number  The minimum value of this property of all the
features in the tileset.

extensions object Dictionary object with extension-specific objects.

extras any Application-specific data.
Additional properties are not allowed.

2.6.1 Properties.maximum
The maximum value of this property of all the features in the tileset.

Type: number
* Required: Yes

2.6.2 Properties.minimum

The minimum value of this property of all the features in the tileset.

+  Type: number
* Required: Yes

2.6.3 Properties.extensions

Dictionary object with extension-specific objects.

 Type: object
* Required: No
« Type of each property: Extension

2.6.4 Properties.extras

Application-specific data.

+ Type: any
* Required: No
2.7 Tile

A tile in a 3D Tiles tileset.

Properties

Type Description

boundingVolume  object A bounding volume that encloses a tile or

its content. Exactly one box, region, or
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viewerRequestVol
ume

geometricError

refine

transform

content

children

object

number

string

number
[16]

object

array|[

sphere property is required.

A bounding volume that encloses a tile or
its content. Exactly one box, region, or
sphere property is required.

The error, in meters, introduced if this tile
is rendered and its children are not. At
runtime, the geometric error is used to
compute screen space error (SSE), i.e., the
error measured in pixels.

Specifies if additive or replacement
refinement is used when traversing the
tileset for rendering. This property is
required for the root tile of a tileset; it is
optional for all other tiles. The default is to
inherit from the parent tile.

A floating-point 4x4 affine transformation
matrix, stored in column-major order, that
transforms the tile's content--i.e,, its
features as well as
content.boundingVolume,
boundingVolume, and
viewerRequestVolume--from the tile's local
coordinate system to the parent tile's
coordinate system, or, in the case of a root
tile, from the tile's local coordinate system
to the tileset's coordinate system.
transform does not apply to
geometricError, nor does it apply any
volume property when the volume is a
region, defined in EPSG:4326 coordinates.

Metadata about the tile's content and a
link to the content.

An array of objects that define child tiles.
Each child tile content is fully enclosed by
its parent tile's bounding volume and,
generally, has a geometricError less than
its parent tile's geometricError. For leaf
tiles, the length of this array is zero, and
children may not be defined.
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extensions object Dictionary object with extension-specific No
objects.

extras any Application-specific data. No
Additional properties are not allowed.

2.7.1 Tile.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

« Type:object
* Required: No

2.7.2 TilewiewerRequestVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

 Type: object
* Required: No

2.7.3 Tile.geometricError

The error, in meters, introduced if this tile is rendered and its children are not. At
runtime, the geometric error is used to compute screen space error (SSE), i.e., the error
measured in pixels.

+  Type: number
* Required: Yes
*  Minimum: >= o

2.7.4 Tile.refine

Specifies if additive or replacement refinement is used when traversing the tileset for
rendering. This property is required for the root tile of a tileset; it is optional for all other
tiles. The default is to inherit from the parent tile.

+ Type: string

* Required: No

* Allowed values:
- "ADD"
- "REPLACE"
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2.7.5 Tile.transform

A floating-point 4x4 affine transformation matrix, stored in column-major order, that
transforms the tile's content--i.e., its features as well as content.boundingVolume,
boundingVolume, and viewerRequestVolume--from the tile's local coordinate system to
the parent tile's coordinate system, or, in the case of a root tile, from the tile's local
coordinate system to the tileset's coordinate system. transform does not apply to
geometricError, nor does it apply any volume property when the volume is a region,
defined in EPSG:4326 coordinates.

*  Type: number [16]
* Required: No, default: [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]

2.7.6 Tile.content

Metadata about the tile's content and a link to the content.

 Type: object
* Required: No

2.7.7 Tile.children

An array of objects that define child tiles. Each child tile content is fully enclosed by its
parent tile's bounding volume and, generally, has a geometricError less than its parent
tile's geometricError. For leaf tiles, the length of this array is zero, and children may not
be defined.

« Type:array[]
— Each element in the array must be unique.

* Required: No
2.7.8 Tile.extensions

Dictionary object with extension-specific objects.

 Type: object
* Required: No
«  Type of each property: Extension

2.7.9 Tile.extras
Application-specific data.

+ Type: any
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* Required: No

2.8 Tile Content

Metadata about the tile's content and a link to the content.

Properties
Type Description Required

boundingVolume object A bounding volume that encloses a tile orits  No
content. Exactly one box, region, or sphere
property is required.

uri string A uri that points to the tile's content. When Yes
the uri is relative, it is relative to the referring
tileset JSON file.

extensions object Dictionary object with extension-specific No
objects.

extras any Application-specific data. No

Additional properties are not allowed.

2.8.1 TileContent.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere

property is required.

 Type: object
* Required: No

2.8.2 TileContent.uri

A uri that points to the tile's content. When the uri is relative, it is relative to the

referring tileset JSON file.

« Type: string
* Required: Yes

2.8.3 TileContent.extensions
Dictionary object with extension-specific objects.

+ Type: object
* Required: No
«  Type of each property: Extension
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2.8.4 TileContent.extras
Application-specific data.

« Type: any
* Required: No

3 Feature Table

3.1 Overview

A Feature Table describes position and appearance properties for each feature in a tile.
The Batch Table, on the other hand, contains per-feature application-specific metadata
not necessarily used for rendering.

A Feature Table is used by tile formats like Batched 3D Model (b3dm) where each model
is a feature, and Point Cloud (pnts) where each point is a feature.

Per-feature properties are defined using tile format-specific semantics defined in each
tile format's specification. For example, for /nstanced 3D Model, SCALE_NON_UNIFORM
defines the non-uniform scale applied to each 3D model instance.

3.2 Layout

A Feature Table is composed of two parts: a JSON header and an optional binary body
in little endian. The JSON property names are tile format-specific semantics, and their
values can either be defined directly in the JSON, or refer to sections in the binary body.
It is more efficient to store long numeric arrays in the binary body. The following figure
shows the Feature Table layout:

Feature Table

- S
- -

JSOH Header Binary Body '
(UTE-£) |

Figure 20: Feature Table layout

When a tile format includes a Feature Table, the Feature Table immediately follows the
tile's header. The header will also contain featureTableJSONBytelLength and
featureTableBinaryBytelength uint32 fields, which can be used to extract each
respective part of the Feature Table.
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3.2.1 Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The
JSON header must be padded with trailing Space characters (0x20) to satisfy this
requirement.

The binary body must start and end on an 8-byte boundary within the containing tile
binary. The binary body must be padded with additional bytes, of any value, to satisfy
this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property's implicit component type. For example, a property with the implicit
component type FLOAT has 4 bytes per element, and therefore must start at an offset
that is a multiple of 4. Preceding binary properties must be padded with additional
bytes, of any value, to satisfy this requirement.

3.2.2 JSON header

Feature Table values can be represented in the JSON header in three different ways:

1. A single value or object, e.g., "INSTANCES_LENGTH" : 4.

e This is used for global semantics like "INSTANCES_LENGTH", which defines
the number of model instances in an Instanced 3D Model tile.

2. An array of values, e.g., "POSITION" : [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 1.0].

e This is used for per-feature semantics like "POSITION" in Instanced 3D
Model. Above, each POSITION refers to a float32[3] data type so there are
three features: Feature @'s position=(1.0, 0.0, 0.0), Feature 1's
position=(0.0, 1.0, 0.0), Feature 2's position=(0.0, 0.0, 1.0).

3. Avreference to data in the binary body, denoted by an object with a byteoffset
property, e.g., "SCALE" : { "byteOffset" : 24}.

e byteOffset specifies a zero-based offset relative to the start of the binary
body. The value of byteoffset must be a multiple of the size in bytes of
the property's implicit component type, e.g., the "POSITION" property has
the component type FLOAT (4 bytes), so the value of byteOffset must be
of a multiple of 4.

e The semantic defines the allowed data type, e.g., when "POSITION" in
Instanced 3D Model refers to the binary body, the component type is
FLOAT and the number of components is 3.

e Some semantics allow for overriding the implicit component type. These
cases are specified in each tile format, e.g., "BATCH_ID" : { "byteOffset"
: 24, "componentType" : "UNSIGNED_BYTE"}.
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The only valid properties in the JSON header are the defined semantics by
the tile format and optional extras and extensions properties.
Application-specific data should be stored in the Batch Table.

See Property reference for the full JSON header schema reference. The full JSON schema
can be found in featureTable.schema.json.

3.2.3 Binary body

When the JSON header includes a reference to the binary, the provided byteOffset is
used to index into the data. The following figure shows indexing into the Feature Table
binary body:

JSCH Header Binary Body

POSITION: ~ !
{byteCffset: 16} |
|

Figure 21: Feature Table binary body layout

Values can be retrieved using the number of features, featuresLength; the desired
feature id, featurelId; and the data type (component type and number of components)
for the feature semantic.

3.3 Implementation example
This section is non-normative

The following example accesses the position property using the POSITION semantic,
which has a float32[3] data type:

var byteOffset = featureTableJSON.POSITION.byteOffset;

var positionArray = new Float32Array(featureTableBinary.buffer, byteOffset,
featuresLength * 3); // There are three components for each POSITION feature.
var position = positionArray.subarray(featureld * 3, featureld * 3 + 3); //
Using subarray creates a view into the array, and not a new array.

Code for reading the Feature Table can be found in Cesium3DTileFeatureTable.js in the
Cesium implementation of 3D Tiles.
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3.4 Property reference

3.4.1 Feature Table

A set of semantics containing per-tile and per-feature values defining the position and
appearance properties for features in a tile.

Properties

Type  Description Required
extensions object Dictionary object with extension-specific objects. No
extras any Application-specific data. No

Additional properties are allowed.

« Type of each property: Property

3.411 FeatureTable.extensions

Dictionary object with extension-specific objects.

+ Type:object
* Required: No
«  Type of each property: Extension

3.41.2 FeatureTable.extras
Application-specific data.

+ Type: any
* Required: No

3.4.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table
where the property values are stored if not defined directly in the JSON.

Properties

Type  Description Required
byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.
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3.4.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

Type: number
* Required: Yes
*  Minimum: >= o

3.4.3 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReference object.

4 Batch Table

41 Overview

A Batch Table contains per-feature application-specific metadata in a tile. These
properties may be queried at runtime for declarative styling and application-specific use
cases such as populating a Ul or issuing a REST API request. Some example Batch Table
properties are building heights, geographic coordinates, and database primary keys.

A Batch Table is used by the following tile formats:

«  Batched 3D Model (b3dm)
* Instanced 3D Model (i3dm)
« Point Cloud (pnts)

4.2 Layout

A Batch Table is composed of two parts: a JSON header and an optional binary body in
little endian. The JSON describes the properties, whose values either can be defined
directly in the JSON as an array, or can refer to sections in the binary body. It is more
efficient to store long numeric arrays in the binary body. The following figure shows the
Batch Table layout:
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Figure 22: Batch Table layout

When a tile format includes a Batch Table, the Batch Table immediately follows the tile's
Feature Table.

The header will also contain batchTableJSONBytelLength and
batchTableBinaryBytelLength uint32 fields, which can be used to extract each
respective part of the Batch Table.

4.2.1 Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The
JSON header must be padded with trailing Space characters (0x20) to satisfy this
requirement.

The binary body must start and end on an 8-byte boundary within the containing tile
binary. The binary body must be padded with additional bytes, of any value, to satisfy
this requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property's componentType. For example, a property with the component type FLOAT has
4 bytes per element, and therefore must start at an offset that is a multiple of 4.
Preceding binary properties must be padded with additional bytes, of any value, to
satisfy this requirement.

4.2.2 JSON header

Batch Table values can be represented in the JSON header in two different ways:

1. An array of values, e.g., "name": ['namel', 'name2', 'name3'] or "height" :
[10.0, 20.0, 15.0].
e Array elements can be any valid JSON data type, including objects and
arrays. Elements may be null.
e The length of each array is equal to batchLength, which is specified in each
tile format. This is the number of features in the tile. For example,
batchLength may be the number of models in a b3dm tile, the number of
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instances in a i3dm tile, or the number of points (or number of objects) in
a pnts tile.

2. Areference to data in the binary body, denoted by an object with byteoffset,
componentType, and type properties, e.g., "height" : { "byteOffset" : 24,
"componentType" : "FLOAT", "type" : "SCALAR"}.

e byteOffset specifies a zero-based offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of
the property's componentType, €.g., a property with the component type
FLOAT must have a byteOffset value that is a multiple of 4.

e componentType is the datatype of components in the attribute. Allowed
values are "BYTE", "UNSIGNED_BYTE", "SHORT", "UNSIGNED_SHORT", "INT",
"UNSIGNED_INT", "FLOAT", and "DOUBLE".

e type specifies if the property is a scalar or vector. Allowed values are
"SCALAR", "VEC2", "VEC3", and "VEC4".

The Batch Table JSON is a UTF-8 string containing JSON.

Implementation Note: In JavaScript, the Batch Table JSON can be extracted from an ArrayBuffer using
the TextDecoder JavaScript APl and transformed to a JavaScript object with JSON. parse

A batchId is used to access elements in each array and extract the corresponding
properties. For example, the following Batch Table has properties for a batch of two
features:

{

"id" : ["unique id", "another unique id"],

"displayName" : ["Building name", "Another building name"],

"yearBuilt" : [1999, 2015],

"address" : [{"street" : "Main Street", "houseNumber" : "1"}, {"street" :
"Main Street", "houseNumber"™ : "2"}]
}

The properties for the feature with batchId = @ are

id[@] = 'unique id’';

displayName[©] = 'Building name';

yearBuilt[0] = 1999;

address[0] = {street : 'Main Street', houseNumber : '1'};

The properties for batchId = 1 are

id[1] = 'another unique id';

displayName[1] = 'Another building name';

yearBuilt[1] = 2015;

address[1] = {street : 'Main Street', houseNumber : '2'};
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See Property reference for the full JSON header schema reference. The full JSON schema
can be found in batchTable.schema.json.

4.2.3 Binary body

When the JSON header includes a reference to the binary section, the provided
byteOffset is used to index into the data, as shown in the following figure:

J5CH Header Binary Body

id: { I
componentType: “INT~, |
type: “SCALAR”, e I
byteCffser: 16 4] 16 batchTableBinaryByteLength

-

Figure 23: Batch Table binary body layout

Values can be retrieved using the number of features, batchLength; the desired batch id,
batchId; and the componentType and type defined in the JSON header.

The following tables can be used to compute the byte size of a property.

componentType Size in bytes

"BYTE"
"UNSIGNED_BYTE"
"SHORT"
"UNSIGNED_SHORT"
"INT"
"UNSIGNED_INT"
"FLOAT"

"DOUBLE"

oo A b DD = =

type Number of components
"SCALAR" 1

"VEC2" 2
"VEC3" 3
"VEC4" 4

54


../../schema/batchTable.schema.json

4.3 Implementation example
This section is non-normative

The following examples access the "height" and "geographic" values respectively given
the following Batch Table JSON with batchLength of 10:

{

"height" : {
"byteOffset" : 0,
"componentType" : "FLOAT",
"type" : "SCALAR"

¥

"geographic" : {
"byteOffset" : 40,
"componentType" : "DOUBLE",
"type" : "VEC3"

}

To get the "height" values:

var height = batchTableJSON.height;

var byteOffset = height.byteOffset;

var componentType = height.componentType;
var type = height.type;

var heightArrayBytelLength = batchLength * sizeInBytes(componentType) *
numberOfComponents(type); // 10 * 4 * 1

var heightArray = new Float32Array(batchTableBinary.buffer, byteOffset,
heightArrayBytelLength);

var heightOfFeature = heightArray[batchld];

To get the "geographic" values:

var geographic = batchTableJSON.geographic;

var byteOffset = geographic.byteOffset;

var componentType = geographic.componentType;

var type = geographic.type;

var componentSizeInBytes = sizeInBytes(componentType)
var numberOfComponents = numberOfComponents(type);

var geographicArrayBytelength = batchLength * componentSizeInBytes *
numberOfComponents // 16 * 8 * 3

var geographicArray = new Float64Array(batchTableBinary.buffer, byteOffset,
geographicArrayBytelLength);

// Using subarray creates a view into the array, and not a new array.
var geographicOfFeature = positionArray.subarray(batchId *
numberOfComponents, batchId * numberOfComponents + numberOfComponents);
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Code for reading the Batch Table can be found in Cesium3DTileBatchTablejs in the
Cesium implementation of 3D Tiles.

4.4 Property reference

441 Batch Table

A set of properties defining application-specific metadata for features in a tile.

Properties

Type  Description Required
extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No
Additional properties are allowed.
« Type of each property: Property
BatchTable.extensions
Dictionary object with extension-specific objects.

 Type: object
* Required: No
«  Type of each property: Extension

4411 BatchTable.extras
Application-specific data.

+ Type: any
* Required: No

4.4.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the batch table
where the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes
componentType string The datatype of components in the property. Yes
type string Specifies if the property is a scalar or vector. ~ Yes
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Additional properties are allowed.
4421 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

Type: number
* Required: Yes
*  Minimum: >= o

4422 BinaryBodyReference.componentType
The datatype of components in the property.

« Type: string

* Required: Yes

* Allowed values:
- "BYTE"
—  "UNSIGNED_BYTE"
—  "SHORT"
—  "UNSIGNED_SHORT"
- "INT"
- "UNSIGNED_INT"
—  "FLOAT"
- "DOUBLE"

4.4.2.3 BinaryBodyReference.type
Specifies if the property is a scalar or vector.

+ Type: string
* Required: Yes
* Allowed values:
- "SCALAR"
- "VEC2"
- "VEC3"
- "VEC4"

4.4.3 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReference object.
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5 Tile format specifications

Each tile's content.uri property points to a tile that is one of the formats listed in the
table below.

Format Uses

Batched 3D Model  Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D
(b3dm) building exteriors and interiors, massive models.

Instanced 3D Model 3D model instances. E.g. trees, windmills, bolts.
(i3dm)
Point Cloud (pnts) Massive number of points.

Composite (cmpt) Concatenate tiles of different formats into one tile.

A tileset can contain any combination of tile formats. 3D Tiles may also support different
formats in the same tile using a Composite tile.

5.1 Batched 3D Model

511 Overview

Batched 3D Model allows offline batching of heterogeneous 3D models, such as
different buildings in a city, for efficient streaming to a web client for rendering and
interaction. Efficiency comes from transferring multiple models in a single request and
rendering them in the least number of WebGL draw calls necessary. Using the core 3D
Tiles spec language, each model is a feature.

Per-model properties, such as IDs, enable individual models to be identified and
updated at runtime, e.g., show/hide, highlight color, etc. Properties may be used, for
example, to query a web service to access metadata, such as passing a building's ID to
get its address. Or a property might be referenced on the fly for changing a model's
appearance, e.g., changing highlight color based on a property value.

A Batched 3D Model tile is a binary blob in little endian.

5.1.2 Layout

A tile is composed of two sections: a header immediately followed by a body. The
following figure shows the Batched 3D Model layout (dashes indicate optional fields):
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28-byte header (first 20 bytes)

magic version byteLength featureTableJSCHBytelLength featureTableBinaryBytelength
(unsigned char[4]) (uinc32) (uint32) (uint32) (uint32)

28-byte header (next 8 bytes)

batchTableJSCHEyteLength batchTableBinaryByteLength

(uint32) {uint32)

featureTable | batchTakle Binary glTF

{ data /
-

Figure 24: Batched 3D Model layout

5.1.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table
and Batch Table must conform to their respective padding requirement.

The binary gITF must start and end on an 8-byte boundary so that gITF's byte-alignment
guarantees are met. This can be done by padding the Feature Table or Batch Table if
they are present.

5.1.3 Header

The 28-byte header contains the following fields:

Field name Data type Description
magic 4-byte ANSI  "b3dm". This can be used to identify
string the content as a Batched 3D Model

tile.

version uint32 The version of the Batched 3D Model
format. It is currently 1.

bytelLength uint32 The length of the entire tile, including
the header, in bytes.

featureTableJSONByteLength  uint32 The length of the Feature Table JSON
section in bytes.

featureTableBinaryBytelength uint32 The length of the Feature Table binary

59


../FeatureTable/README.md#padding
../BatchTable/README.md#padding

section in bytes.

batchTableJSONByteLength uint32 The length of the Batch Table JSON
section in bytes. Zero indicates there is
no Batch Table.

batchTableBinaryByteLength  uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero,
this will also be zero.

The body section immediately follows the header section, and is composed of three
fields: Feature Table, Batch Table, and Binary glTF.

5.1.4 Feature Table

Contains values for b3dm semantics.

More information is available in the Feature Table specification.
5141 Semantics

57417 Feature semantics

There are currently no per-feature semantics.

514.1.2 Global semantics

These semantics define global properties for all features.

Semantic Data Type  Description Required

BATCH_LENGTH uint32 The number of distinguishable models, also  Yes.
called features, in the batch. If the Binary gITF
does not have a batchId attribute, this field
must be e.

RTC_CENTER  float32[3] A 3-component array of numbers defining No.
the center position when positions are
defined relative-to-center, (see Coordinate
system).

5.1.5 Batch Table

The Batch Table contains per-model application-specific metadata, indexable by
batchId, that can be used for declarative styling and application-specific use cases such
as populating a Ul or issuing a REST API request. In the binary gITF section, each vertex
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has an numeric batchId attribute in the integer range [0, number of models in the
batch - 1]. The batchId indicates the model to which the vertex belongs. This allows
models to be batched together and still be identifiable.

See the Batch Table reference for more information.

5.1.6 Binary gITF
Batched 3D Model uses gITF 2.0 to embed model data.

The binary gITF immediately follows the Feature Table and Batch Table. It may embed all
of its geometry, texture, and animations, or it may refer to external sources for some or
all of these data.

As described above, each vertex has a batchId attribute indicating the model to which it
belongs. For example, vertices for a batch with three models may look like this:

batchId: [0, 9, 9, S 1, 1, ceey 2, 2, 2, eee]
position: [xyz, Xyz, Xyz, ..., XYyZ, XYZ, XYZ, ..., XYZ, XYZ, XYZ, ...]
normal: [xyz, xyz, Xyz, ..., XYZ, XYZ, XYZ, +.., XYZ, XYZ, XYZ, ...]

Vertices do not need to be ordered by batchId, so the following is also OK:

batchId: |9, 1, 2, ceey 2, 1, 9, ooy 1, 2, 9, eed]
position: [Xxyz, XyzZ, XYZ, ..., XYZ, XYZ, XYZ, ..., XYZ, XYZ, XYZ, ...]
normal: [xyz, xyz, Xyz, ..., XYZ, XYZ, XYZ, «.., XYZ, XYZ, XYZ, ...]

Note that a vertex can't belong to more than one model; in that case, the vertex needs
to be duplicated so the batchIds can be assigned.

The batchId parameter is specified in a gITF mesh primitive by providing the _BATCHID
attribute semantic, along with the index of the batchId accessor. For example,

"primitives": [
{
"attributes": {
" BATCHID": ©

}

"accessors": [
{
"bufferView": 1,
"byteOffset": 0,
"componentType": 5125,
"count": 4860,
"max": [2],
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"min": [©],
"type": "SCALAR"

}

The accessor.type must be a value of "SCALAR". All other properties must conform to
the gITF schema, but have no additional requirements.

When a Batch Table is present or the BATCH_LENGTH property is greater than o, the
_BATCHID attribute is required; otherwise, it is not.

5.1.6.1 Coordinate system

By default embedded gITFs use a right handed coordinate system where the y-axis is up.
For consistency with the z-up coordinate system of 3D Tiles, gITFs must be transformed
at runtime. See coordinate reference system for more details.

Vertex positions may be defined relative-to-center for high-precision rendering, see
Precisions, Precisions. If defined, RTC_CENTER specifies the center position that all vertex
positions are relative to after the coordinate system transform and gITF node hierarchy
transforms have been applied.

5.1.7 File extension and MIME type

Batched 3D Model tiles use the .b3dm extension and application/octet-stream MIME
type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

5.1.8 Implementation example
This section is non-normative

Code for reading the header can be found in
Batched3DModelTileContent.js
in the Cesium implementation of 3D Tiles.

5.1.8.1 Property reference
5181171 Batched 3D Model Feature Table

A set of Batched 3D Model semantics that contain additional information about features
in a tile.

Properties
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extensions

extras
BATCH LENGTH

RTC_CENTER

Additional properties are allowed.

5.1.8.1.1.1

Type
object

any

object,

number [1],
number

object,
number [3]

Description Required

Dictionary object with extension-specific No
objects.

Application-specific data. No

A GlobalPropertyScalar object defininga  Yes
numeric property for all features. See the
corresponding property semantic in
Semantics.

A GlobalPropertyCartesian3 object No
defining a 3-component numeric

property for all features. See the
corresponding property semantic in
Semantics.

Type of each property: Property

Batched3DModelFeatureTable.extensions

Dictionary object with extension-specific objects.

Type: object
Required: No

Type of each property: Extension

5.1.8.1.1.2 Batched3DModelFeatureTable.extras

Application-specific data.

Type: any
Required: No

5.1.8.1.1.3 Batched3DModelFeatureTable.BATCH _LENGTH

A GlobalPropertyScalar object defining a numeric property for all features. See the
corresponding property semantic in Semantics.

Type: object, number [1], number

Required: Yes
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5.1.8.1.1.4 Batched3DModelFeatureTable.RTC_CENTER

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics.

+ Type: object, number [3]
*  Required: No

51812 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table
where the property values are stored if not defined directly in the JSON.

Properties

Type  Description Required
byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.
5.1.8.1.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

+  Type: number
* Required: Yes
*  Minimum: >= o

51813 GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.
5.18.14 GlobalPropertyScalar

An object defining a global numeric property values for all features.

51815 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReference object.
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5.2 Instanced 3D Model

5.2.1 Overview

Instanced 3D Modelis a tile format for efficient streaming and rendering of a large
number of models, called /nstances, with slight variations. In the simplest case, the same
tree model, for example, may be located—or /nstanced—in several places. Each instance
references the same model and has per-instance properties, such as position. Using the
core 3D Tiles spec language, each instance is a feature.

In addition to trees, Instanced 3D Model is useful for exterior features such as fire
hydrants, sewer caps, lamps, and traffic lights, and for interior CAD features such as
bolts, valves, and electrical outlets.

An Instanced 3D Model tile is a binary blob in little endian.

Implementation Note: A Composite tile can be used to create tiles with different types of instanced models,
e.g., trees and traffic lights by combing two Instanced 3D Model tiles.

Implementation Note: Instanced 3D Model maps well to the ANGLE _instanced_arrays extension for efficient
rendering with WebGL.

5.2.2 Layout

A tile is composed of a header section immediately followed by a binary body. The
following figure shows the Instanced 3D Model layout (dashes indicate optional fields):

32-byte header (fizst 20 bytes)

version | byteLength

{uint32)

featureTableJSONBytelength

{uintc32)

featureTableBinaryBytelength |

(uint32)

32-byte header (next 12 bytes)

gltfFormat |

(zint32)

batchTableJSONByteLength

batchTableBinaryByteLength
(uint32) int32

(uint32)

Figure 25: Instanced 3D Model layout

5.2.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table
and Batch Table must conform to their respective padding requirement.
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The binary gITF (if present) must start and end on an 8-byte boundary so that gITF's
byte-alignment guarantees are met. This can be done by padding the Feature Table or
Batch Table if they are present.

Otherwise, if the gITF field is a UTF-8 string, it must be padded with trailing Space
characters (0x20) to satisfy alignment requirements of the tile, which must be removed
at runtime before requesting the gITF asset.

5.2.3 Header

The 32-byte header contains the following fields:

Field name Data type  Description
magic 4-byte "i3dm". This can be used to identify the
ANSI string content as an Instanced 3D Model tile.

version uint32 The version of the Instanced 3D Model
format. It is currently 1.

byteLength uint32 The length of the entire tile, including
the header, in bytes.

featureTableJSONBytelength  uint32 The length of the Feature Table JSON
section in bytes.

featureTableBinaryBytelength uint32 The length of the Feature Table binary
section in bytes.

batchTableJSONBytelLength uint32 The length of the Batch Table JSON

section in bytes. Zero indicates that
there is no Batch Table.

batchTableBinaryBytelLength  uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero, this
will also be zero.

gltfFormat uint32 Indicates the format of the gITF field of
the body. @ indicates it is a uri, 1
indicates it is embedded binary gITF.
See the gITF section below.

The body section immediately follows the header section and is composed of three
fields: Feature Table, Batch Table, and glTF.
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5.2.4 Feature Table

The Feature Table contains values for i3dm semantics used to create instanced models.

More information is available in the Feature Table specification.

5.2.41 Semantics

524117 Instance semantics

These semantics map to an array of feature values that are used to create instances. The
length of these arrays must be the same for all semantics and is equal to the number of

instances.

The value for each instance semantic must be a reference to the Feature Table binary
body; they cannot be embedded in the Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined.
If both SCALE and SCALE_NON_UNIFORM are defined for an instance, both scaling

operations will be applied.
If both POSITION and POSITION_QUANTIZED are defined for an instance, the higher
precision POSITION will be used.
If NORMAL_UP, NORMAL_RIGHT, NORMAL _UP_OCT32P, and NORMAL_RIGHT_OCT32P are defined
for an instance, the higher precision NORMAL_UP and NORMAL_RIGHT will be used.

Semantic
POSITION

POSITION_QUANTIZED

NORMAL_UP

NORMAL_RIGHT

Data Type
float32[3]

uinti6[3]

float32[3]

float32[3]

Description

A 3-component array of
numbers containing x, y,
and z Cartesian
coordinates for the
position of the instance.

A 3-component array of
numbers containing x, y,
and z in quantized
Cartesian coordinates for
the position of the
instance.

A unit vector defining the
up direction for the
orientation of the
instance.

A unit vector defining the
right direction for the
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Required

Yes, unless
POSITION_QUANTIZED
is defined.

Yes, unless POSITION
is defined.

No, unless
NORMAL_RIGHTiS
defined.

No, unless NORMAL_UP
is defined.
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orientation of the
instance. Must be
orthogonal to up.
NORMAL_UP_OCT32P uintl6[2]  An oct-encoded unit No, unless
vector with 32-bits of NORMAL_RIGHT_OCT32P
precision defining the up  is defined.
direction for the
orientation of the

instance.

NORMAL_RIGHT_OCT32P uint16[2]  An oct-encoded unit No, unless
vector with 32-bits of NORMAL_UP_OCT32P is
precision defining the defined.

right direction for the
orientation of the
instance. Must be
orthogonal to up.
SCALE float32 A number defining a No.
scale to apply to all axes
of the instance.
SCALE_NON_UNIFORM  float32[3] A 3-component array of  No.
numbers defining the

scale to apply to the x, y,
and z axes of the

instance.
BATCH_ID uints, The batchId of the No.
uintlé instance that can be used
(default), to retrieve metadata

Ooruint32  from the Batch Table.
52412 Global semantics
These semantics define global properties for all instances.

Semantic Data Type  Description Required

INSTANCES_LENGTH uint32 The number of instances ~ Yes.
to generate. The length
of each array value for an
instance semantic should
be equal to this.
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RTC_CENTER float32[3] A 3-componentarray of  No.
numbers defining the
center position when
instance positions are
defined relative-to-

center.

QUANTIZED_VOLUME_OF float32[3] A 3-componentarray of  No, unless

FSET numbers defining the POSITION_QUANTIZED is
offset for the quantized defined.
volume.

QUANTIZED_VOLUME_SC float32[3] A 3-componentarray of  No, unless

ALE numbers defining the POSITION_QUANTIZED is
scale for the quantized defined.
volume.

EAST_NORTH_UP boolean When true and per- No.

instance orientation is not
defined, each instance
will default to the
east/north/up reference
frame's orientation on the
WGS84 ellipsoid.

Examples using these semantics can be found in the examples section.
5.2.4.2 Instance orientation

An instance's orientation is defined by an orthonormal basis created by an up and right
vector. The orientation will be transformed by the tile transform.

The x vector in the standard basis maps to the right vector in the transformed basis,
and the y vector maps to the up vector.

The z vector would map to a forward vector, but it is omitted because it will always be
the cross product of right and up.
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Figure 26: A box in the standard basis

Figure 27: A box transformed into a rotated basis

52427 Oct-encoded normal vectors

If NORMAL_UP and NORMAL_RIGHT are not defined for an instance, its orientation may be
stored as oct-encoded normals in NORMAL_UP_0OCT32P and NORMAL_RIGHT_OCT32P.
These define up and right using the oct-encoding described in A Survey of Efficient
Representations of Independent Unit Vectors. Oct-encoded values are stored in
unsigned, unnormalized range ([0, 65535]) and then mapped to a signed normalized
range ([-1.0, 1.0]) at runtime.
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An implementation for encoding and decoding these unit vectors can be found in Cesium's
AttributeCompression
module.

52422 Default orientation

If NORMAL_UP and NORMAL_RIGHT or NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P are not
present, the instance will not have a custom orientation. If EAST_NORTH_UP is true, the
instance is assumed to be on the WGS84 ellipsoid and its orientation will default to the
east/north/up reference frame at its cartographic position.

This is suitable for instanced models such as trees whose orientation is always facing up
from their position on the ellipsoid's surface.

5.2.4.3 Instance position
POSITION defines the location for an instance before any tile transforms are applied.
524317 RIC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position and all instance positions
are treated as relative to this value.

52432 Quantized positions

If POSITION is not defined for an instance, its position may be stored in
POSITION_QUANTIZED, which defines the instance position relative to the quantized
volume.

If neither POSITION or POSITION_QUANTIZED are defined, the instance will not be created.

A quantized volume is defined by offset and scale to map quantized positions into
local space, as shown in the following figure:
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Figure 28: A quantized volume

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in
the global semantic QUANTIZED_VOLUME_SCALE.
If those global semantics are not defined, POSITION_QUANTIZED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 +
QUANTIZED_VOLUME_OFFSET

5.2.4.4 Instance scaling

Scaling can be applied to instances using the SCALE and SCALE_NON_UNIFORM semantics.
SCALE applies a uniform scale along all axes, and SCALE_NON_UNIFORM applies scaling to
the x, y, and z axes independently.

5.2.4.5 Examples

These examples show how to generate JSON and binary buffers for the Feature Table.
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5.2.4.5.1 Positions only

In this minimal example, we place four instances on the corners of a unit length square
with the default orientation:

var featureTablelSON = {
INSTANCES LENGTH : 4,
POSITION : {
byteOffset : 0
}
¥

var featureTableBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,

5.24.5.2 Quantized positions and oct-encoded normals

In this example, the four instances will be placed with an orientation up of [0.0, 1.0,
0.0] and right of [1.0, 0.0, 0.0] in oct-encoded format

and they will be placed on the corners of a quantized volume that spans from -250.0 to
250.0 units in the x and z directions:

var featureTabledSON = {
INSTANCES_LENGTH : 4,
QUANTIZED VOLUME_OFFSET : [-250.0, 0.0, -250.0],
QUANTIZED VOLUME_SCALE : [500.0, 0.0, 500.0],
POSITION QUANTIZED : {
byteOffset : ©
bs
NORMAL UP OCT32P : {
byteOffset : 24
bs
NORMAL RIGHT _OCT32P : {
byteOffset : 40
}
s

var positionQuantizedBinary = new Buffer(new Uintl6Array([
0, 0, 0,
65535, 0, O,
0, 0, 65535,
65535, O, 65535
1) .buffer);

var normalUpOct32PBinary = new Buffer(new Uintl6Array([
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32768, 65535,
32768, 65535,
32768, 65535,
32768, 65535

1) .buffer);

var normalRightOct32PBinary = new Buffer(new Uintl6Array([
65535, 32768,
65535, 32768,
65535, 32768,
65535, 32768
1) .buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary,
normalUpOct32PBinary, normalRightOct32PBinary]);

5.2.5 Batch Table

Contains metadata organized by batchId that can be used for declarative styling. See
the Batch Table reference for more information.

5.2.6 gITF
Instanced 3D Model uses gITF 2.0 for model data.

The gITF asset to be instanced is stored after the Feature Table and Batch Table. It may
embed all of its geometry, texture, and animations, or it may refer to external sources
for some or all of these data.

header.gltfFormat determines the format of the gITF field

*  When the value of header.gltfFormat is @, the gITF field is a UTF-8 string, which
contains a uri of the gITF or binary gITF model content.

*  When the value of header.gltfFormat is 1, the gITF field is a binary blob containing
binary gITF.

In either case, header.gltfByteLength contains the length of the gITF field in bytes.
5.2.6.1 Coordinate system

By default gITFs use a right handed coordinate system where the y~axis is up. For
consistency with the z-up coordinate system of 3D Tiles, gITFs must be transformed at
runtime. See coordinate reference system for more details.
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5.2.7 File extension and MIME type

Instanced 3D models tiles use the .i3dm extension and application/octet-stream
MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

5.2.8 Property reference
5.2.8.1 Instanced 3D Model Feature Table

A set of Instanced 3D Model semantics that contains values defining the position and
appearance properties for instanced models in a tile.

Properties
Type Description Required
extensions object Dictionary object with No
extension-specific objects.
extras any Application-specific data. No
POSITION object A BinaryBodyReference object  No

defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.

POSITION_QUANTIZED object A BinaryBodyReference object ~ No
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.

NORMAL_UP object A BinaryBodyReference object ~ No
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.

NORMAL_RIGHT object A BinaryBodyReference object  No
defining the reference to a
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NORMAL_UP_OCT32P

NORMAL_RIGHT_OCT3

2P

SCALE

SCALE_NON_UNIFORM

BATCH_ID

INSTANCES_LENGTH

object

object

object

object

object

object,

number [1],
number

section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A GlobalPropertyScalar object
defining a numeric property for
all features. See the
corresponding property
semantic in Semantics.
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QUANTIZED_VOLUME_ object, A GlobalPropertyCartesian3 No
OFFSET number [3] object defining a 3-component
numeric property for all
features. See the corresponding
property semantic in Semantics.

QUANTIZED VOLUME_ object, A GlobalPropertyCartesian3 No
SCALE number [3]  object defining a 3-component
numeric property for all
features. See the corresponding
property semantic in Semantics.

Additional properties are allowed.

«  Type of each property: Property

52811 Instanced3DModelFeatureTable.extensions
Dictionary object with extension-specific objects.

 Type: object
* Required: No
«  Type of each property: Extension

52812 Instanced3DModelFeaturelable.extras
Application-specific data.

+ Type:any
* Required: No

52813 Instanced3DModelFeatureTable.POSITION

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

+ Type: object

* Required: No

52814 Instanced3DModelFeatureTable.POSITION QUANTIZED

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.
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+ Type: object
* Required: No

52815 Instanced3DModelFeatureTable. NORMAL UP

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

« Type:object
* Required: No

52816 Instanced3DModelFeatureTable. NORMAL RIGHT

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object
* Required: No

52817 Instanced3DModelFeatureTable. NORMAL_UP OCT32P

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object
* Required: No

52818 Instanced3DModelFeatureTable NORMAL _RIGHT OCT32P

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

+ Type: object
* Required: No

52819 Instanced3DModelFeaturelable. SCALE

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

+ Type: object
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* Required: No
528110 Instanced3DModelFeatureTable. SCALE NON_UNIFORM

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

« Type:object
* Required: No

5281171 Instanced3DModelFeatureTable.BATCH ID

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object
* Required: No

528112 Instanced3DModelFeatureTable.INSTANCES LENGTH

A GlobalPropertyScalar object defining a numeric property for all features. See the
corresponding property semantic in Semantics.

. Type: object, number [1], number
« Required: Yes

528113 Instanced3DModelFeatureTable. QUANTIZED VVOLUME OFFSET

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics.

+ Type: object, number [3]
*  Required: No

528174 Instanced3DModelFeatureTable. QUANTIZED VOLUME SCALE

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics.

« Type: object, number [3]
*  Required: No
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5.2.8.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table
where the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes
Additional properties are allowed.

52.82.1 BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

+  Type: number
* Required: Yes
*  Minimum: >= o

5.2.8.3 GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.
5.2.8.4 GlobalPropertyScalar

An object defining a global numeric property values for all features.

5.2.8.5 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReference object.

5.3 Point Cloud

5.3.1 Overview

The Point Cloud tile format enables efficient streaming of massive point clouds for 3D
visualization. Each point is defined by a position and by optional properties used to
define its appearance, such as color and normal, as well as optional properties that
define application-specific metadata.
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Using 3D Tiles terminology, each point is a feature.

A Point Cloud tile is a binary blob in little endian.

5.3.2 Layout

A tile is composed of a header section immediately followed by a body section. The
following figure shows the Point Cloud layout (dashes indicate optional fields):

28-byte header (first 20 bytes)

magic version | bytelLength | featureTableJSONBytelLength | featureTableBinaryBytelength
(unsigned char[4]) (uint32) (uint32) (uint32) (uint32Z

28-byte header (next 8 bytes)

batchTableJSONBytelength | batchTableBinaryBytelLength
{uint32) (uint32)

featureTable | batchTable
|

__________

Figure 29: Point Cloud layout

5.3.21 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table
and Batch Table must conform to their respective padding requirement.

5.3.3 Header

The 28-byte header contains the following fields:

Field name Data type Description
magic 4-byte ANSI  "pnts". This can be used to identify
string the content as a Point Cloud tile.

version uint32 The version of the Point Cloud
format. It is currently 1.

byteLength uint32 The length of the entire tile,
including the header, in bytes.

featureTableJSONByteLength uint32 The length of the Feature Table
JSON section in bytes.

featureTableBinaryBytelength uint32 The length of the Feature Table

binary section in bytes.
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batchTableJSONBytelength uint32 The length of the Batch Table JSON
section in bytes. Zero indicates that
there is no Batch Table.

batchTableBinaryByteLength  uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero,
this will also be zero.

The body section immediately follows the header section, and is composed of a Feature
Table and Batch Table.

5.3.4 Feature Table

Contains per-tile and per-point values that define where and how to render points.
More information is available in the Feature Table specification.

5.3.41 Semantics
534177 Point semantics

These semantics map to an array of feature values that define each point. The length of
these arrays must be the same for all semantics and is equal to the number of points.
The value for each point semantic must be a reference to the Feature Table binary body;
they cannot be embedded in the Feature Table JSON header.

If a semantic has a dependency on another semantic, that semantic must be defined.
If both POSITION and POSITION_QUANTIZED are defined for a point, the higher precision
POSITION will be used.

If both NORMAL and NORMAL_0CT16P are defined for a point, the higher precision NORMAL
will be used.

Semantic Data Type  Description Required

POSITION float32[3] A 3-component array of Yes, unless
numbers containing x, y, POSITION_QUANTIZED
and z Cartesian is defined.

coordinates for the
position of the point.
POSITION_QUANTIZED uint16[3] A 3-component array of Yes, unless POSITION
numbers containing x, y, is defined.
and z in quantized
Cartesian coordinates for
the position of the point.
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RGBA uint8[4] A 4-component array of No.
values containing the RGBA
color of the point.
RGB uint8[3] A 3-component array of No.
values containing the RGB
color of the point.
RGB565 uintleé A lossy compressed color ~ No.
format that packs the RGB
color into 16 bits, providing
5 bits for red, 6 bits for
green, and 5 bits for blue.
NORMAL float32[3] A unit vector defining the  No.
normal of the point.
NORMAL_OCT16P uint8[2]  An oct-encoded unit vector No.
with 16 bits of precision
defining the normal of the
point.
BATCH_ID uints, The batchId of the point No.
uintlé that can be used to retrieve
(default),  metadata from the Batch
53412 Global semantics
These semantics define global properties for all points.
Semantic Data Type  Description Required
POINTS_LENGTH uint32 The number of points  Yes.
to render. The length
of each array value
for a point semantic
should be equal to
this.
RTC_CENTER float32[3] A 3-component array No.

of numbers defining
the center position
when point positions
are defined relative-
to-center.
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QUANTIZED_VOLUME_OFFSET

QUANTIZED_VOLUME_SCALE

CONSTANT_RGBA

BATCH_LENGTH

float32[3]

float32[3]

uint8[4]

uint32

A 3-component array
of numbers defining
the offset for the
quantized volume.

A 3-component array
of numbers defining
the scale for the
quantized volume.

A 4-component array
of values defining a
constant RGBA color
for all points in the
tile.

The number of
unique BATCH_ID
values.

No, unless
POSITION QUANTIZED

is defined.

No, unless
POSITION QUANTIZED

is defined.

No.

No, unless BATCH_ID
is defined.

Examples using these semantics can be found in the examples section below.

5.3.4.2 Point positions

POSITION defines the position for a point before any tileset transforms are applied.

53421 Coordinate reference system (CRS)

3D Tiles local coordinate systems use a right-handed 3-axis (x, y, z) Cartesian coordinate
system; that is, the cross product of xand yyields z 3D Tiles defines the zaxis as up for
local Cartesian coordinate systems (also see coordinate reference system).

53422 RIC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position and all point positions are
treated as relative to this value.

53423 Quantized positions

If POSITION is not defined, positions may be stored in POSITION_QUANTIZED, which
defines point positions relative to the quantized volume.
If neither POSITION nor POSITION_QUANTIZED is defined, the tile does not need to be

rendered.
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A quantized volume is defined by offset and scale to map quantized positions to a
position in local space. The following figure shows a quantized volume based on offset
and scale:

4 2182 2181

21 E_
2152
F-
-

scale.y|

(%,v,2) scale.z

Figure 30: A quantized volume

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in
the global semantic QUANTIZED_VOLUME_SCALE.
If those global semantics are not defined, POSITION_QUANTIZED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 +
QUANTIZED_VOLUME_OFFSET
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5.3.4.3 Point colors

If more than one color semantic is defined, the precedence order is RGBA, RGB, RGB565,
then CONSTANT_RGBA. For example, if a tile's Feature Table contains both RGBA and
CONSTANT_RGBA properties, the runtime would render with per-point colors using RGBA.

If no color semantics are defined, the runtime is free to color points using an
application-specific default color.

In any case, 3D Tiles Styling may be used to change the final rendered color and other
visual properties at runtime.

5.3.4.4 Point normals

Per-point normals are an optional property that can help improve the visual quality of
points by enabling lighting, hidden surface removal, and other rendering techniques.
The normals will be transformed using the inverse transpose of the tileset transform.

53447 Oct-encoded normal vectors

Oct-encoding is described in A Survey of Efficient Representations of Independent Unit
Vectors. Oct-encoded values are stored in unsigned, unnormalized range ([@, 255]) and
then mapped to a signed normalized range ([-1.0, 1.0]) at runtime.

An implementation for encoding and decoding these unit vectors can be found in Cesium's
AttributeCompression
module.

5.3.4.5 Batched points

Points that make up distinct features of the Point Cloud may be batched together using
the BATCH_ID semantic. For example, the points that make up a door in a house would
all be assigned the same BATCH_ID, whereas points that make up a window would be
assigned a different BATCH_ID.

This is useful for per-object picking and storing application-specific metadata for
declarative styling and application-specific use cases such as populating a Ul or issuing a
REST API request on a per-object instead of per-point basis.

The BATCH_ID semantic may have a componentType of UNSIGNED_BYTE, UNSIGNED_SHORT,
or UNSIGNED_INT. When componentType is not present, UNSIGNED_SHORT is used.

The global semantic BATCH_LENGTH defines the number of unique batchId values, similar
to the batchLength field in the Batched 3D Model header.

5.3.4.6 Examples

This section is non-normative
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These examples show how to generate JSON and binary buffers for the Feature Table.
5.3.4.6.1 Positions only

This minimal example has four points on the corners of a unit length square:

var featureTableJSON = {
POINTS LENGTH : 4,
POSITION : {
byteOffset : ©
}
s

var featureTableBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,

534.6.2 Positions and colors

The following example has four points (red, green, blue, and yellow) above the globe.
Their positions are defined relative to center:

var featureTabledSON = {
POINTS_LENGTH : 4,
RTC_CENTER : [1215013.8, -4736316.7, 4081608.4],
POSITION : {
byteOffset : ©

¥
RGB : {
byteOffset : 48
}
¥
var positionBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,
1.9, 6.9, 0.9,
0.0, 0.0, 1.0,
1.0, 0.0, 1.0
1) .buffer);

var colorBinary
255, 0, 0,
0, 255, 0,
0, 0, 255,
255, 255, 0,
1) .buffer);

new Buffer(new Uint8Array([
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var featureTableBinary = Buffer.concat([positionBinary, colorBinary]);
53.4.6.3 Quantized positions and oct-encoded normals

In this example, the four points will have normals pointing up [0.0, 1.0, ©.0] in oct-
encoded format, and they will be placed on the corners of a quantized volume that
spans from -250.0 to 250.0 units in the x and z directions:

var featureTableldSON = {
POINTS_LENGTH : 4,
QUANTIZED VOLUME_OFFSET : [-250.0, 0.0, -250.0],
QUANTIZED VOLUME_SCALE : [500.0, 0.0, 500.0],
POSITION_QUANTIZED : {
byteOffset : ©
}s
NORMAL_OCT16P : {
byteOffset : 24

}
s

var positionQuantizedBinary = new Buffer(new Uintl6Array([
0, 0, 0,
65535, 0, O,
9, 0, 65535,
65535, @, 65535
1) .buffer);

var normalOctl6PBinary
128, 255,
128, 255,
128, 255,
128, 255
1) .buffer);

new Buffer(new Uint8Array([

var featureTableBinary
normalOct16PBinary]);

Buffer.concat([positionQuantizedBinary,

5.3.4.6.4 Batched points

In this example, the first two points have a batchId of 0, and the next two points have a
batchId of 1. Note that the Batch Table only has two names:

var featureTabledSON = {
POINTS_LENGTH : 4,
BATCH_LENGTH : 2,
POSITION : {
byteOffset : ©

¥
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BATCH_ ID : {
byteOffset : 48,
componentType : "UNSIGNED_BYTE"

}s

var positionBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,

)

9, 0.0
.0, 1.0,
9, 1.0

1) .buffer);
var featureTableBinary = Buffer.concat([positionBinary, batchIdBinary]);

var batchTableJSON = {
names : ['objectl', 'object2']
s

53.4.6.5 Per-point properties

In this example, each of the 4 points will have metadata stored in the Batch Table JSON
and binary.

var featureTabledSON = {
POINTS_LENGTH : 4,
POSITION : {
byteOffset : ©
}
s

var featureTableBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,

)

9, 0.0
.0, 1.0,
9, 1.0

var batchTableJSON = {
names : ['pointl', ‘'point2', 'point3', ‘'pointd']

s
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5.3.5 Batch Table

The Batch Table contains application-specific metadata, indexable by batchlId, that can
be used for declarative styling and application-specific use cases such as populating a Ul
or issuing a REST API request.

« If the BATCH_ID semantic is defined, the Batch Table stores metadata for each
batchId, and the length of the Batch Table arrays will equal BATCH_LENGTH.

« If the BATCH_ID semantic is not defined, then the Batch Table stores per-point
metadata, and the length of the Batch Table arrays will equal POINTS_LENGTH.

See the Batch Table reference for more information.
5.3.6 File extension and MIME type
Point cloud tiles use the .pnts extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

5.3.7 Implementation example
This section is non-normative

Code for reading the header can be found in PointCloud3DModelTileContentjs in the
Cesium implementation of 3D Tiles.

5.3.8 Property reference
5.3.8.1 Point Cloud Feature Table

A set of Point Cloud semantics that contains values defining the position and
appearance properties for points in a tile.

Properties
Type Description Required
extensions object Dictionary object with No
extension-specific objects.
extras any Application-specific data. No
POSITION object A BinaryBodyReference object No

defining the reference to a
section of the binary body
where the property values are
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POSITION_QUANTIZED

RGBA

RGB

RGB565

NORMAL

NORMAL_OCT16P

object

object

object

object

object

object

stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.
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BATCH_ID

POINTS_LENGTH

RTC_CENTER

QUANTIZED_VOLUME_OFFSET

QUANTIZED_VOLUME_SCALE

CONSTANT_RGBA

BATCH_LENGTH

Additional properties are allowed.

object

object,
number

[1],

number

object,
number

[3]

object,
number

[3]

object,
number

[3]

object,
number

[4]

object,
number

(1],

number

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.

A GlobalPropertyScalar object
defining a numeric property for
all points. See the
corresponding property
semantic in Semantics.

A GlobalPropertyCartesian3
object defining a 3-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyCartesian3
object defining a 3-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyCartesian3
object defining a 3-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyCartesian4
object defining a 4-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyScalar object
defining a numeric property for
all points. See the
corresponding property
semantic in Semantics.
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«  Type of each property: Property
53811 PointCloudFeatureTable.extensions
Dictionary object with extension-specific objects.

« Type:object
* Required: No
« Type of each property: Extension

53812 PointCloudFeaturelable.extras
Application-specific data.

« Type: any
* Required: No

53813 PointCloudFeaturelable.POSITION

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object

* Required: No

53814 PointCloudFeaturelable.POSITION QUANTIZED

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object

* Required: No

53815 PointCloudFeaturelable.RGBA

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

+ Type: object
* Required: No
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53816 PointCloudFeaturelable.RGB

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

« Type:object

* Required: No

53817 PointCloudFeaturelable.RGB565

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type:object

* Required: No

53818 PointCloudFeatureTable. NORMAL

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object

* Required: No

53819 PointCloudFeaturelable. NORMAL_ OCT16P

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

 Type: object

* Required: No

538110 PointCloudFeatureTable. BATCH_ID

A BinaryBodyReference object defining the reference to a section of the binary body
where the property values are stored. See the corresponding property semantic in
Semantics.

+ Type: object
* Required: No
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538111 PointCloudFeatureTable. POINTS LENGTH <~

A GlobalPropertyScalar object defining a numeric property for all points. See the
corresponding property semantic in Semantics.

. Type: object, number [1], number
* Required: Yes

53.8.1.12 PointCloudFeatureTable. RTC_CENTER

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
points. See the corresponding property semantic in Semantics.

+ Type: object, number [3]
*  Required: No

538113 PointCloudFeatureTable. QUANTIZED VOLUME OFFSET

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
points. See the corresponding property semantic in Semantics.

+  Type: object, number [3]
*  Required: No

5381174 PointCloudFeaturelable. QUANTIZED VOLUME SCALE

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
points. See the corresponding property semantic in Semantics.

+ Type: object, number [3]
*  Required: No

53811715 PointCloudFeatureTable. CONSTANT RGBA

A GlobalPropertyCartesian4 object defining a 4-component numeric property for all
points. See the corresponding property semantic in Semantics.

+ Type: object, number [4]
*  Required: No

5381176 PointCloudFeaturelable.BATCH LENGTH

A GlobalPropertyScalar object defining a numeric property for all points. See the
corresponding property semantic in Semantics.

. Type: object, number [1], number
* Required: No
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5.3.8.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table
where the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes
Additional properties are allowed.

53821 BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

+  Type: number
* Required: Yes
*  Minimum: >= o

5.3.8.3 GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.
5.3.8.4 GlobalPropertyCartesian4

An object defining a global 4-component numeric property values for all features.
5.3.8.5 GlobalPropertyScalar

An object defining a global numeric property values for all features.

5.3.8.6 Property

A user-defined property which specifies per-feature application-specific metadata in a
tile. Values either can be defined directly in the JSON as an array, or can refer to sections
in the binary body with a BinaryBodyReference object.

5.4 Composite

5.4.1 Overview
The Composite tile format enables concatenating tiles of different formats into one tile.

3D Tiles and the Composite tile allow flexibility for streaming heterogeneous datasets.
For example, buildings and trees could be stored either in two separate Batched 3D

96



Model and Instanced 3D Modeltiles or, using a Composite tile, the tiles can be
combined.

Supporting heterogeneous datasets with both inter-tile (separate tiles of different
formats that are in the same tileset) and intra-tile (different tile formats that are in the
same Composite tile) options allows conversion tools to make trade-offs between
number of requests, optimal type-specific subdivision, and how visible/hidden layers are
streamed.

A Composite tile is a binary blob in little endian.

5.4.2 Layout

Composite layout (dashes indicate optional fields):

16-byte header

M
W

magic version | byteLength | tilesLength | tiles[] !
(unsigned char[4]) (uint32}) (uint32) (uint32) |

Figure 31: Composite layout

54.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. All tiles contained in a
composite tile must also be aligned to an 8-byte boundary.

5.4.3 Header

The 16-byte header section contains the following fields:

Field name  Data type Description
magic 4-byte ANSI "cmpt". This can be used to identify the content as a
string Composite tile.
version uint32 The version of the Composite format. It is currently 1.
byteLength  uint32 The length of the entire Composite tile, including this
header and each inner tile, in bytes.
tileslLength uint32 The number of tiles in the Composite.
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5.4.4 Inner tiles

Inner tile fields are stored tightly packed immediately following the header section. The
following information describes general characteristics of all tile formats that a
Composite tile reader might exploit to find the boundaries of the inner tiles:

«  Each tile starts with a 4-byte ANSI string, magic, that can be used to determine the
tile format for further parsing. See tile format specifications for a list of possible
formats. Composite tiles can contain Composite tiles.

« Each tile's header contains a uint32 bytelLength, which defines the length of the
inner tile, including its header, in bytes. This can be used to traverse the inner tiles.

«  For any tile format's version 1, the first 12 bytes of all tiles is the following fields:

Field name Data type Description
magic 4-byte ANSI Indicates the tile format
string
version uint32 1
byteLength uint32 Length, in bytes, of the entire tile.

Refer to the spec for each tile format for more details.

5.4.5 File extension and MIME type
Composite tiles use the .cmpt extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

5.4.6 Implementation examples
This section is non-normative

«  Python packcmpt tool in gltf2glb toolset contains code for combining one or more
Batched 3D Model or Instanced 3D Modeltiles into a single Composite tile file.

«  Code for reading the header can be found in
Composite3DTileContent,js
in the Cesium implementation of 3D Tiles.
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6 Declarative styling specification

6.1 Overview

3D Tiles styles provide concise declarative styling of tileset features. A style defines
expressions to evaluate the display of a feature, for example color (RGB and
translucency) and show properties, often based on the feature's properties stored in the
tile's Batch Table.

While a style may be created for and reference properties of a tileset, a style is
independent of a tileset, such that any style can be applied to any tileset.

Styles are defined with JSON and expressions written in a small subset of JavaScript
augmented for styling. Additionally, the styling language provides a set of built-in
functions to support common math operations.

The following example assigns a color based on building height.

{
"show" : "${Area} > 0",
"color" : {
"conditions" : [
["${Height} < 60", "color('#13293D')"],
["${Height} < 120", "color('#1B98E0')"],
["true", "color('#E8F1F2', 0.5)"]
]
}
}

6.2 Concepts
6.2.1 Styling features

Visual properties available for styling features are the show property, the assigned
expression of which will evaluate to a boolean that determines if the feature is visible,
and the color property, the assigned expression of which will evaluate to a Color object
(RGB and translucency) which determines the displayed color of a feature.

The following style assigns the default show and color properties to each feature:

{

"show" : "true",
"color" : "color('#ffffff')"
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Instead of showing all features, show can be an expression dependent on a feature's
properties, for example, the following expression will show only features in the 19341 zip
code:

{
}

show can also be used for more complex queries; for example, here a compound
condition and regular expression are used to show only features whose county starts
with 'Chest' and whose year built is greater than or equal to 1970:

{
}

"show" : "${ZipCode} === '19341"'"

"show" : "(regExp('~Chest').test(${County})) && (${YearBuilt} >= 1970)"

Colors can also be defined by expressions dependent on a feature's properties. For
example, the following expression colors features with a temperature above 90 as red
and the others as white:

{
}

The color's alpha component defines the feature's opacity. For example, the following
sets the feature's RGB color components from the feature's properties and makes
features with volume greater than 100 transparent:

{
}
6.2.2 Conditions

"color" : "(${Temperature} > 90) ? color('red') : color('white"')"

“"color" : "rgba(${red}, ${green}, ${blue}, (${volume} > 100 ? 0.5 : 1.09))"

In addition to a string containing an expression, color and show can be an array defining
a series of conditions (similar to if...else statements). Conditions can, for example, be
used to make color maps and color ramps with any type of inclusive/exclusive intervals.

For example, the following expression maps an ID property to colors. Conditions are
evaluated in order, so if ${id} isnot '1' or '2"', the "true" condition returns white. If no
conditions are met, the color of the feature will be undefined:

{
"color" : {
"conditions" : [
["${id} === "1'", "color('#FF00EQ')"],
["${id} === '2'", "color('#0OFF00')"],

["true", "color('#FFFFFF')"]
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}

The next example shows how to use conditions to create a color ramp using intervals
with an inclusive lower bound and exclusive upper bound:

"color" : {

"conditions" : [
["(${Height} >= 1.0) && (${Height}
["(${Height} >= 10.0) && (${Height}
["(${Height} >= 30.0) && (${Height}
["(${Height} >= 50.0) && (${Height} < 70.0)", "color('#0OFF00')"],
["(${Height} >= 70.0) && (${Height} < 100.0)", "color('#OGOFFFF')"],
["(${Height} >= 100.0)", "color('#GOOOFF')"]

10.0)", "color('#FFOOFF')"],
30.9)", "color('#FFo000')"],
50.0)", "color('#FFFFeQ')"],

A AN AN A

A

}

Since conditions are evaluated in order, the above can be written more concisely as the
following:

"color" : {
"conditions" : [
["(${Height} >= 100.0)", "color('#000OFF')"],
["(${Height} >= 70.0)", "color('#@OFFFF')"],
["(${Height} >= 50.0)", "color('#00FF00')"],
["(${Height} >= 30.0)", "color('#FFFFOQ')"],
["(${Height} >= 10.0)", "color('#FF0000')"],
["(${Height} >= 1.0)", "color( '#FFOOFF')"]

}
6.2.3 Defining variables

Commonly used expressions may be stored in a defines object with a variable name as
a key. If a variable references the name of a defined expression, it is replaced with the
result of the referenced evaluated expression:

{
"defines" : {
"NewHeight" : "clamp((${Height} - ©.5) / 2.0, 1.0, 255.0)",
"HeightColor" : "rgb(${Height}, ${Height}, ${Height})"
s
"color" : {
"conditions" : [

["(${NewHeight} >= 100.0)", "color('#0000FF') * ${HeightColor}"],
["(${NewHeight} >= 50.0)", "color('#@OFF00') * ${HeightColor}"],
["(${NewHeight} >= 1.0)", "color('#FFo000') * ${HeightColor}"]
¥
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"show" : "${NewHeight} < 200.0"
}

A define expression may not reference other defines; however, it may reference feature
properties with the same name. In the style below a feature of height 150 gets the color
red:

{
"defines" : {
"Height" : "${Height}/2.0}",
¥
"color" : {
"conditions" : [
["(${Height} >= 100.0)", "color('#GGGOFF')"],
["(${Height} >= 1.0)", "color('#FFE000"')"]
]
}
}

6.2.4 Meta property

Non-visual properties of a feature can be defined using the meta property. For example,
the following sets a description meta property to a string containing the feature name:

{

"meta" : {
"description” : "'Hello, ${featureName}."'"
}

}
A meta property expression can evaluate to any type. For example:

{

"meta" : {
"featureColor" : "rgb(${red}, ${green}, ${blue})",
"featureVolume" : "${height} * ${width} * ${depth}"
}

}

6.3 Expressions

The language for expressions is a small subset of JavaScript (EMCAScript 5), plus native
vector and regular expression types and access to tileset feature properties in the form
of readonly variables.

Implementation Note: Cesium uses the jsep JavaScript expression parser library to parse style expressions
into an abstract syntax tree (AST).
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6.3.1 Semantics
Dot notation is used to access properties by name, e.g., building.name.

Bracket notation ([]) is also used to access properties, e.g., building[ 'name'], or arrays,
e.g., temperatures[1].

Functions are called with parenthesis (()) and comma-separated arguments, e.g.,
(isNaN(@.9), color('cyan', 0.5)).

6.3.2 Operators

The following operators are supported with the same semantics and precedence as
JavaScript.

*  Unary:+ -, !

* Not supported: ~

e Binary: ||, &&, ===, I==,<, >, <=, 5=+, -, %, /, % =~ I~
* Not supported: |, #, & <<, >> and >>>
 Ternary:? :

( and ) are also supported for grouping expressions for clarity and precedence.

Logical | | and && implement short-circuiting; true || expression does not evaluate
the right expression, and false && expression does not evaluate the right expression.

Similarly, true ? leftExpression : rightExpression only executes the left expression,
and false ? leftExpression : rightExpression only executes the right expression.

6.3.3 Types
The following types are supported:

o Boolean
o Null
o Undefined

o Number

. String
. Array
. vec2

. vec3

. vec4d

. RegExp
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All of the types except vec2, vec3, vec4, and RegExp have the same syntax and runtime
behavior as JavaScript. vec2, vec3, and vec4 are derived from GLSL vectors and behave
similarly to JavaScript Object (see the Vector section). Colors derive from CSS3 Colors
and are implemented as vec4. RegExp is derived from JavaScript and described in the
RegExp section.

Example expressions for different types include the following:

J true, false

. null

. undefined

J 1.0, NaN, Infinity

J 'Cesium', "Cesium"

. [0, 1, 2]

. vec2(1.0, 2.0)

e vec3(1.9, 2.0, 3.9)

. vec4(1.0, 2.0, 3.0, 4.0)
. color('#0OFFFF")

. regExp('~Chest"))
6.3.3.1 Number

As in JavaScript, numbers can be NaN or Infinity. The following test functions are
supported:

. isNaN(testValue : Number) : Boolean
. isFinite(testValue : Number) : Boolean

6.3.3.2 Vector

The styling language includes 2, 3, and 4 component floating-point vector types: vec2,
vec3, and vec4. Vector constructors share the same rules as GLSL:

6.3.3.2.1 vec?

e vec2(xy : Number) - initialize each component with the number

e vec2(x : Number, y : Number) - initialize with two numbers

e vec2(xy : vec2) - initialize with another vec2

e vec2(xyz : vec3) - drops the third component of a vec3

e vec2(xyzw : vec4) - drops the third and fourth component of a vec4

6.3.3.2.2 vec3
e vec3(xyz : Number) - initialize each component with the number
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e vec3(x : Number, y : Number, z : Number) - initialize with three numbers
e vec3(xyz : vec3) - initialize with another vec3

e vec3(xyzw : vec4d) - drops the fourth component of a vec4

e vec3(xy : vec2, z : Number) - initialize with a vec2 and number

e vec3(x : Number, yz : vec2) - initialize with a vec2 and number

6.3.3.2.3 vecd
e vec4(xyzw : Number) - initialize each component with the number

e vec4(x : Number, y : Number, z : Number, w : Number) - initialize with four

numbers
e vecd(xyzw : vec4) - initialize with another vec4

e vec4(xy : vec2, z : Number, w : Number) - initialize with a vec2 and two
numbers

e vecd4(x : Number, yz : vec2, w : Number) - initialize with a vec2 and two
numbers

e vec4(x : Number, y : Number, zw : vec2) - initialize with a vec2 and two
numbers

e vecd(xyz : vec3, w : Number) - initialize with a vec3 and number
e vec4(x : Number, yzw : vec3) - initialize with a vec3 and number

6.3.3.24 Vector usage

vec2 components may be accessed with

. X, WY
. .r,.g
«  [e], [1]

vec3 components may be accessed with

. X, WY, .2
. .r,.g .b

+  [e]. [1], [2]

vec4 components may be accessed with

. X, WY, e Z, oW

. .r,.g .b, .a

+ [e], [1], [2], [3]

Unlike GLSL, the styling language does not support swizzling. For example,

vec3(1.0).xy is not supported.
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Vectors support the following unary operators: -, +.

Vectors support the following binary operators by performing component-wise
operations: ===, !==, +, -, *, /, and %. For example vec4(1.0) === vec4(1.0) is true since
the x, ), z and wcomponents are equal. Operators are essentially overloaded for vec2,
vec3, and vec4.

vec2, vec3, and vec4 have a toString function for explicit (and implicit) conversion to
strings in the format ' (x, y)', "(x, y, z)',and "(x, y, z, w)".

. toString() : String

vec2, vec3, and vec4 do not expose any other functions or a prototype object.
6.3.3.3 Color

Colors are implemented as vec4 and are created with one of the following functions:

. color()

. color(keyword : String, [alpha : Number])

. color(6-digit-hex : String, [alpha : Number])

. color(3-digit-hex : String, [alpha : Number])

. rgb(red : Number, green : Number, blue : Number)

. rgba(red : Number, green : Number, blue : Number, alpha : Number)
. hsl(hue : Number, saturation : Number, lightness : Number)

. hsla(hue : Number, saturation : Number, lightness : Number, alpha :
Number)

Calling color() with no arguments is the same as calling color('#FFFFFF').

Colors defined by a case-insensitive keyword (e.g., 'cyan') or hex rgb are passed as
strings to the color function. For example:

. color('cyan')
. color('#0OFFFF")
. color('#OFF")

These color functions have an optional second argument that is an alpha component to
define opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

. color('cyan', 0.5)

Colors defined with decimal RGB or HSL are created with rgb and hs1 functions,
respectively, just as in CSS (but with percentage ranges from 0.0 to 1.0 for 0% to 100%,
respectively). For example:
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«  rgb(100, 255, 190)
«  hsl(l.0, 0.6, 0.7)

The range for rgb components is @ to 255, inclusive. For hs1, the range for hue,
saturation, and lightness is 8.0 to 1.9, inclusive.

Colors defined with rgba or hsla have a fourth argument that is an alpha component to
define opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

«  rgba(10@, 255, 190, 0.25)
« hsla(1.0, 0.6, 0.7, 0.75)

Colors are equivalent to the vec4 type and share the same functions, operators, and
component accessors. Color components are stored in the range 0.0 to 1.0.

For example:

e color('red').x, color('red').r, and color('red')[0] all evaluate to 1.0.
e color('red').toString() evaluatesto (1.0, 0.0, 0.0, 1.9)
 color('red') * vec4(®.5) is equivalent to vec4(0.5, 0.0, 0.0, 0.5)

6.3.3.4 RegExp

Regular expressions are created with the following functions, which behave like the
JavaScript RegExp constructor:

. regExp()
. regeéxp(pattern : String, [flags : String])

Calling regkxp() with no arguments is the same as calling regexp('(?:)").
If specified, flags can have any combination of the following values:

* g -global match
e i-ignore case

« m-multiline

* u-unicode

» y-sticky

Regular expressions support these functions:

e test(string : String) : Boolean - Tests the specified string for a match.

e exec(string : String) : String - Executes a search for a match in the specified
string. If the search succeeds, it returns the first instance of a captured String. If the
search fails, it returns null.
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For example:

{

"Name" : "Building 1"
}
regExp('a').test('abc') === true
regExp('a(.)', 'i').exec('Abc') === 'b'
regExp('Building\s(\d)').exec(${Name}) === '1"

Regular expressions have a toString function for explicit (and implicit) conversion to
strings in the format 'pattern':

. toString() : String
Regular expressions do not expose any other functions or a prototype object.

The operators =~ and !~ are overloaded for regular expressions. The =~ operator
matches the behavior of the test function, and tests the specified string for a match. It
returns true if one is found, and false if not found. The !~ operator is the inverse of the
=~ operator. It returns true if no matches are found, and false if a match is found. Both
operators are commutative.

For example, the following expressions all evaluate to true:

regExp('a') =~ "abc'
'abc' =~ regExp('a')

regeéxp('a') !~ 'bcd’
"bcd' !~ regExp('a’)

6.3.4 Operator rules
»  Unary operators + and - operate only on number and vector expressions.
» Unary operator ! operates only on boolean expressions.
»  Binary operators <, <=, >, and >= operate only on number expressions.
*  Binary operators | | and && operate only on boolean expressions.
« Binary operator + operates on the following expressions:
—  Number expressions
—  Vector expressions of the same type

— If at least one expressions is a string, the other expression is converted to a
string following String Conversions, and the operation returns a
concatenated string, e.g. "name" + 10 evaluates to "name10"

« Binary operator - operates on the following expressions:
—  Number expressions
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—  Vector expressions of the same type

e Binary operator * operates on the following expressions:
—  Number expressions
—  Vector expressions of the same type

—  Mix of number expression and vector expression, e.g. 3 * vec3(1.0) and
vec2(1.0) * 3

« Binary operator / operates on the following expressions:
—  Number expressions
—  Vector expressions of the same type
- Vector expression followed by number expression, e.g.vec3(1.0) / 3
«  Binary operator % operates on the following expressions:
—  Number expressions
—  Vector expressions of the same type
«  Binary equality operators === and !== operate on any expressions. The operation
returns false if the expression types do not match.

»  Binary regExp operators =~ and !~ require one argument to be a string expression
and the other to be a RegExp expression.

« Ternary operator ? : conditional argument must be a boolean expression.

6.3.5 Type conversions

Explicit conversions between primitive types are handled with Boolean, Number, and
String functions.

* Boolean(value : Any) : Boolean
*  Number(value : Any) : Number
. String(value : Any) : String

For example:

Boolean(1l) === true
Number('1') === 1
String(1l) === '1'

Boolean and Number follow JavaScript conventions. String follows String Conversions.
These are essentially casts, not constructor functions.

The styling language does not allow for implicit type conversions, unless stated above.
Expressions like vec3(1.0) === vec4(1.0) and "5" < 6 are not valid.
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6.3.6 String conversions

vec2, vec3, vec4, and RegExp expressions are converted to strings using their toString
methods. All other types follow JavaScript conventions.

. true - "true”

. false - "false"

. null - "null™

. undefined - "undefined"

. 5.9-"5"

. NaN - "NaN"

. Infinity - "Infinity"

. "name" - "name"

. [e, 1, 2]-"[@o, 1, 2]"

. vec2(1, 2)-"(1, 2)"

e vec3(1, 2, 3)-"(1, 2, 3)"
. vec4(1, 2, 3, 4)-"(1, 2, 3, 4)"
e RegExp('a')-"/a/"

6.3.7 Constants

The following constants are supported by the styling language:

. Math.PI
. Math.E
6.3.7.1 PI

The mathematical constant PI, which represents a circle's circumference divided by its
diameter, approximately 3.14159.

{

"show" : "cos(${Angle} + Math.PI) < @"
}
6.3.72 E

Euler's constant and the base of the natural logarithm, approximately 2.71828.

{
}

"color" : "color() * pow(Math.E / 2.0, ${Temperature})"
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6.3.8 Variables

Variables are used to retrieve the property values of individual features in a tileset.
Variables are identified using the ES 6 (ECMAScript 2015) template literal syntax, i.e.,
${feature.identifier} or ${feature['identifier']}, where the identifier is the case-
sensitive property name. feature is implicit and can be omitted in most cases.

Variables can be used anywhere a valid expression is accepted, except inside other
variable identifiers. For example, the following is not allowed:

${foo[${bar}]}

If a feature does not have a property with the specified name, the variable evaluates to
undefined. Note that the property may also be null if null was explicitly stored for a

property.

Variables may be any of the supported native JavaScript types:
. Boolean

. Null

* Undefined

. Number

. String
. Array
For example:
{
"enabled" : true,
"description” : null,
"order" : 1,
"name" : "Feature name"
}
${enabled} === true
${description} === null
${order} === 1
${name} === 'Feature name’

Additionally, variables originating from vector properties stored in the Batch Table
binary are treated as vector types:

componentType Vvariable type

"VEC2" vec2
"VEC3" vec3
"VEC4" vecd
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Variables can be used to construct colors or vectors. For example:

rgba(${red}, ${green}, ${blue}, ${alpha})
vec4(${temperature})

Dot or bracket notation is used to access feature subproperties. For example:

{

"address" : {
"street” : "Example street",
"city" : "Example city"

}

${address.street} === “Example street’
${address['street']} === “Example street’

${address.city} === "Example city"
${address['city']} === "Example city"

Bracket notation supports only string literals.

Top-level properties can be accessed with bracket notation by explicitly using the
feature keyword. For example:

{

"address.street" : "Maple Street"”,

"address" : {

"street" : "Oak Street"

}
}
${address.street} === “0Oak Street"
${feature.address.street} === “0Oak Street’
${feature['address'].street} === "0Oak Street’
${feature[ 'address.street']} === “Maple Street’

To access a feature named feature, use the variable ${feature}. This is equivalent to
accessing ${feature.feature}

{
"feature" : "building"
}
${feature} === “building’
${feature.feature} === “building’

Variables can also be substituted inside strings defined with backticks, for example:

{

"order" : 1,
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"name" : "Feature name"

}

“Name is ${name}, order is ${order}"

Bracket notation is used to access feature subproperties or arrays. For example:

{

"temperatures” : {
"scale" : "fahrenheit",
"values" : [70, 80, 90]
}
}
${temperatures['scale']} === 'fahrenheit’
${temperatures.values[0]} === 70
${temperatures['values'][@]} === 70 // Same as (temperatures[values])[@] and

temperatures.values[0]

6.3.9 Built-in variables

The prefix tiles3d_ is reserved for built-in variables. The following built-in variables are
supported by the styling language:

e tiles3d tileset_time
6.3.9.1 tiles3d tileset time

Gets the time, in milliseconds, since the tileset was first loaded. This is useful for creating
dynamic styles that change with time.

{
}
6.3.10 Built-in functions

“color" : "color() * abs(cos(${Temperature} + ${tiles3d tileset time}))"

The following built-in functions are supported by the styling language. Many of the
built-in functions take either scalars or vectors as arguments. For vector arguments the
function is applied component-wise and the resulting vector is returned.

6.3.10.1 abs
abs(x : Number) : Number
abs(x : vec2) : vec2
abs(x : vec3) : vec3
abs(x : vec4) : vec4d

Returns the absolute value of x.
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{

"show" : "abs(${temperature}) > 20.0"
}
6.3.10.2 sqrt
sgrt(x : Number) : Number
sgrt(x : vec2) : vec2
sqrt(x : vec3) : vec3
sgrt(x : vec4) : vec4d

Returns the square root of x when x >= @. Returns NaN when x < o.

{
"color" : {

"conditions" : [
["${temperature} >= 0.5",
["${temperature} >= 0.0",

]

}
}
6.3.10.3 cos
cos(angle : Number) : Number
cos(angle : vec2) : vec2
cos(angle : vec3) : vec3
cos(angle : vec4d) : vec4d

Returns the cosine of angle in radians.

{

}
6.3.10.4 sin

"show

sin(angle :

sin(angle
sin(angle
sin(angle

"cos(${Angle}) > 0.0"

Number) : Number
1 vec2) : vec2
: vec3) : vec3
: vecd) : vecd

Returns the sine of angle in radians.

{

}
6.3.10.5 tan

"ShOW"

tan(angle :

tan(angle
tan(angle
tan(angle

"sin(${Angle}) > 0.0"

Number) : Number
: vec2) : vec2
: vec3) : vec3
: vecd) : vecd

"color('#@OFFFF')"],
"color( '#FFOOFF')"]
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Returns the tangent of angle in radians.

{

}

6.3.10.6 acos

acos(angle : Number) : Number
acos(angle : vec2) : vec2
acos(angle : vec3) : vec3
acos(angle : vecd4) : vecd

"show" : "tan(${Angle}) > 0.0"

Returns the arccosine of angle in radians.

{

}

6.3.10.7 asin

asin(angle : Number) : Number
asin(angle : vec2) : vec2
asin(angle : vec3) : vec3
asin(angle : vec4) : vecd

"show" : "acos(${Angle}) > 0.0"

Returns the arcsine of angle in radians.

{

}

6.3.10.8 atan

atan(angle : Number) : Number
atan(angle : vec2) : vec2
atan(angle : vec3) : vec3
atan(angle : vec4) : vecd

"show" : "asin(${Angle}) > 0.0"

Returns the arctangent of angle in radians.

{

}

6.3.10.9 atan2

atan2(y : Number, x : Number) : Number
atan2(y : vec2, x : vec2) : vec2
atan2(y : vec3, x : vec3) : vec3
atan2(y : vec4, x : vecd4) : vecd

"show" : "atan(${Angle}) > ©0.0"

Returns the arctangent of the quotient of y and x.
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{

}

6.3.10.10radians

radians(angle : Number) : Number
radians(angle : vec2) : vec2
radians(angle : vec3) : vec3
radians(angle : vec4) : vec4d

"show" : "atan2(${GridY}, ${GridX}) > ©.0"

Converts angle from degrees to radians.

{

}

6.3.10.11 degrees

degrees(angle : Number) : Number
degrees(angle : vec2) : vec2
degrees(angle : vec3) : vec3
degrees(angle : vec4) : vecd

"show" : "radians(${Angle}) > 0.5"

Converts angle from radians to degrees.

{

"show" : "degrees(${Angle}) > 45.0"
}
6.3.10.12sign

sign(x : Number) : Number
sign(x : vec2) : vec2
sign(x : vec3) : vec3
sign(x : vec4) : vec4d

Returns 1.0 when x is positive, 0.0 when x is zero, and -1.0 when x is negative.

{

}

6.3.10.13floor

floor(x : Number) : Number
floor(x : vec2) : vec2
floor(x : vec3) : vec3
floor(x : vecd4) : vecd

"show" : "sign(${Temperature}) * sign(${Velocity}) === 1.0"

Returns the nearest integer less than or equal to x.

{
}

"show" : "floor(${Position}) === 0"
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6.3.10.14ceil

ceil(x :
ceil(x :
ceil(x :
ceil(x :

Number)

vec2)
vec3)

: Number
. vec2
: vec3
vec4) :

vecd

Returns the nearest integer greater than or equal to x.

{
"show" : "ceil(${Position}) === 1"
}
6.3.10.15round
round(x : Number) : Number
round(x : vec2) : vec2
round(x : vec3) : vec3
round(x : vecd) : vec4d

Returns the nearest integer to x. A number with a fraction of 0.5 will round in an
implementation-defined direction.

{

"show" : "round(${Position}) === 1"
}
6.3.10.16exp

exp(x : Number) : Number
exp(x : vec2) : vec2
exp(x : vec3) : vec3
exp(x : vec4) : vec4d

Returns e to the power of x, where e is Euler's constant, approximately 2.71828.

{

}

6.3.10.17log

log(x : Number) : Number
log(x : vec2) : vec2
log(x : vec3) : vec3
log(x : vec4) : vec4d

"show" : "exp(${Density}) > 1.0"

Returns the natural logarithm (base e) of x.

{
}

"show" : "log(${Density}) > 1.0"
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6.3.10.18exp2

exp2(x : Number) : Number
exp2(x : vec2) : vec2
exp2(x : vec3) : vec3
exp2(x : vec4) : vecd

Returns 2 to the power of x.

{

"show" : "exp2(${Density}) > 1.0"
}
6.3.10.19log2

log2(x : Number) : Number
log2(x : vec2) : vec2
log2(x : vec3) : vec3
log2(x : vec4) : vec4d

Returns the base 2 logarithm of x.

{

}

6.3.10.20 fract

fract(x : Number) : Number
fract(x : vec2) : vec2
fract(x : vec3) : vec3
fract(x : vecd4) : vecd

"show" : "log2(${Density}) > 1.0"

Returns the fractional part of x. Equivalent to x - floor(x).

{

}

6.3.10.21pow

pow(base : Number, exponent : Number) : Number
pow(base : vec2, exponent : vec2) : vec2
pow(base : vec3, exponent : vec3) : vec3
pow(base : vec4, exponent : vec4) : vec4d

"color" : "color() * fract(${Density})"

Returns base raised to the power of exponent.

{

}

6.3.10.22 min
min(x : Number, y : Number) : Number
min(x : vec2, y : vec2) : vec2

"show" : "pow(${Density}, ${Temperature}) > 1.0"
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min(x : vec3, y : vec3) : vec3

min(x : vec4, y : vecd) : vec4d

min(x : Number, y : Number) : Number
min(x : vec2, y : Number) : vec2
min(x : vec3, y : Number) : vec3
min(x : vec4, y : Number) : vec4d

Returns the smaller of x and y.

{

"show" "min(${Width}, ${Height}) > 10.0"
}
6.3.10.23 max
max(x : Number, y : Number) : Number
max(x : vec2, y : vec2) : vec2
max(x : vec3, y : vec3) : vec3
max(x : vecd4, y : vecd) : vecd
max(x : Number, y : Number) : Number
max(x : vec2, y : Number) : vec2
max(x : vec3, y : Number) : vec3
max(x : vec4, y : Number) : vec4d

Returns the larger of x and y.

{

"show" "max(${Width}, ${Height}) > 10.0"
}
6.3.10.24 clamp
clamp(x : Number, min : Number, max : Number) : Number
clamp(x : vec2, min : vec2, max : vec2) : vec2
clamp(x : vec3, min : vec3, max : vec3) : vec3
clamp(x : vecd4, min : vecd4, max : vecd) : vecd
clamp(x : Number, min : Number, max : Number) : Number
clamp(x : vec2, min : Number, max : Number) : vec2
clamp(x : vec3, min : Number, max : Number) : vec3
clamp(x : vecd4, min : Number, max : Number) : vec4d

Constrains x to lie between min and max.

{
"color" "color() * clamp(${temperature}, 0.1, 0.2)"
}
6.3.10.25 mix
mix(x : Number, y : Number, a : Number) : Number
mix(x : vec2, y : vec2, a : vec2) : vec2
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mix(x : vec3, y : vec3, a : vec3) : vec3
mix(x : vecd4, y : vecd, a : vecd) : vecd

mix(x : Number, y : Number, a : Number) : Number
mix(x : vec2, y : vec2, a : Number) : vec2
mix(x : vec3, y : vec3, a : Number) : vec3
mix(x : vecd4, y : vecd, a : Number) : vec4d

Computes the linear interpolation of x and y.

{

}

6.3.10.26 length

length(x : Number) : Number
length(x : vec2) : vec2
length(x : vec3) : vec3
length(x : vec4) : vecd

"show" : "mix(20.0, ${Angle}, ©.5) > 25.0"

Computes the length of vector x, i.e., the square root of the sum of the squared
components. If x is a number, length returns x.

{

}

6.3.10.27 distance

distance(x : Number, y : Number) : Number
distance(x : vec2, y : vec2) : vec2
distance(x : vec3, y : vec3) : vec3
distance(x : vec4, y : vecd) : vec4d

"show" : "length(${Dimensions}) > 10.0"

Computes the distance between two points x and y, i.e., length(x - y).

{

“"show" : "distance(${BottomRight}, ${UpperLeft}) > 50.0"
}
6.3.10.28 normalize
normalize(x : Number) : Number

normalize(x : vec2) : vec2
normalize(x : vec3) : vec3
normalize(x : vec4) : vec4d

Returns a vector with length 1.0 that is parallel to x. When x is a number, normalize
returns 1.0.

{
}

"show" : "normalize(${RightVector}, ${UpVector}) > 0.5"
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6.3.10.29 dot

dot(x : Number, y : Number) : Number
dot(x : vec2, y : vec2) : vec2

dot(x : vec3, y : vec3) : vec3

dot(x : vec4, y : vecd) : vec4d

Computes the dot product of x and y.
{

}

6.3.10.30 Cross
cross(x : vec3, y : vec3) : vec3

"show" : "dot(${RightVector}, ${UpVector}) > 0.5"

Computes the cross product of x and y. This function only accepts vec3 arguments.

{
}
6.3.11 Notes

"color" : "vec4(cross(${RightVvector}, ${UpVector}), 1.0)"

Comments are not supported.

6.4 Point Cloud

A Point Cloud is a collection of points that may be styled like other features. In addition
to evaluating a point's color and show properties, a Point Cloud style may evaluate
pointSize, or the size of each point in pixels. The default pointSize is 1.0.

{

"color" : "color('red')",
"pointSize" : "${Temperature} * 0.5"
}

Implementations may clamp the evaluated pointSize to the system's supported point
size range. For example, WebGL renderers may query ALIASED_POINT_SIZE_RANGE to get
the system limits when rendering with POINTS. A pointSize of 1.0 must be supported.

Point Cloud styles may also reference semantics from the Feature Table including
position, color, and normal to allow for more flexible styling of the source data.

e ${POSITION} is a vec3 storing the xyz Cartesian coordinates of the point before the
RTC_CENTER and tile transform are applied. When the positions are quantized,
${POSITION} refers to the position after the QUANTIZED_VOLUME_SCALE is applied, but
before QUANTIZED_VOLUME_OFFSET is applied.
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e ${POSITION_ABSOLUTE} is a vec3 storing the xyz Cartesian coordinates of the point
after the RTC_CENTER and tile transform are applied. When the positions are
quantized, ${POSITION_ABSOLUTE} refers to the position after the
QUANTIZED_VOLUME_SCALE, QUANTIZED_VOLUME_OFFSET, and tile transform are applied.

«  ${COLOR} evaluates to a Color storing the rgba color of the point. When the Feature
Table's color semantic is RGB or RGB565, ${COLOR}.alpha is 1.0. If no color semantic
is defined, ${COLOR} evaluates to the application-specific default color.

«  ${NORMAL} is a vec3 storing the normal, in Cartesian coordinates, of the point before
the tile transform is applied. When normals are oct-encoded, ${NORMAL} refers to
the decoded normal. If no normal semantic is defined in the Feature Table,
${NORMAL} evaluates to undefined.

For example:

{
"color" : "${COLOR} * color('red')'",
"show" : "${POSITION}.x > ©.5",
"pointSize" : "${NORMAL}.x > @ ? 2 : 1"

}

Implementation Note: Point cloud styling engines may often use a shader (GLSL) implementation, however
some features of the expression language are not possible in pure a GLSL implementation. Some of these
features include:

. Evaluation of isNan and isFinite (GLSL 2.0+ supports isnan and isinf for these functions
respectively)

. The types null and undefined

. Strings, including accessing object properties (color()[ 'r']) and batch table values
. Regular expressions

. Arrays of lengths other than 2, 3, or 4

. Mismatched type comparisons (e.g. 1.0 === false)

. Array index out of bounds

6.5 File extension and MIME type

Tileset styles use the . json extension and the application/json mime type.
6.6 Property reference

6.6.1 style
A 3D Tiles style.

Properties

122



Type Description Required

defines object A dictionary object of expression strings No
mapped to a variable name key that may be
referenced throughout the style. If an
expression references a defined variable, it is
replaced with the evaluated result of the
corresponding expression.

show boolean, A boolean expression or conditions property No, default: true
string, which determines if a feature should be
object  shown.

color string, A color expression or conditions property No, default:
object  which determines the color blended with the ~ color('#FFFFFF")
feature's intrinsic color.

meta object A meta object which determines the values of No
non-visual properties of the feature.

Additional properties are not allowed.

6.6.1.1 style.defines

A dictionary object of expression strings mapped to a variable name key that may be
referenced throughout the style. If an expression references a defined variable, it is
replaced with the evaluated result of the corresponding expression.

. Type: object
*  Required: No
«  Type of each property: string

6.6.1.2 style.show

A boolean expression or conditions property which determines if a feature should be
shown.

o Type: boolean, string, object
« Required: No, default: true

6.6.1.3 style.color

A color expression or conditions property which determines the color blended with the
feature's intrinsic color.

+ Type: string, object
* Required: No, default: color('#FFFFFF')
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6.6.1.4 stylemeta
A meta object which determines the values of non-visual properties of the feature.

« Type:object
* Required: No
«  Type of each property: string

6.6.2 boolean expression

A boolean or string with a 3D Tiles style expression that evaluates to a boolean. See
Expressions.

6.6.3 color expression

3D Tiles style expression that evaluates to a Color. See Expressions.

6.6.4 conditions

A series of conditions evaluated in order, like a series of if...else statements that result in
an expression being evaluated.

Properties

Type Description Required

conditions 2array A series of boolean conditions evaluated in order. No
For the first one that evaluates to true, its value, the
‘result’ (which is also an expression), is evaluated and
returned. Result expressions must all be the same
type. If no condition evaluates to true, the result is
undefined. When conditions is undefined, null, or
an empty object, the result is undefined.

Additional properties are not allowed.

6.6.4.1 conditions.conditions

A series of boolean conditions evaluated in order. For the first one that evaluates to
true, its value, the ‘result’ (which is also an expression), is evaluated and returned. Result
expressions must all be the same type. If no condition evaluates to true, the result is
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undefined. When conditions is undefined, null, or an empty object, the result is
undefined.

« Type:array []
* Required: No

6.6.5 condition

An expression evaluated as the result of a condition being true. An array of two
expressions. If the first expression is evaluated and the result is true, then the second
expression is evaluated and returned as the result of the condition.

6.6.6 expression

A valid 3D Tiles style expression. See Expressions.

6.6.7 meta
A series of property names and the expression to evaluate for the value of that property.
Additional properties are allowed.

«  Type of each property: expression

6.6.8 number expression

3D Tiles style expression that evaluates to a number. See Expressions.

6.6.9 Point Cloud Style
A 3D Tiles style with additional properties for Point Clouds.

Properties

Type Description Required

defines  object A dictionary object of expression strings No
mapped to a variable name key that may be
referenced throughout the style. If an
expression references a defined variable, it is
replaced with the evaluated result of the
corresponding expression.

show boolean, A boolean expression or conditions property No, default: true
string, which determines if a feature should be
object  shown.
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color string, A color expression or conditions property No, default:
object  which determines the color blended with color('#FFFFFF")
the feature's intrinsic color.

meta object A meta object which determines the values  No
of non-visual properties of the feature.

pointSize number, A number expression or conditions property No, default: 1
string, which determines the size of the points in
object  pixels.

Additional properties are not allowed.
6.6.9.1 PointCloudStyle.defines

A dictionary object of expression strings mapped to a variable name key that may be
referenced throughout the style. If an expression references a defined variable, it is
replaced with the evaluated result of the corresponding expression.

+ Type: object
*  Required: No
«  Type of each property: string

6.6.9.2 PointCloudStyle.show

A boolean expression or conditions property which determines if a feature should be
shown.

. Type: boolean, string, object
» Required: No, default: true

6.6.9.3 PointCloudStyle.color

A color expression or conditions property which determines the color blended with the
feature's intrinsic color.

. Type: string, object
* Required: No, default: color('#FFFFFF")

6.6.9.4 PointCloudStyle.meta
A meta object which determines the values of non-visual properties of the feature.

+ Type: object
*  Required: No
«  Type of each property: string
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6.6.9.5 PointCloudStyle.pointSize

A number expression or conditions property which determines the size of the points in
pixels.

»  Type: number, string, object
« Required: No, default: 1
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