OGC 09-146r3

OGC 09-146r3

Open Geospatial Consortium Inc.

Date: 2015-08-25
Reference number of this Document: OGC 09-146r3
Version: 1.1.0
Category: OpenGIS© Interface Standard

Editor: Peter Baumann, Eric Hirschorn
OGC® Coverage Implementation Schema SUBJECT
Copyright © 2015 Open Geospatial Consortium, Inc. All Rights Reserved.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. It is distributed for review and comment. It is subject to change without notice and may not be referred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant patent rights of which they are aware and to provide supporting documentation.

Document type:
OGC© Interface Standard
Document subtype:
Implementation Schema
Document stage:
Draft
Document language:
English
Contents
Page
vii.
Preface

viii.
Terms and definitions

viiii.
Submitting organizations

viiiv.
Document Contributor Contact Points

viiv.
Revision history

viivi.
Changes to the OpenGIS Abstract Specification

viivii.
Future Work

viiiForeword

0Introduction

01.1
Overview

01.2
Compatibility

32
Scope

33
Conformance

64
Normative references

65
Terms and definitions

65.1
coverage

65.2
Regular grid

65.3
Irregular grid

65.4
Distorted grid

65.5
Transformation grid

75.6
Mesh

76
Conventions

76.1
UML notation

76.2
Namespace prefix conventions

87
Class coverage

87.1
Overview

87.2
Coverages

107.3
CoverageFunction

107.4
DomainSet

127.5
RangeType

147.6
Interpolation and continuous coverages

157.7
Metadata

168
Class grid-regular

168.1
Overview

168.2
General grid coverages

188.2.1
Grid

208.3
Compatibility classes

208.3.1
Overview

208.3.2
GridCoverage

208.3.3
RectifiedGridCoverage

209
Class grid-irregular

209.1
Overview

219.1.1
Irregular independent grid axes

229.1.2
Irregular correlated grid axes

2510
Class grid-transformation

2510.1
Overview

2510.2
General

2510.3
Transformation

2710.4
SensorML grid

2711
Class discrete-pointcloud

2812
Class discrete-mesh

2812.1
Overview

2912.2
MultiCurveCoverage

2912.3
MultiSurfaceCoverage

3012.4
MultiSolidCoverage

3013
Class gml-coverage

3013.1
Overview

3013.2
Discrete coverage representation

3014
Class other-format-coverage

3115
Class multipart-coverage

3115.1
Overview

3115.2
First part: coverage metadata

3215.3
Second part: coverage range set

3416
Class coverage-partitioning

3416.1
Overview

3416.2
Partitioning

3516.2.1
CRS constraints

3616.2.2
Domain set constraints

3616.2.3
Range types

37Bibliography

38Annex A (normative) Abstract test suite

38A.1
Conformance Test Class: coverage

40A.2
Conformance Test Class: grid-regular

41A.3
Conformance Test Class: grid-irregular

41A.4
Conformance Test Class: grid-transformation

42A.5
Conformance Test Class: discrete-pointcloud

42A.6
Conformance Test Class: discrete-mesh

42A.7
Conformance Test Class: gml-coverage

43A.8
Conformance Test Class: other-format-coverage

43A.9
Conformance Test Class: multipart-coverage

45A.10
Conformance Test Class: coverage-partitioning

47Annex B (normative) Complete CIS::AbstractCoverage UML diagram collection

49Annex C (non-normative) Relation to GML

4916.3
Relation to GML 3.2.1

4916.4
Relation to GML 3.3

Tables
Page
5Table 1
Package URIs established in this standard

Table 2
Namespace mapping conventions
7
Table 3
CIS::Coverage data structure
9
Table 4
CIS::EnvelopeByAxis structure
11
Table 5
CIS::AxisExtent structure
12
Table 6
CIS::InterpolationRestriction structure
15
Table 7
CIS::GeneralGridCoverage structure
17
Table 8
CIS::Grid structure
18
Table 9
CIS::Axis structure
18
Table 10
CIS::RegularAxis structure
18
Table 11
CIS::IrregularAxis structure
23
Table 12
CIS::Displacement structure
24
Table 13
CIS::TransformationAxis structure
26
Table 14
CIS::TransformationBySensorModel structure
27
Table 15
CIS::MultiPointCoverage structure
28
Table 16
CIS::MultiCurveCoverage structure
29
Table 17
CIS::MultiSurfaceCoverage structure
29
Table 18
CIS::MultiSolidCoverage structure
30
Table 19
CIS::CoverageByPartitioning structure
35
Table 20
CIS::Partition structure
35

i. Preface

Coverages represent homogeneous collections of values located in space/time, such as spatio-temporal sensor, image, simulation, and statistics data. Common examples include 1-D timeseries, 2-D imagery, 3-D x/y/t image timeseries and x/y/z geophysical voxel models, as well as 4-D x/y/z/t climate and ocean data. Generally, coverages encompass multi-dimen​sional regular and irregular grids, point clouds, and general meshes.

This Coverage Implementation Schema (CIS) specifies the OGC coverage model by establishing a concrete, interoperable, conformance-testable coverage structure. It is based on the abstract concepts of OGC Abstract Topic 6 [1] (which is identical to ISO 19123) which specifies an abstract model which is not per se interoperable – in other words, many different and incompatible implementations of the abstract model are possible. CIS, on the other hand, is interoperable in the sense that coverages can be conformance tested, regardless of their data format encoding, down to the level of single “pixels” or “voxels”.

Coverages can be encoded in any suitable format (such as GML, JSON, GeoTIFF or Net​CDF) and can be partitioned, e.g., for a time-interleaved representation. Coverages are independent from service definitions and, therefore, can be accessed through a variety of OGC services types, such as the Web Coverage Service (WCS) Standard [6]. The coverage structure can serve a wide range of coverage application domains, thereby contributing to harmonization and interoperability between and across these domains.

Suggested additions, changes, and comments on this document are welcome and encouraged. Such suggestions may be submitted by email message or by making suggested changes in an edited copy of this document.
ii. Terms and definitions

This document uses the specification terms defined in Subclause 5.3 of OGC Web Service Commons [OGC 06-121r9], which is based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of International Standards. In particular, the word “shall” (not “must”) is the verb form used to indicate a requirement to be strictly followed to conform to this standard.

iii. Submitting organizations

The following organizations have submitted this Implementation Specification to the Open Geospatial Consortium, Inc.:

· Jacobs University Bremen
· Envitia Ltd
· European Union Satellite Center

iv. Document Contributor Contact Points

	Name
	Organization

	Peter Baumann

Eric Hirschorn
	Jacobs University Bremen, rasdaman GmbH

KEYW Corp.

v. Revision history

	Date
	Release
	Author
	Paragraph modified
	Description

	2015-07-23
	1.1.0
	Peter Baumann
	All
	Reworked for 1.1, based on 1.0

	
	
	
	
	

vi. Changes to the OpenGIS Abstract Specification

The OpenGIS® Abstract Specification does not require any changes to accommodate the technical contents of this (part of this) document.

Future Work

· Consider addition of JSON encoding throuogh a class json-coverage, in parallel to gml-coverage.

Foreword

Attention is drawn to the possibility that some of the elements of this document may be the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any relevant patent claims or other intellectual property rights of which they may be aware that might be infringed by any implementation of the standard set forth in this document, and to provide supporting documentation.

Introduction

1.1 Overview

Coverages represent homogeneous collections of values located in space/time, such as spatio-temporal sensor, image, simulation, and statistics data. Common examples include 1-D timeseries, 2-D imagery, 3-D x/y/t image timeseries and x/y/z geophysical voxel models, as well as 4-D x/y/z/t climate and ocean data. Generally, coverages encompass multi-dimen​sional regular and irregular grids, point clouds, and general meshes.

This Coverage Implementation Schema (CIS) specifies the OGC coverage model by establishing a concrete, interoperable, conformance-testable coverage structure. It is based on the abstract concepts of OGC Abstract Topic 6 [1] (which is identical to ISO 19123) which specifies an abstract model which is not per se interoperable – in other words, many different and incompatible implementations of the abstract model are possible. CIS, on the other hand, is interoperable in the sense that coverages can be conformance tested, regardless of their data format encoding, down to the level of single “pixels” or “voxels”.

Coverages can be encoded in any suitable format (such as GML, JSON, GeoTIFF or Net​CDF) and can be partitioned, e.g., for a time-interleaved representation. Coverages are independent from service definitions and, therefore, can be accessed through a variety of OGC services types, such as the Web Coverage Service (WCS) Standard [6]. The coverage structure can serve a wide range of coverage application domains, thereby contributing to harmonization and interoperability between and across these domains.

Coverages can be encoded in any suitable data format, be it informationally complete (such as GML or JSON) or incomplete (such as GeoTIFF and NetCDF). Further, coverages can be encoded in a multipart document to combine informationally complete, but usually storage intensive representations with compact, but often informationally incomplete binary representations . Finally, coverages can be nested allowing partitioned representations, such as time-interleaved coverages.
Coverages are independent from service definitions and, therefore, can be accessed through a variety of OGC services types, such as the Web Coverage Service (WCS) Standard [6]. The coverage structure can serve a wide range of coverage application domains, thereby contributing to harmonization and interoperability between and across these domains.

1.2 Compatibility

The OGC coverage model introduced with GMLCOV 1.0 [5] and extended with CIS 1.1 is based on the abstract coverage specification of OGC Abstract Topic 6 [1] (which is identical to ISO 19123) and harmonized with the GML coverage model [2] and the SWE sensor type description [4].

1.2.1 GML

Like in GML, all coverage types in CIS 1.1 (as in GMLCOV 1.0) are derived from a common AbstractCoverage type. This structure contains a domainSet describing the coverage’s domain and a range​Set component containing the range values (“pixels”, “voxels”) of the coverage. The OGC coverage model extends this with two additional components, a mandatory rangeType (see next Subclause) and optional metadata, an extensible slot for individual, application-specific metadata structures.

The following changes apply over GML:

· The property coverageFunction, which in GML 3.2.1 is associated with every subtype of Coverage, is moved up into ​Cov​er​age in the coverage type hierarchy of the standard on hand.

Note
This way, the coverage function is available in any subtype of ​Cov​er​age. This serves to prepare for continuous coverages, like in the case described next.

· The grid coverage types are subtypes of Coverage rather than being subtypes of DiscreteCoverage as in GML 3.2.1 [OGC 07-036].

Note
This corrects a mistake in GML.

1.2.2 SWE

The rangeType element of a coverage describes the coverage's range set data structure (see Clause 7). This range value structure description is based on the SWE Common [4] Data​Record. Consequently, sensor data acquired through SWE standards can be easily transformed into, or naturally be represented as, coverages.

1.2.3 Extensions over the previous version of this standard

This document supersedes its predecessor version, GML 3.2.1 Application Schema – Coverages version 1.0.1 [5], nicknamed GMLCOV 1.0. Instead of naming the new version GMLCOV 1.1, the standard has been renamed to Coverage Implementation Schema (CIS) 1.1 to remedy misunderstandings caused by the initial title, such as that only a GML encoding is defined here (whereas in fact a format-independent implementable coverage model is established).

The document on hand supersedes GMLCOV 1.0 as a backwards compatible extension: any valid GMLCOV 1.0 coverage is also valid in CIS 1.1. Compatibility is achieved as follows:

· CIS 1.1 includes GMLCOV 1.0 classes GMLCOV::GridCoverage and GMLCOV:: Rect​ifiedGridCoverage without modification.

· GMLCOV::ReferenceableGrid was only defined as an abstract type (i.e., not instantiatable); in CIS 1.1 it is replaced by the concrete general grid type CIS::Gen​eralGridCoverage which incorporates the functionality foreseen in GMLCOV 1.0 as a subset.

CIS 1.1 adds further coverage types over GMLCOV 1.0 – in particular for more grids – and encoding options:
· CIS 1.1 adds comprehensive definitions for all possible types of irregular grids, which has been left unspecified in the previous version. As such, CIS 1.1 also incorporates and generalizes the grid coverage concepts established in GML 3.3 [3].

· CIS 1.1 extends the physical representation schema of gridded coverages by allowing an internal partitioning to accommodate different access patterns. One special case is time-interleaved where a coverage is represented by a list of pairs (timestamp, time slice). However, the partitioning schemes are not constrained and may include both spatial and temporal axes.
To achieve this, CIS implements the following Change Requests on GMLCOV 1.0 [5]:
· Support for more general grid identifiers (with punctuation, national character sets, etc.) [OGC 15-086]

· Support for general non-regular grids [OGC 15-088]

· Clear regulation for interpolation methods associated with grid coverages, thereby also clarifying a long-standing confusion between discrete and continuous grid coverages [OGC 15-087]

· Introduction of EnvelopeByAxis, an envelope type which allows for a convenient handling of any type of coordinates together with a single CRS [OGC 15-093]

· Partitioned (“tiled”) coverages, allowing – among others “interleaved representations” of coverages [OGC 15-091]

· Renaming from the confusing title “GML 3.2.1 Application Schema – Coverages” to “Coverage Information Schema” [OGC 15-094]

· Adding support for non-regularly gridded sensor models [OGC 15-092]

· Add a distinction between topological and geometric dimension of a grid CRS [OGC 15-089]

· Removal of a namespace ambiguity in the structure of ReferenceableGridCoverage [OGC 15-090]

Further, some GML 3.2.1 schema definitions whose generality complicates coverage understanding unnecessarily have been extracted and condensed into the pertaining CIS 1.1 GML schema. This remedies an often heard complaint about the complexity not of the coverage model, but the underlying GML.

Finally, as the new features make CIS substantially more expressive, not all implementers will want to support all functionality. Therefore, a further subdivision into separate requirements classes has been performed isolating, for example, discrete and grid coverages.

In summary, CIS 1.1 is a backwards compatible extension of GMLCOV 1.0. To obtain a single point of information, all GMLCOV requirements are copied into CIS 1.1
. Some GMLCOV 1.0 requirements have turned out to be redundant, these have been removed.
OGC® Coverage Implementation Schema SUBJECT * MERGEFORMAT
2 Scope

This document specifies the concrete, implementable, conformance-testable coverage structure to be used by OGC standards.

3 Conformance
Standardisation target of this document are concrete coverage instance documents, as generated by some service and/or consumed by some client.
This document establishes the following requirements classes (cf. Figure 1):

· The core class coverage (in red). This is the only abstract class – it establishes the basic framework, while the concrete conformance classes listed below define how concrete coverage instances can be built.
· The grid coverage classes (in green):

· Class grid-regular establishes multi-dimensional unreferenced and regular referenced grids; in particular, GridCoverage and Rectified​Grid​Coverage are provided here for backwards compatibility with version 1.0 of this standard.

· Class grid-irregular establishes multi-dimensional irregular referenced grids.

· Class grid-transformation establishes multi-dimensional referenced grids defined by algorithmic transformations.

· The discrete coverage classes (in blue):

· Class discrete-pointcloud establishes point clouds.

· Class discrete-mesh establishes general multi-dimensional meshes.

· The format encoding classes (in yellow):

· Class gml-coverage establishes GML encoding of coverages.

· Class other-format-coverage establishes further encodings of coverages.

· Class multipart-coverage establishes a multipart MIME encoding of coverages.
· Class coverage-partitioning (in grey) establishes coverages composed from several sub-coverages.
Classes coverage, grid-regular, grid-irregular, grid-transformation, discrete-pointcloud, and discrete-mesh together establish the conceptual coverage implementation model whereas classes gml-coverage, other-format-coverage, multipart-coverage, and coverage-partitioning establish encoding and representation schemes.
[image: image1.emf]pkg Coverage Package

coverage

grid-regular

grid-irregular

grid-transformation

discrete-pointcloud

discrete-mesh

gml-coverage multipart-coverage

other-format-coverage

coverage-partitioning

«depends-on» «depends-on»

«depends-on»

«depends-on»

«depends-on»

«depends-on»

«depends-on»

Figure 1: The Coverage class hierarchy as UML package diagram
Figure 1 show the requirements class dependencies depicted as a UML package diagram; each package represents one class, the depends-on relationship represents the OGC requirements class dependency relationship.
Any implementation claiming conformance with this CIS standard must conform to

· the core class coverage plus

· at least one of the discrete or grid coverage classes plus

· at least one of the encoding classes gml-coverage and other-format-coverage.

Each requirements class in this standard corresponds to a single conformance class. Abstract conformance tests are listed in Annex A, whereby each test references back the requirement it assesses. Concrete implementations of these tests shall be exercised on any software artefact claiming to implement a conformance class of this standard.

Requirements and conformance tests are identified through URLs. Table 1 summarizes the respective URLs. As a rule, requirements and conformance class URLs defined in this document are relative to http://www.opengis.net/spec/CIS/1.1/.

Table 1 Package URIs established in this standard
	class
	Description

	coverage
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/coverage
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/coverage

	discrete-pointcloud
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/discrete-pointcloud
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/discrete-pointcloud

	discrete-mesh
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/discrete-mesh
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/discrete-mesh

	grid-regular
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/grid-regular
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/grid-regular

	grid-irregular
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/grid-irregular
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/grid-irregular

	grid-transformation
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/grid-transformation
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/grid-transformation

	gml-coverage
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/gml-coverage
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/gml-coverage

	other-format-coverage
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/other-format-coverage
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/other-format-coverage

	multipart-coverage
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/multipart-coverage
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/multipart-coverage

	coverage-partitioning
	Requirements class URI:
http://www.opengis.net/spec/CIS/1.0/req/coverage-partitioning
Conformance class URI:
http://www.opengis.net/spec/CIS/1.0/conf/coverage-partitioning

4 Normative references

This OGC Coverage Implementation Schema consists of the UML diagrams and textual requirements classes established in this document as well as an external file bundle consisting of the corresponding XML Schema including Schematron constraints. The complete specification is identified by OGC URI http://www.opengis.net/spec/CIS/1.1, the document has OGC URI http://www.opengis.net/doc/AppSchema/CIS/1.1.

The complete standard is available at http://www.opengeospatial.net/standards/cis. The XML Schema is posted online at http://schemas.opengis.org/cis/1.1 as part of the OGC schema repository.

5 Terms and definitions

For the purposes of this document, the terms and definitions given in the above references apply. In addition, the following terms and definitions apply.

5.1 coverage

feature that acts as a function to return values from its range for any direct position within its spatiotemporal domain, as defined in OGC Abstract Topic 6 [1]
5.2 Regular grid

grid whose grid lines have a constant distance along each grid axis
5.3 Irregular grid

Grid whose grid lines have individual distances along each grid axis

5.4 Distorted grid

grid whose direct positions are topologically aligned to a grid, but whose geometric positions can vary arbitrarily

5.5 Transformation grid

grid whose direct positions are given by some transformation algorithm not further specified in this standard
5.6 Mesh

a coverage consisting of a collection of curves, surfaces, or solids, respectively

6 Conventions

6.1 UML notation

Diagrams using the Unified Modeling Language (UML) static structure diagram, as described in Subclause 5.2 of OGC Web Service Commons [OGC 06-121r9], adhere to the following conventions:
· UML elements having a package name of “GML“ are those defined in the UML model of GML 3.2.1 [2].

· UML elements having a package name of “SWE Common” are those defined in the UML model of SWE Common 2.0 [4].

· UML elements not qualified with a package name, or with “CIS”, are those defined in this standard.
Further, in any class where an attribute name or association role name is identical to a name in some superclass the local definition overrides the superclass definition.

6.2 Namespace prefix conventions

UML diagrams and XML code fragments adhere to the namespace conventions shown in Table 2. The namespace prefixes used in this document are not normative and are merely chosen for convenience. The namespaces to which the prefixes correspond are normative, however.
Table 2 Namespace mapping conventions

	UML
prefix
	GML prefix
	Namespace URL
	Description

	GML
	gml
	http://www.opengis.net/gml/3.2
	GML 3.2.1

	SWE Common
	swe
	http://www.opengis.net/swe/2.0
	SWE Common 2.0

	SML
	sml
	http://www.opengis.net/sensorml/2.0
	SensorML 2.0

	GMLCOV
	gmlcov
	http://www.opengis.net/gmlcov/1.0
	GML Application Schema for Coverages 1.0

	CIS
	cis
	http://www.opengis.net/cis/1.1
	Coverage Implementation Schema 1.1

Whenever a data item from a CIS-external namespace is referenced this constitutes a normative dependency on the data structure imported together with all requirements defined in the namespace referenced.
7 Class coverage

7.1 Overview

Class coverage lays the foundation for the coverage implementation schema. It is the core class of CIS, meaning that every coverage instance must conform to the requirements stated here. Class coverage does not allow creating coverage instances, but rather provides the fundament for the further classes (see next Clauses) which define various specializations of which instance documents can be created.

Note
Clause 0 establishes a concrete conceptual model of a coverage which is independent from any particular encoding. While, in addition to UML, GML sometimes is used for establishing this (in particular when concepts and definitions from GML 3.2.1 [2] are used where a UML representation is not provided by that standard), CIS does not anticipate a GML encoding. Various encodings are established in Clauses 13 onwards.

7.2 Coverages

A coverage contains a domainSet component describing the coverage’s domain (the set of “direct positions”, i.e., the locations for which values are stored in the coverage) and a range​Set component containing these stored values (often referred to as “pixels”, “voxels”) of the coverage. Further, a coverage contains a rangeType element which describes the coverage's range set data structure (in the case of images usually called the “pixel data type”). Such a type often consists of one or more fields (also referred to as bands or channels or variables), however, much more general definitions are possible. For the description of the range value structure, SWE Common [OGC 08-094] Data​Record is used. The metadata component, finally, represents an extensible slot for metadata. The intended use is to hold any kind of application-specific metadata structures.

Requirement 1 :
A coverage instantiating CIS class coverage shall con​form with Figure 2, Table 3, and Table 6.
[image: image2.emf]class CIS::AbstractCoverage (as per coverage)

«Data Type»

CIS::DomainSet

Feature

«Feature Type»

CIS::AbstractCoverage

+ coverageFunction :GML::CoverageFunction [0..1]

+ envelope :CIS::EnvelopeByAxis

«Data Type»

SWE Common :: DataRecord

«Data Type»

CIS::RangeSet

«Data Type»

CIS::Extension

+ any :any [0..*]

«Data Type»

GML::DataBlock

«Data Type»

GML::File

«Data Type»

CIS::InterpolationRestriction

+ allowedInterpolation :anyURI [0..*]

+metadata 0..1

+interpolationRestriction

0..1 +rangeType

+domainSet

+rangeSet

Figure 2: CIS::AbstractCoverage structure

Note
The envelope item may be modelled differently in different encodings. In GML, for example, the envelope element is enclosed in a boundedBy element.
Table 3 CIS::Coverage data structure

	Name
	Definition
	Data type
	Multiplicity

	id
	Identifier of the coverage
	string
	One
(mandatory)

	coverage​Function
	Function describing how range values at the coverage’s direct positions can be computed, as specified in GML 3.2.1 [2] Subclause 19.3.11
	GML::
Coverage​Function
	Zero or one
(optional)

	envelope
	Minimum bounding box of the coverage, as specified in GML 3.2.1 [2] Subclause 10.1.4.6
	GML::
Envelope​
	One
(mandatory)

	domainSet
	Definition of coverage domain, i.e., its set of direct positions
	CIS::
Domain​Set
	One
(mandatory)

	rangeSet
	Coverage range values, each one associated with a direct position
	CIS::
RangeSet
	One
(mandatory)

	rangeType
	Structure definition of the coverage range values, as specified in SWE Common 2.0 [4] Clause 7 and 8
	SWE Commmon
::Data​Record
	One
(mandatory)

	metadata
	Application specific metadata, allowing for individual extensions
	CIS::
Extension
	Zero or one
(optional)

	allowed​Inter​polation
	Constraint on the interpolation methods meaningfully applicable to this coverage
	anyURI
	Zero or more
(optional)

The id attribute is the same as in GML and GMLCOV, but its type is extended from NCName to string to achieve a more human-readable style allowing for whitespace, special characters, globally unique naming schemes, etc.

Finally, as class coverage defines only a conceptual schema, some encoding format needs to be available.

Requirement 2 :
A coverage shall implement at least one of gml-coverage and other-format-coverage.

Note
Not all encodings may be able to represent the full information making up a coverage, i.e.: not all encodings are informationally complete.
7.3 CoverageFunction

The coverageFunction component is identical in its syntax and meaning to the corresponding element defined in GML 3.2.1 [2] Subclause 19.3.11.
7.4 DomainSet

The domain set is defined through an ordered list of axes whose lower and upper bounds establish the extent along each axis. The axis sequence and their meaning is defined by the CRS which is given by a GML::SRSReferenceGroup consisting of the URI identifying the CRS. Additionally, some redundant information is present for efficiency reasons: the number of dimensions, axis labels, and UoM (Unit of Measure) labels simplify parsing the coverage as it does not have to retrieve the CRS definition, such as from the OGC CRS resolver at http://www.opengis.net/def/crs and http://www.opengis.net/def/crs-compound.
Requirement 3 :
The envelope of a coverage shall consist of an CIS::EnvelopeByAxis element conforming to Figure 3, Table 4, and Table 5.

Note
the SRSReferenceGroup of GML, which is used by GMLCOV 1.0 as well as CIS 1.1, is extended with the geomDimension attribute to allow differentiating between the topological and the geometric dimension of the space spanned by the CRS (whereby “space” is meant in the mathematical sense and may well include both spatial and temporal axes). Just as is the case with srsName etc., the value of geomDimension is derived from the CRS used; it is added redundantly to avoid the need for parsing the CRS definition every time the coverage on hand is evaluated.
[image: image3.emf]class CIS::EnvelopeByAxis

GML::Envelope

«Data Type»

CIS::EnvelopeByAxis

+ srsName :anyURI

+ srsDimension :positiveInteger

+ geomDimension :positiveInteger

«Data Type»

CIS::AxisExtent

+ axisLabel :string

+ uomLabel :string

+ lowerBound :string

+ upperBound :string

+axisExtent

1..*

Figure 3: CIS::EnvelopeByAxis structure
Table 4 CIS::EnvelopeByAxis structure

	Name
	Definition
	Data type
	Multiplicity

	srsName
	URL identifying the CRS of the coordinates in this envelope
	anyURI
	One
(mandatory)

	srsDimension
	The number of named axes in the CRS identified by srs​Name
	positive​Integer
	One
(mandatory)

	geomDimension
	Geometric dimension of the CRS’s coordinate space, i.e.: the number of coordinate values used in expressing a direct position
	positive​Integer
	One
(mandatory)

	axisExtent
	Sequence of axes making up the grid
	CIS::
AxisExtent
	One or more
(mandatory)

Example
In a 2-D coordinate system embedded in 2-D space (where coordinates are expressed by (x,y) pairs) both srsDimension and geomDimension will be two. In a 2-D coordinate system embedded in 3-D space (where coordinates are expressed by (s,t,u) triples) srsDimension is 2 whereas geomDimension is 3.

Requirement 4 :
In the envelope of a coverage the value of srsName shall be a URL which points to a CRS definition which fulfils the following conditions:
- srsDimension equals the topological dimension of the CRS;
- geomDimension equals the geometric dimension of the CRS;
- the number of axisExtent is equal to the number of axes of the CRS;
- for each axis in envelope there is exactly one matching CRS axis with axisLabel = CRS axisAbbrev for this axis and uomLabel = unit of measure for this axis.

Note
The geometric dimension is greater or equal than the topological dimension given by srs​Dimension.
Table 5 CIS::AxisExtent structure

	Name
	Definition
	Data type
	Multiplicity

	axisLabel
	Shorthand axis identifier (i.e., some axisAbbrev value in CRS definition)
	string
	One
(mandatory)

	uomLabel
	Shorthand identifier of the Unit of Measure used on this axis (as indicated in the CRS definition)
	string
	One
(mandatory)

	lowerBound
	Lowest coordinate along this axis
	string
	One
(mandatory)

	upperBound
	Highest coordinate along this axis
	string
	One
(mandatory)

Requirement 5 :
For each axisExtent in the EnvelopeByAxis element of a coverage the lowerBound shall be less or equal to the upperBound.
7.5 RangeType
The rangeType component adds a structure description and technical metadata required for an appropriate (however, application independent) understanding of a coverage. For this structure description, the SWE Common Data​Record​ is used.
Atomic data types available for range values are those given by the SWE Common data type AbstractSimpleComponent. As a range structure contains only structure definitions, but not the values themselves (these sit in the coverage range set component), the optional Abstract​SimpleComponent component value is suppressed in coverages.

Requirement 6 :
For all SWE Common AbstractSimpleComponent subtypes in a range type structure, instance multiplicity of the value component shall be zero.
Note
Following [4], omission of the value component implies that in a Data​Array there is no encoding component either.

Range values can be structured as records or arrays. Both structuring principles can be nested (and mixed) to any depth for a concrete coverage range structure definition.

Requirement 7 :
Wherever the SWE Common XML schema allows an AbstractDataComponent in a cov​erage range structure the concrete instance shall be one of the AbstractDataComponent subtypes DataRecord and DataArray.
Note 1
In particular, these AbstractDataComponent subtypes are not allowed in range structures: DataChoice, Vector, Matrix.

Note 2
As array-valued ranges (i.e., nested arrays) can always be represented by a single-level array the use of such array-valued range types is discouraged as it adds complexity without gaining value.

Within a DataRecord contained in a concrete range structure, each of its record components is locally uniquely identified by the record component’s field attribute, in accordance with the “soft-typing” property introduced by SWE Common.
Example
The following XML fragment represents a valid range structure; it models the red, green, and blue channel of a Landsat scene. Pixels are defined as unsigned 8-bit quantities where 0 and 255 denote null values, representing radiance values measured in W/cm2:

<rangeType>
 <swe:DataRecord>
<swe:field name="red">
 <swe:Quantity definition="http://opengis.net/def/property/OGC/0/Radiance">
 <gml:description>Red Channel</gml:description>
 <gml:name>Red</gml:name>
 <swe:nilValues>
 <swe:NilValues gml:id="NIL_VALUES">
 <swe:nilValue
 reason="http://www.opengis.net/def/nil/OGC/0/BelowDetectionRange">
 0
 </swe:nilValue>
 <swe:nilValue
 reason="http://www.opengis.net/def/nil/OGC/0/AboveDetectionRange">
 255
 </swe:nilValue>
 </swe:NilValues>
 </swe:nilValues>
 <swe:uom code="W/cm2"/>
 <swe:constraint>
 <swe:AllowedValues>
 <swe:interval>0 255</swe:interval>
 <swe:significantFigures>3</swe:significantFigures>
 </swe:AllowedValues>
 </swe:constraint>
 </swe:Quantity>
 </swe:field>
 <swe:field name="green">
 <swe:Quantity definition="http://opengis.net/def/property/OGC/0/Radiance">
 <gml:description>Green Channel</gml:description>
 <gml:name>Green</gml:name>
 <swe:nilValues xlink:href="#NIL_VALUES"/>
 <swe:uom code="W/cm2"/>
 <swe:constraint xlink:href="#VALUE_SPACE"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="blue">
 <swe:Quantity definition="http://opengis.net/def/property/OGC/0/Radiance">
 <gml:description>Blue Channel</gml:description>
 <gml:name>Blue</gml:name>
 <swe:nilValues xlink:href="#NIL_VALUES"/>
 <swe:uom code="W/cm2"/>
 <swe:constraint xlink:href="#VALUE_SPACE"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
</rangeType>
Note
While SWE Common is confined to XML, a coverage can be encoded in any suitable format. Therefore, the GML examples are of informative nature only, but not constraining to this format.

Both domainSet and rangeType describe the coverage values given in the rangeSet. Hence, consistency must be enforced between them. The pertaining requirements are listed in the sequel.
First, there must be a 1:1 correspondence between direct positions and range values. Neither duplicates nor values omitted are not allowed.
Note
For range values not known null values can be used.

Requirement 8 :
For each coordinate position contained in the domain set description of a coverage there shall exist exactly one range value in the coverage’s range set.
Note
For each of the coverage subtypes it is indicated separately how the number of direct positions in the domain set is determined, as this varies greatly across the types.
Requirement 9 :
For all axes in a CIS::Grid where axis coordinates are given explicitly, the lowest and highest value of these coordinates shall be equal to the lowerBound and upperBound value, respectively.

Note
This applies to CIS::IrregularAxis, the CIS::Displacement associated with CIS::DistortedAxis, and the CIS::TransformationModel associated with CIS::Trans​formationAxis.

Requirement 10 :
All range values contained in the range set of a coverage shall be consistent with the struct​ure description provided in its range type.
7.6 Interpolation and continuous coverages

A continuous (grid) coverage as defined in Abstract Topic 6 [1] has values not only at the direct positions themselves, but also inbetween – in other words, it is valid to apply interpolation to obtain values between direct positions.

Technically, a continuous grid coverage consists of a grid coverage with an interpolation method associated. Notably, often there is more than one interpolation method which can be applied meaningfully.

Example
A satellite image can be interpolated by nearest neighbour, linear, quadratic, and several more methods. A land use map, on the other hand, can only be interpolated using nearest-neighbour.

In the CIS::allowedInterpolation element an application can specify which interpolation methods are meaningful (hence, allowed) on the coverage on hand. Without such an element, any interpolation is admissible on the coverage.

Table 6 CIS::InterpolationRestriction structure

	Name
	Definition
	Data type
	Multiplicity

	allowed​Interpolation
	Constraint on the interpolation methods meaningfully applicable to this coverage
	anyURI
	Zero or more
(optional)

The InterpolationRestriction element is meant to be interpreted as follows:

· If no interpolationRestriction element is present, then any interpolation method is applicable to the coverage on hand.

· In presence of an interpolationRestriction element, only those interpolation meth​ods may be meaningfully applied whose identifiers appear in an allow​ed​Inter​pol​ation element; in case of an empty list this means that no interpolation is applicable at all.

Note
As selection of a particular interpolation method is in the hands of the application processing a coverage this is no testable behavior on the level of coverage definition and, therefore, cannot be put into a formal, testable requirement.

Example
In an XML encoding, the following constitutes a valid interpolation restriction (using OGC-defined URLs for identifiying interpolation methods as defined in ISO 19123) indicating that nearest-neighbor and linear interpolation are admissible on the coverage on hand:

<interpolationRestriction>
 <allowedInterpolation>
 http://www.opengis.net/def/interpolation/OGC/1/nearest-neighbor
 </allowedInterpolation>
 <allowedInterpolation>
 http://www.opengis.net/def/interpolation/OGC/1/linear
 </allowedInterpolation>
<interpolationRestriction>

7.7 Metadata

The metaData component is a carrier for any kind of application dependent metadata. Hence, no requirements are imposed here.

Note
Implementations may impose restrictions on the volume of metadata stored.

8 Class grid-regular
8.1 Overview

This class grid-regular establishes coverages with regular grid types, both referenced and non-referenced. For backwards compatibility, GMLCOV::GridCoverage and GMLCOV:: RectifiedGridCoverage are kept from GMLCOV 1.0 [5]; additionally, a new structure CIS::GeneralGridCoverage is added.

8.2 General grid coverages
CIS::GeneralGridCoverage lays foundation for the modelling of all possible grid types in CIS. While in class grid-regular only regular grids are defined, classes grid-irregular and grid-transformation extend this framework successively with additional grid types.

Requirement 11 :
A coverage instantiating class grid-regular shall conform with class coverage.
Requirement 12 :
A coverage of type CIS::GeneralGridCoverage shall have a structure as given by Figure 4, Figure 5, Table 7, Table 8, Table 9, Table 10, and Table 6.
[image: image4.emf]class CIS::AbstractGridCoverage (as per grid-regular)

«Feature Type»

CIS::GeneralGridCoverage

«Feature Type»

CIS::GridCoverage

+ envelope :GML::Envelope

«Feature Type»

CIS::RectifiedGridCoverage

+ envelope :GML::Envelope

«Data Type»

CIS::Grid

+ dimension :positiveInteger

«Data Type»

GML::Grid

«Data Type»

GML::RectifiedGrid

CIS::AbstractCoverage

«Feature Type»

CIS::AbstractGridCoverage

+domainSet +domainSet +domainSet

Figure 4: CIS::AbstractGridCoverage structure as per grid-regular
[image: image5.emf]class CIS::GeneralGridCoverage (as per gri...

CIS::AbstractGridCoverage

«Feature Type»

CIS::GeneralGridCoverage

«Data Type»

CIS::Grid

+ dimension :positiveInteger

{ordered}

«Data Type»

CIS::RegularAxis

+ origin :string

+ resolution :string

«Data Type»

CIS::Axis

+ axisName :string

+ lowerBound :string

+ upperBound :string

«Data Type»

CIS::IndexAxis

+axis

1..*

+domainSet

Figure 5: CIS::GeneralGridCoverage structure as per grid-regular
Table 7 CIS::GeneralGridCoverage structure

	Name
	Definition
	Data type
	Multiplicity

	domainSet
	grid defining the coverage’s direct positions, specializing the general domainSet of CIS::Coverage
	CIS::Grid
	One
(mandatory)

8.2.1 Grid
Gridded coverages have a grid as their domain set describing the direct positions in multi-dimensional coordinate space, depending on the type of grid. In this class grid-regular, simple equidistant grids are established.
Table 8 CIS::Grid structure

	Name
	Definition
	Data type
	Multiplicity

	dimension
	Dimension (number of axes) of the grid
	positive​Integer
	One
(mandatory)

	axis
	grid axis
	CIS::Axis
	One or more
(mandatory)

Table 9 CIS::Axis structure

	Name
	Definition
	Data type
	Multiplicity

	axisName
	identifier of this axis, locally unique within a grid
	string
	One
(mandatory)

	lowerBound
	Lower bound of grid extent along this axis
	string
	One
(mandatory)

	upperBound
	Upper bound of grid extent along this axis
	string
	One
(mandatory)

In this regular-grid class, two subtypes of Grid are defined, characterized by the axis types and CRSs used.

Axis type CIS::IndexAxis requires an Index CRS as its CRS, as defined in the OGC Name Type Specification for Index CRSs [7]. An Index CRS allows only integer coordinates with a spacing (“resolution”) of 1, hence resembling Cartesian coordinates; therefore, there is no resolution value. Further, the origin is always the Cartesian origin 0, hence the origin vector is omitted, too.
Note
A grid coverage containing exclusively axes of type IndexAxis corresponds to a Grid​Coverage.

Axis type CIS::RegularAxis has no restriction on the CRS used; as it is regularly spaced it contains the common distance, i.e.: resolution, along the axis on hand.
Table 10 CIS::RegularAxis structure

	Name
	Definition
	Data type
	Multiplicity

	Origin
	Coordinate of the lower point on this axis
	String
	One
(mandatory)

	Resolution
	grid resolution along this axis
	String
	One
(mandatory)

Note
These components are of type string to accommodate any potential resolution specification, such as “100” for degrees or meters, “2015-07-30T23Z” for a 1-hour duration in Gregorian calendar, and potential future calendar types.
Requirement 13
In a coverage using the grid-regular scheme, the resolution value in a CIS::RegularAxis shall be a nonzero, positive value expressed in the units of measure of this axis as defined in the CRS identified in the srsName item of the envelope.

The set of direct positions in a grid is given by the number of grid points. In the simplest case of a grid with index axes only, this is the product of the axis extents. For more complex grid types this computation gets more involved.
For some CIS::Grid g, let nx be the number of CIS::IndexAxis elements, nr the number of CIS::RegularAxis elements, ni the number of CIS::Irregular axis elements, nd the number of CIS::Displacement elements associated with any of the CIS::Dis​tortedAxis items, and nt be the number of CIS::TransformationModel elements associated with any of the CIS::TransformationAxis items.

Let the following positive integer numbers be defined for the number of direct position coordinates along axes or axis combinations:

· IndexAxis:
pxa := g.a.upperBound – g.a.lowerBound + 1 for a(g.CIS::IndexAxis;

· RegularAxis:
pra := ((g.a.upperBound–g.a.lowerBound+1)/resolution((i.e., rounded down) for a(g.CIS::RegularAxis;

· IrregularAxis:
pia := card(g.a.directPositions) for a(g.CIS::IrregularAxis;

· DistortedAxis:
pdd := card(g.d.directPositions) for d(g.displacement;

· TransformationAxis:
ptm := card(f(g)) for m(g.model where f is a function on g delivering all direct positions (such as a sensor model);

Then, the number np of direct positions in g is given by the product of all the above items:

np := (pxa * (pra * (pia * (pdd * (ptm

 a a a d m

where a partial product is 1 if no such item exists..

Requirement 14 :
The rangeSet of a coverage containing the above CIS::Grid g shall contain exactly np value items.

8.3 Compatibility classes

8.3.1 Overview

For backwards compatibility with GMLCOV 1.0 the coverage types GMLCOV::GridCov​er​age and GMLCOV::RectifiedGridCoverage are adopted verbatim as CIS::Grid​Cov​er​age and CIS::RectifiedGridCoverage. To make this CIS 1.1 standard self-contained, the corresponding definitions from GMLCOV are repeated in this Clause 8.3.

To retain full compatibility with GMLCOV 1.0, neither of these types should use the (optional) CIS 1.1 concept of CIS::InterpolationRestriction.

Note
The third grid type in GMLCOV, GMLCOV::ReferenceableGrid​Cov​erage, was not instantiatable, so it does not need to be repeated here.

Both GridCov​er​age and Rectif​ied​Grid​Coverage are deprecated; instead, CIS:: GeneralGridCoverage is recommended.

8.3.2 GridCoverage

A CIS::GridCoverage is a coverage in which the domain is a geometric grid. This GML​COV 1.0 backwards compatible coverage type contains a domainSet that is a GML::Grid and an envelope that is of type GML::Envelope (cf. Figure 4).

This type is reserved for non-referenced grid data, therefore the CRS used must be an Index CRS as defined in the OGC Name Type Specification for Index CRSs [7].

Requirement 15 :
A coverage of type CIS::GridCoverage shall have a CRS that is an Index CRS.

Note 1
Index CRSs replace the former (ill-defined) Image CRS concept. For each dimension, an Index CRS is defined, for example http://www.opengis.net/def/crs/OGC/0/Index1D for one-dimensional coverages and http://www.opengis.net/def/crs/OGC/0/Index2D for 2-D coverages.

Note 2
The constraint to unreferenced grids stems from ambiguities in the GML::Grid definition.

8.3.3 RectifiedGridCoverage

A CIS::RectifiedGridCoverage is a discrete point coverage based on a rectified grid. This GMLCOV 1.0 backwards compatible coverage type contains a domainSet that is a GML::RectifiedGrid and an envelope that is of type GML::Envelope (cf. Figure 4).
9 Class grid-irregular
9.1 Overview

This class grid-irregular adds coverages of irregular axis types to the GeneralGrid​Cov​er​age introduced with class grid-regular. Figure 6 shows some common 2-D grid types tractable with class grid-irregular (Figure 6 can be represented with class grid-regular a-ready).

The concept builds upon axis types with individual characteristics, such as non-referenced, referenced-equidistant, referenced-nonequidistant, etc. from which CRSs and, hence, grids are assembled. All axis types can be combined freely in a grid. This model includes the GML 3.3 [3] grid types Refe​ren​ceableGridByVector and Reference​able​GridBy​Array as special cases and allows representing all grid types.

[image: image6.png]

[image: image7.png]

[image: image8.png]

[image: image9.png]

Figure 6: Some grid types: equidistant (far left), equidistant-skewed (left),
irregular (right), distorted (far right) [2]
As in class grid-regular the GMLCOV 1.0 coverage types GridCoverage and Rectif​ied​GridCoverage have been included for backwards compatibility one might expect that in class grid-irregular the GMLCOV type ReferenceableGridCoverage is included; this, however, is not the case as this coverage type is not sufficiently detailed in GML and GMLCOV. Instead, the CIS grid-irregular class is recommended for use.
9.1.1 Irregular independent grid axes

The first extension over regular axes consists of irregular axes where spacing along an axis can have any positive increment. Graphically, this can be represented by straight lines (but consider that existence of values between direct positions is possibly guided by interpolation restrictions). Such axes are modelled by type CIS::IrregularAxis.
Example
This allows grid representations like swath data, but also mixes like Lat/Long/t datacubes over orthorectified imagery where Lat and Long are equidistant while acquisition time, hence t, is irregular (Figure 7).
[image: image10.png]

Figure 7: Sample grid combining regular and irregular axes;
time axis is assumed vertical

9.1.2 Irregular correlated grid axes

The second extension consists of building axis groups, called “nests”, within which the coordinates of direct positions are not tied to the crossing points of “straight” grid lines. Instead, coordinates can vary freely; however, the topological neighbourhood relationship is retained. This leads to “distorted grids” as shown in Figure 6 far right (but consider that the curves drawn suggest a particular interpolation scheme which may or may not be allowed as per interpolation restrictions).
Not all axes in a grid need to participate in a nest, and a grid may contain several disjoint nests (although this case is unlikely).
Example
A grid distorted in Lat/Long may also contain a time axis not involved in this nest, as in Figure 8 where the vertical axis is not involved in the distorted field. Further, a grid may contain several nests, which, however, need to be disjoint in their participating axis sets.
[image: image11.png]

Figure 8: Sample grid combining irregular axes and “distorted” grids;
time axis is assumed vertical

Class grid-irregular extends class grid-regular with further axis types, hence it requires implementation of that class.
Requirement 16 :
A coverage instantantiating class grid-irregular shall conform with class grid-regular.

The new axis types require storage of additional information. While for a regular axis a single resolution value is sufficient per axis, irregular grids require a sequence of direct positions along the axis (axis type CIS::IrregularAxis). No origin needs to be recorded here as the direct positions are absolute positions and not relative to an origin as is the case with regular grids.

Nests require an n-D tensor, i.e., an array which stores the coordinates of each direct position for the axes participating in the nest (axis type CIS::DistortedAxis in combination with the nest matrix in CIS::Dis​place​ment).

Requirement 17 :
A coverage using the grid-irregular scheme shall con​form with Figure 9, Table 11, and Table 12.
[image: image12.emf]class CIS::GeneralGridCoverage (as per grid-irregular)

CIS::AbstractGridCoverage

«Feature Type»

CIS::GeneralGridCoverage

«Data Type»

CIS::Grid

+ dimension :positiveInteger

«Data Type»

CIS::DistortedAxis

«Data Type»

CIS::IrregularAxis

+ directPositions :string [1..*]

«Data Type»

CIS::Displacement

+ directPositions :string [1..*]

+ sequenceRule :GML:sequenceRule [0..1]

«Data Type»

CIS::Axis

+ axisName :string

+ lowerBound :string

+ upperBound :string

{ordered}

+axis1..*

+axis1..*

+domainSet

+displacement

0..*

Figure 9: UML diagram of CIS::Grid structure as per grid-irregular
Table 11 CIS::IrregularAxis structure

	Name
	Definition
	Data type
	Multiplicity

	direct​Positions
	Ordered sequence of direct positions along this axis
	string
	One or more
(mandatory)

Table 12 CIS::Displacement structure

	Name
	Definition
	Data type
	Multiplicity

	sequenceRule
	Description of the array linearization in direct​Positions, according to the GML 3.2.1 [2] sequence rule
	GML::
sequenceRule
	Zero or one
(optional)

	direct​Positions
	Array of direct positions along this axis, linearized according to GML 3.2.1 [2] sequence rule
	string
	One or more
(mandatory)

Requirement 18 :
In a coverage using the grid-irregular scheme, the directPosition values in the CIS::IrregularAxis shall be listed in strictly increasing sequence, expressed in the units of measure of this axis as defined in the CRS identified in the srsName item of the envelope.

Note 1
“Strictly increasing” means that not only decreasing sequence, but also equality of two values is forbidden.

Note 2
The GML 3.3 type ReferenceableGridByVector resembles the special case that all axes are irregular, but independent. In CIS, this is modelled through a CIS::Grid that has only axes of type CIS::IrregularAxis.

The CIS::DistortedAxis type together with CIS::Displacement combine several axes to a “nest” where the coordinates are enumerated individually for each direct position. The resulting array is stored in the CIS::Displacement structure which is associated with the axes involved. The linearization scheme of this array is stated in the sequenceRule the same way as the linearization is described for the range set array.
Requirement 19 :
In the CIS::Displacement of a coverage using the grid-irregular scheme, each directPosition value shall be expressed in the units of measure of the corresponding axis as defined in the grid’s CRS identified in the srsName item of the envelope.

Requirement 20 :
In the CIS::Displacement of a coverage using the grid-irregular scheme, the directPositions shall be linearized according to the sequence rule stated in sequenceRule.

Requirement 21 :
In a coverage using the grid-irregular scheme, for any two CIS::Displacement elements their set of axis references shall be disjoint.

Note
The GML 3.3 type ReferenceableGridByArray resembles the special case that the direct positions of the grid are represented by an array of the same dimension and extent as the range set – in other words, for each range value its direct position is explicitly listed in the domain set. This case is reflected in CIS through a CIS::Grid which has only axes of type CIS::DistortedAxis with one CIS::Displacement array (holding the direct position coordinates) associated with all these axes.
All combinations of these axes types are permitted.

Example
In a Lat/Long/t timeseries datacube, axes Lat and Long form a nest represented by two axes with axisName Lat and Long, resp., of type CIS::RegularAxis and one axis named t of type CIS ::IrregularAxis storing all the image acquisition timestamps.
Note
Generally speaking, the grid types of GML 3.3 are included in CIS as special cases.
10 Class grid-transformation
10.1 Overview
Class grid-transformation establishes coverages with algorithmically defined grids. Currently one such transformation is defined which is based on SensorML 2.0 [8].

10.2 General

Requirement 22 :
A coverage using the grid-transformation scheme shall implement class grid-regular.
Requirement 23 :
A coverage using the grid-transformation scheme shall con​form with Figure 10, Table 13, and Table 14.
The cases supported – algorithmic transformation and SensorML model – are defined in the Subclauses below.

10.3 Transformation
Grid definitions in the previous Clauses of this standard are defined through some well-known principle and (comparatively simple) computation methods. In the most general case, however, this is not the case, and only some special-built code – here called a “transformation” – with some particular variable instantiation can determine the direct positions of the grid. A special case of a transformation is provided by SensorML 2.0 [8], in CIS modelled through coverage type CIS::SensorModelCoverage.
[image: image13.emf]class CIS::GeneralGridCoverage (as per grid-transformation)

«Data Type»

CIS::Grid

+ dimension :positiveInteger

CIS::AbstractGridCoverage

«Feature Type»

CIS::GeneralGridCoverage

«Data Type»

CIS::TransformationAxis

«Data Type»

CIS::TransformationModel

«Data Type»

CIS::Axis

+ axisName :string

+ lowerBound :string

+ upperBound :string

«Feature Type»

CIS::SensorModelCoverage

«Data Type»

CIS::TransformationBySensorModel

+ sensorModel :SML::AbstractProcessPropertyType

+ sensorInstance :SML::AbstractProcessPropertyType [0..1]

{ordered}

{TransformationModel is a

TransformationBySensorModel}

+axis 1..*

+axis1..*

+domainSet

+model0..*

Figure 10: UML diagram of CIS::GeneralGridCoverage structure
as per grid-transformation

Table 13 CIS::TransformationAxis structure

	Name
	Definition
	Data type
	Multiplicity

	model
	Transformation model
	CIS::Trans​formation​Model
	One or more
(mandatory)

10.4 SensorML grid
Aside from the general definition, this standard supports one special case of such a transformation as defined by SensorML 2.0 [8]. Such a sensor model involves two inputs: a sensor model description containing free variables plus a separate set of variable instantiations (Table 14). As the sensor model defines the grid and its direct positions, this transformation effectively represents the coverage domain set.
Requirement 24 :
A coverage of type CIS::SensorModelCoverage shall have only axes of type CIS::TransformationAxis and exactly one CIS::TransformationModel, which shall be of type CIS::TransformationBySensorModel as given by Figure 10 and Table 14.

Table 14 CIS::TransformationBySensorModel structure

	Name
	Definition
	Data type
	Multiplicity

	sensorModel
	SensorML model yielding the direct positions of the grid
	SML::
Abstract​Sensor​PropertyType
	One
(mandatory)

	sensor​Instance
	Parameter values for the sensor model
	SML:: Abstract​Sensor​PropertyType
	Zero or one
(optional)

11 Class discrete-pointcloud
Class discrete-pointcloud defines coverages which represent sets of multi-dimensional points at arbitrary positions.
The domain set of a discrete coverage consists of spatial and/or temporal objects, finite in number. The range set is comprised of a finite number of attribute values each of which is associated to every direct position within any single spatiotemporal object in the domain. In other words, the range values are constant on each spatiotemporal object in the domain. This coverage function maps each element from the coverage domain to an element in its range.
Requirement 25 :
A coverage instantiating class discrete-pointcloud shall conform with class coverage.

Requirement 26 :
A coverage using the discrete-pointcloud scheme shall con​form with Figure 11 and Table 15.
Note
While this definition is based on GML it does not preclude a GML encoding (through class gml-coverage); the same structures may be represented in any other suitable format (using class other-format-coverage).
[image: image14.emf]class CIS::Coverage (as per discrete-poi...

CIS::AbstractDiscreteCoverage

«Feature Type»

CIS::MultiPointCoverage

«Data Type»

CIS::SimpleMultiPoint

+domainSet

Figure 11: UML diagram of CIS::MultiPointCoverage structure
In a MultiPointCoverage the domain set is a GM_MultiPoint, that is a collection of arbitrarily distributed geometric points.
Table 15 CIS::MultiPointCoverage structure

	Name
	Definition
	Data type
	Multiplicity

	domainSet
	Direct positions of coverage, describing points
	GML::MultiPoint
	One
(mandatory)

12 Class discrete-mesh
12.1 Overview

This class discrete-mesh establishes those discrete coverages which have a non-zero topological dimension, thereby extending class discrete-pointcloud. As such, it defines coverages consisting of curve, surface, and solid bundles, resp.
Requirement 27 :
A coverage using the discrete-mesh scheme shall implement class discrete-pointcloud.
Requirement 28 :
A coverage using the discrete-mesh scheme shall con​form with Figure 12 and Table 16, Table 17, and Table 18.

Note
While this definition is based on the conceptual model of GML it does not preclude a GML encoding (through class gml-coverage); the same structures may be represented in any other suitable format (using class other-format-coverage).
[image: image15.emf]class CIS::Coverage (as per discrete-mesh)

CIS::AbstractCoverage

«Feature Type»

CIS::DiscreteCoverage

«Data Type»

GML::MultiCurve

«Data Type»

GML::MultiPoint

«Data Type»

GML::MultiSolid

«Data Type»

GML::MultiSurface

«Feature Type»

CIS::MultiCurveCoverage

«Feature Type»

CIS::MultiPointCoverage

«Feature Type»

CIS::MultiSolidCoverage

«Feature Type»

CIS::MultiSurfaceCoverage

+domainSet +domainSet +domainSet +domainSet

Figure 12: UML diagram of CIS::MultiCurveCoverage, CIS::MultiSurfaceCoverage, and CIS::MultiSolidCoverage structure
12.2 MultiCurveCoverage

In a CIS::MultiCurveCoverage the domain is partitioned into a collection of curves comprising a GM_MultiCurve. The coverage function then maps each curve in the collection to a value in the range set.

Table 16 CIS::MultiCurveCoverage structure

	Name
	Definition
	Data type
	Multiplicity

	domainSet
	Direct positions of coverage, describing curves
	GML::MultiCurve
	One
(mandatory)

12.3 MultiSurfaceCoverage

In a CIS::MultiSurfaceCoverage the domain is partitioned into a collection of surfaces comprising a GM_MultiSurface.
Table 17 CIS::MultiSurfaceCoverage structure

	Name
	Definition
	Data type
	Multiplicity

	domainSet
	Direct positions of coverage, describing surfaces
	GML::
MultiSurface
	One
(mandatory)

12.4 MultiSolidCoverage

In a CIS::MultiSolidCoverage the domain is partitioned into a collection of solids comprising a GM_MultiSolid.
Table 18 CIS::MultiSolidCoverage structure

	Name
	Definition
	Data type
	Multiplicity

	domainSet
	Direct positions of coverage, describing solids
	GML::MultiSolid
	One
(mandatory)

13 Class gml-coverage
13.1 Overview

Class gml-coverage establishes how coverages are represented in the GML encoding format.
Note
Following the GML pattern [2], on GML level SWE Common::Data​Record is linked to rangeType via an association SWE Common::DataRecordPropertyType.
Requirement 29 :
A coverage using the gml-coverage scheme shall implement class coverage.
Requirement 30 :
In a coverage encoded in GML, the coverage document represented shall have an IETF RFC 2387 Content-Type value of “application/gml+xml” and a document body conforming with the XML Schema definitions being part of this standard.
13.2 Grid coverage representation

The compatibility types GridCoverage and RectifiedGridCoverage are identical to the definition in GMLCOV 1.0, which in turn is based on the conceptual model of coverages in GML.
Requirement 31 :
A coverage document of type CIS::GridCoverage or CIS::RectifiedGridCoverage shall be conformant with OCG GML [07-036] conformance class A.1.9.
13.3 Discrete coverage representation
Discrete coverages can be encoded in any suitable format. One such format is established in GML 3.2.1 [2] stating that domain set items are mapped to range set items in XML document order or file sequence order, respectively.

14 Class other-format-coverage
Class other-format-coverage establishes how coverages are represented in encoding formats other than those defined in this standard.
Note
Such formats may be able to encode only parts of a coverage (i.e., they are “informationally incomplete”), and they may be able to encode only specific categories of coverages.

Requirement 32 :
A coverage using the other-format-coverage scheme shall implement class coverage.
Requirement 33 :
A coverage not encoded in GML shall be conformant with some data format encoding standard for coverages.

Example
A 2-D rectified grid coverage can be represented by a GeoTIFF file.
15 Class multipart-coverage
15.1 Overview
Class multipart-coverage establishes how coverages are represented as multipart/related MIME document [4] consisting of a first part containing the coverage metadata data and a second part containing the coverage range set.
To achieve this, the encoding used in part 1 must be “informationally complete”, i.e.: able to hold the complete coverage information. Further, it must be flexible enough that the range set can be replaced by a reference to part 2. Notably, the format used in part 2 does not need to be informationally complete wrt coverage metadata; however, it must be able to represent the range set values.

Note
Among the list of suitable formats for part 1 are GML and JSON. Image/data formats like GeoTIFF and NetCDF are suitable formats for part 2.

Requirement 34 :
A coverage using the multipart-coverage scheme shall implement class coverage.

Requirement 35 :
A coverage encoded in a multipart message shall consist of a multipart MIME document as specified by IETF RFC 2387 [11].
Requirement 36 :
In a coverage encoded in a multipart message, the IETF RFC 2387 Content-Type parameter of this coverage document shall have a value of “Multipart/Related”.
Requirement 37 :
A coverage encoded in a multipart message shall consist of two parts.

15.2 First part: coverage metadata

Requirement 38 :
In a coverage encoded in a multipart message, the IETF RFC 2387 [11] Type parameter of this message shall have a MIME type properly identifying the encoding of the first part.
Note
In GML, the corresponding value is “application/gml+xml”.

Requirement 39 :
In a coverage encoded in a multipart message, the first part shall complete coverage as per this standard where the range set is replaced by a reference to the second part instead.

Note
In GML, a coverage is represented by some instantiatable subtype of CIS::Coverage. A reference is expressed by the gml:fileReference element containing a gml:File element with the @xlink:arcrole attribute set to “fileReference” and the MIME type properly set in gml:mimeType.
Requirement 40 :
In a coverage encoded in a multipart message, in the first part the reference to the range set shall contain a local "cid" (Content-ID) URL as specified by IETF RFC 2392 [12] to the second part of the multipart message.

15.3 Second part: coverage range set

Requirement 41 :
In a coverage encoded in a multipart message, in the second part the IETF RFC 2387 [11] ContentDisposition parameter shall have a value of “inline” (not case sensitive).

Note
This follows IETF RFC 2183 [13].
Requirement 42 :
In a coverage encoded in a multipart message the coverage components encoded in the second message part shall be consistent with the coverage components of the first part.

Example
 The following MIME message represents a valid multipart coverage structure with part 1 encoded in GML and part 2 encoded in TIFF (assuming all “...” substituted by proper XML and with a proper TIFF stream instead of “...binary TIFF data...”):
Content-Type: Multipart/Related; boundary=cis;

 start="GML-Part"

 type="application/gml+xml"

--cis
Content-type: application/gml+xml
Content-ID: GML-Part

<?xml version="1.0" encoding="UTF-8"?>

...GML data...
--cis
Content-Type: image/tiff

Content-Description: coverage data

Content-Transfer-Encoding: binary

Content-ID: grey.tif

Content-Disposition: inline

...binary TIFF data...
--cis--

16 Class coverage-partitioning
16.1 Overview

This class coverage-partitioning establishes an alternative representation for coverages where a coverage is partitioned into sub-coverages.
16.2 Partitioning

With the coverage extensions provided by this class coverages can be composed from other coverages which are either copied in directly (“domain-and-range” variant), or referenced by coverage id (“partitioning” variant). Coverages embedded (“sub-coverages”) can be of the same or lower dimension than the coverage embedding them (“super-coverage”). The part​ition element in the super-coverage, acting as a connection between sub- and super-cov​er​age, contains an envelope element determining the sub-coverage’s position relative to the super-coverage.

A coverage can be part of several partitioned coverages simultaneously, thereby allowing shared regions. A partitioned coverage can be part of another partitioned coverage, thereby allowing trees of coverages to be built recursively.

Note
An implementation may constrain the partitioning choices available, such as to “partitioning only along time axis” or “only equi-sized sub-coverages”.

Requirement 43 :
A coverage using the coverage-partitioning scheme shall conform to class coverage.

Requirement 44 :
A coverage using the coverage-partitioning scheme shall conform to Figure 13, Table 19, and Table 20.

[image: image16.emf]class CIS::Coverage (as per coverage-partitioning)

Feature

«Feature Type»

CIS::AbstractCoverage

+ coverageFunction :GML::CoverageFunction [0..1]

+ envelope :CIS::EnvelopeByAxis

«Data Type»

SWE Common :: DataRecord

«Data Type»

CIS::Extension

+ any :any [0..*]

«Feature Type»

CIS::CoverageByPartitioning

«Data Type»

CIS::Partition

+ envelope :EnvelopByAxis

«Data Type»

CIS::RangeSet

«Feature Type»

CIS::CoverageByDomainAndRange

«Data Type»

CIS::DomainSet

«Data Type»

CIS::InterpolationRestriction

+ allowedInterpolation :anyURI [0..*]

+coverage

+partition

0..*

+metadata

0..1

+rangeType

+rangeSet +domainSet

+interpolationRestriction

0..1

Figure 13: UML diagram of CIS::CoverageByPartitioning structure
as per coverage-partitioning
Table 19 CIS::CoverageByPartitioning structure

	Name
	Definition
	Data type
	Multiplicity

	partition
	One of an arbitrary number of sub-coverages acting as a partition of the coverage on hand
	CIS::Coverage
	Zero or more
(optional)

Table 20 CIS::Partition structure

	Name
	Definition
	Data type
	Multiplicity

	envelope
	Envelope of sub-coverage making up this partition
	CIS::EnvelopeByAxis
	One
(mandatory)

	coverage
	Coverage acting as partition
(directly stored here or through some resolvable reference, such as coverage id or a URL)
	CIS::Coverage
	One
(mandatory)

Requirement 45 :
A coverage shall use either the partitioning or the domain/range representation, but not com​bine both.

Note
This holds only for one coverage item on hand (i.e., one CIS::Coverage); through recursive nesting, sub-coverages of one and the same coverage may each implement a different variant indeed.
Requirement 46 :
A coverage shall not reference itself through a partition element, neither directly nor in​dir​ect​ly.

All “sub-coverages” participating in a partitioned coverage must lie inside the super-coverage and additionally must fulfil homogeneity criteria to ensure that the resulting structure adheres to the definition of a coverage, as specified in the following Subclauses.
A coverage can act as sub-coverage in more than one coverages.

The sub-coverage can be stored directly as the value of coverage, or it can be given through some resolvable reference, such as coverage id or a URL.

Note
Support for these alternatives may vary across data format encodings. Further, as this is a normative requirement which a server must fulfil an implementation possibly will restrict the options for referencing coverages to those ones where it can control this acyclicity requirement.
16.2.1 CRS constraints

The sub-coverage CRS must be identical or embedded in super-coverage CRS.
Requirement 47 :
For every coverage s with CRS cs being a partition of some coverage c with CRS cc, the following shall hold: cs is obtained from cc by deleting zero or more axes from cc.

Note
This definition enforces an identical axis order among those axes present in both the sub- and super-coverage CRSs.
Requirement 48 :
For every axis occurring in the CRS cs of coverage s listed as a partition of some coverage c with CRS cc, lowerBound = upperBound shall hold in the envelope of the c partition referencing s.

Example
A timeseries datacube with CRS axes Lat/Long/t can contain sub-coverages whose CRS axes are given by Lat/Long, but not by Long/Lat. A datacube with axis order t/Lat/Long likewise can contain sub-coverages with a Lat/Long CRS.
16.2.2 Domain set constraints

The sub-coverage domain sets must be non-overlapping and properly contained in the super-coverage, missing values must be representable by some null value.

Note
such null values can be used whenever the actual extent of the super-coverage is not known in the super-coverage itself, such as in timeseries where further timeslices can be appended at any time.

Requirement 49 :
For any coverage p referenced as partition in a coverage c, the domain set of the envelope of p shall be a subset of the domain set of c, decided by ignoring all values of lowerBound and UpperBound in the envelope of c which have a null value.
Requirement 50
For any two coverages a and b referenced as partitions in a coverage c, the domain sets of the partition envelopes of a and b shall be disjoint.

Requirement 51 :
For any coverage where for some direct position there is no value stored there shall be at least one null value defined in its range type; when accessing such a direct position then some such null value shall be delivered by the coverage.

Note 1
Such “undefined areas” can only occur with coverages containing partitions, as in a domain/range representation there must always exist a value (and be it null) for each direct position.

Note 2
Such “default” null values can differ among direct positions, an implementation is free to choose values non-deterministically.

16.2.3 Range types
Sub- and super-coverage must have identical range types.
Requirement 52 :
For any coverage p referenced as partition in a coverage c, the range type of p shall be identical to the range type of c.

Bibliography
[1] OGC 07-011, Abstract Specification Topic 6: The Coverage Type and its Subtypes, version 7.0 (identical to ISO 19123:2005)
[2] OGC 07-036, Geography Markup Language (GML) Encoding Standard, version 3.2.1
[3] OGC 10-129r1, OGC® Geography Markup Language (GML) – Extended schemas and encoding rules (GML 3.3), version 3.3
[4] OGC 08-094, OGC® SWE Common Data Model Encoding Standard, version 2.0
[5] OGC 09-146r2, GML 3.2.1 Application Schema – Coverages, version 1.0.1
[6] OGC 09-110r3, Web Coverage Service (WCS) Core Interface Standard, version 2.0
[7] OGC 13-102r2, Name type specification – Time and index coordinate reference system definitions (OGC Policy Document), version 1.0
[8] OGC 12-000, OGC® SensorML: Model and XML Encoding Standard, version 2.0

[9] W3C Recommendation, XML Path Language (XPath), version 2.0, 2007
[10] ISO/IEC 19757-3:2006 Information technology – Document Schema Definition Languages (DSDL) – Part 3: Rule-based validation – Schematron
[11] IETF RFC 2387, August 1998

[12] IETF RFC 2392, August 1998
[13] IETF RFC 2183, August 1997

Annex A
(normative)

Abstract test suite

tbd
This Annex specifies an Abstract Test Suite which shall be passed in completeness by any implementation claiming conformance with this Application Schema.

A.1 Conformance Test Class: coverage
	Test Purpose:
	Requirement 1

	Test method:
	tbd

	Test Purpose:
	Requirement 2

	Test method:
	tbd

Test passes if all constraints evaluate to true.

	Test Purpose:
	Requirement 3

	Test method:
	tbd

Test passes if all all constraints evaluate to true.

	Test Purpose:
	Requirement 4

	Test method:
	tbd

Test passes if all constraints evaluate to true.

	Test Purpose:
	Requirement 5

	Test method:
	tbd

Test passes if all constraints evaluate to true.

	Test Purpose:
	Error! Reference source not found.

	Test method:
	Test passes if all SWE Common tests applicable pass.

	Test Purpose:
	Requirement 6

	Test method:
	Test passes if constraint holds.

	Test Purpose:
	Requirement 7

	Test method:
	Test passes if constraint holds.

	Test Purpose:
	Requirement 8

	Test method:
	Test passes if all constraints evaluate to true.

	Test Purpose:
	Requirement 10

	Test method:
	Test passes if all constraints evaluate to true.

	Test Purpose:
	Error! Reference source not found.

	Test method:
	Test passes if constraints evaluate to true.

A.2 Conformance Test Class: grid-regular

	Test Purpose:
	Error! Reference source not found.

	Test method:
	tbd
Test passes all if constraints evaluate to true.

	Test Purpose:
	Requirement 15

	Test method:
	tbd.

	Test Purpose:
	Error! Reference source not found.

	Test method:
	tbd
Test passes if all constraints evaluate to true.

	Test Purpose:
	Requirement 11

	Test method:
	tbd.

	Test Purpose:
	Error! Reference source not found.

	Test method:
	tbd.

	Test Purpose:
	Requirement 12

	Test method:
	tbd.

	Test Purpose:
	Requirement 13

	Test method:
	tbd.

A.3 Conformance Test Class: grid-irregular
	Test Purpose:
	Requirement 16

	Test method:
	tbd.

	Test Purpose:
	Requirement 17

	Test method:
	tbd.

	Test Purpose:
	Requirement 18

	Test method:
	tbd.

	Test Purpose:
	Requirement 19

	Test method:
	tbd.

A.4 Conformance Test Class: grid-transformation
	Test Purpose:
	Requirement 22

	Test method:
	tbd.

	Test Purpose:
	Requirement 23

	Test method:
	tbd.

	Test Purpose:
	Requirement 24

	Test method:
	tbd.

A.5 Conformance Test Class: discrete-pointcloud
	Test Purpose:
	Requirement 25

	Test method:
	tbd.

	Test Purpose:
	Requirement 26

	Test method:
	tbd.

A.6 Conformance Test Class: discrete-mesh
	Test Purpose:
	Requirement 27

	Test method:
	tbd.

	Test Purpose:
	Requirement 28

	Test method:
	tbd.

A.7 Conformance Test Class: gml-coverage
	Test Purpose:
	Requirement 29

	Test method:
	Test passes if constraint holds.

	Test Purpose:
	Requirement 30

	Test method:
	tbd
Test passes if constraint holds.

	Test Purpose:
	Error! Reference source not found.

	Test method:
	tbd
Test passes if constraint holds.

	Test Purpose:
	Requirement 31

	Test method:
	tbd

Test passes if all test applicable pass.

A.8 Conformance Test Class: other-format-coverage
	Test Purpose:
	Requirement 32

	Test method:
	tbd
Test passes if constraint holds.

	Test Purpose:
	Requirement 33

	Test method:
	tbd
Test passes if constraint holds.

A.9 Conformance Test Class: multipart-coverage
	Test Purpose:
	Requirement 34

	Test method:
	tbd
Test passes if constraint holds.

	Test Purpose:
	Requirement 35

	Test method:
	Tbd

Test passes if the resp. format encoding conformance test passes.

	Test Purpose:
	Requirement 36

	Test method:
	td

Test passes if the resp. format encoding conformance test passes.

	Test Purpose:
	Requirement 37

	Test method:
	Tbd
Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 38

	Test method:
	Tbd
Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 39

	Test method:
	Tbd
Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 40

	Test method:
	Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 41

	Test method:
	Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 42

	Test method:
	tbd
Test passes if constraint evaluates to true.

A.10 Conformance Test Class: coverage-partitioning
	Test Purpose:
	Requirement 43

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 44

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 45

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 46

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 47

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 48

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 49

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 50

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 51

	Test method:
	tbd

Test passes if constraint evaluates to true.

	Test Purpose:
	Requirement 52

	Test method:
	tbd

Test passes if constraint evaluates to true.

Annex B
(normative)

Complete CIS::AbstractCoverage UML diagram collection
This Annex summarizes the UML diagrams presented in the normative part. For the reader’s convenience they are split into coverage types, coverage structure, and grid coverages.

[image: image17.emf]class CIS::Coverage (coverage types)

Feature

«Feature Type»

CIS::AbstractCoverage

+ coverageFunction :GML::CoverageFunction [0..1]

+ envelope :CIS::EnvelopeByAxis

«Feature Type»

CIS::MultiSolidCoverage

«Feature Type»

CIS::MultiSurfaceCoverage

«Feature Type»

CIS::MultiCurveCoverage

«Feature Type»

CIS::MultiPointCoverage

«Feature Type»

CIS::AbstractDiscreteCoverage

«Feature Type»

CIS::RectifiedGridCoverage

+ envelope :GML::Envelope

«Feature Type»

CIS::GridCoverage

+ envelope :GML::Envelope

«Feature Type»

CIS::

GeneralGridCoverage

«Feature Type»

CIS::SensorModelCoverage

«Data Type»

GML::MultiCurve

«Data Type»

CIS::SimpleMultiPoint

«Data Type»

GML::MultiSurface

«Data Type»

GML::MultiSolid

«Data Type»

GML::Grid

«Data Type»

GML::RectifiedGrid

«Feature Type»

CIS::AbstractGridCoverage

+domainSet +domainSet +domainSet +domainSet +domainSet +domainSet

Figure 14: Coverage types

[image: image18.emf]class CIS::Coverage 1.1 (coverage structure)

«Feature Type»

CIS::AbstractCoverage

+ coverageFunction :GML::CoverageFunction [0..1]

+ envelope :CIS::EnvelopeByAxis

«Data Type»

CIS::InterpolationRestriction

+ allowedInterpolation :anyURI [0..*]

«Data Type»

CIS::RangeSet

«Data Type»

SWE Common :: DataRecord

«Feature Type»

CIS::CoverageByPartitioning

«Feature Type»

CIS::CoverageByDomainAndRange

«Data Type»

CIS::Partition

+ envelope :EnvelopByAxis

«Data Type»

CIS::DomainSet

«FeatureType»

GML::Feature

«Data Type»

CIS::Extension

+ any :any [0..*]

«Data Type»

GML::DataBlock

«Data Type»

GML::File

see GML for

details

+interpolationRestriction

0..1 +rangeType

+rangeSet

+coverage

+domainSet

+partition 0..*

+metadata

0..1

Figure 15: Coverage structure
[image: image19.emf]class CIS::Coverage (grid coverage)

{ordered}

«Feature Type»

CIS::RectifiedGridCoverage

+ envelope :GML::Envelope

«Feature Type»

CIS::GridCoverage

+ envelope :GML::Envelope

«Feature Type»

CIS::GeneralGridCoverage

«Data Type»

CIS::DistortedAxis

«Data Type»

CIS::RegularAxis

+ origin :string

+ resolution :string

«Data Type»

CIS::IrregularAxis

+ directPositions :string [1..*]

«Feature Type»

CIS::SensorModelCoverage

«Data Type»

CIS::Displacement

+ directPositions :string [1..*]

+ sequenceRule :GML:sequenceRule [0..1]

«Data Type»

CIS::Axis

+ axisName :string

+ lowerBound :string

+ upperBound :string

«Data Type»

CIS::Grid

+ dimension :positiveInteger

«Data Type»

CIS::IndexAxis

«Data Type»

CIS::TransformationModel

«Data Type»

CIS::TransformationAxis

«Data Type»

CIS::TransformationBySensorModel

+ sensorModel :SML::AbstractProcessPropertyType

+ sensorInstance :SML::AbstractProcessPropertyType [0..1]

«Data Type»

GML::Grid

«Data Type»

GML::RectifiedGrid

CIS::AbstractCoverage

«Feature Type»

CIS::AbstractGridCoverage

+axis

1..*

+axis1..*

+axis

1..*

+domainSet

+displacement

0..* +model0..*

+domainSet +domainSet

Figure 16: Grid coverages
Annex C
(non-normative)

Relation to GML
16.3 Relation to GML 3.2.1

In GML 3.2.1 [2], all coverage types are derived from the abstract Coverage data type containing a domainSet and a range​Set component. CIS, in line with GMLCOV [5], extends this with rangeType and metadata. Further, GMLCOV [5] and CIS establish the following changes over GML 3.2.1 [2]:

· The property GML::coverageFunction, which in GML is associated with every subtype of Coverage, is moved up into ​Cov​er​age in the coverage type hierarchy of the standard on hand.

Note
This way, the coverage function is available in any subtype of ​Cov​er​age. This serves to prepare for continuous coverages, like in the case described next.

· The grid coverage types are subtypes of Coverage rather than being subtypes of GML::DiscreteCoverage as in GML 3.2.1 [OGC 07-036].

Note
This allows representing not only discrete grid coverages, but also continuous coverag​es by using grids for the reference points in conjunction with a coverage function defining interpolation.

16.4 Relation to GML 3.3

GML 3.3 [3] adds several grid types to GML 3.2.1. However, given the OGC modular specification rules these are not automatically available for GMLCOV 1.0. Further, these grid types resemble only special cases omitting, for example, combinations of regular and irregular axes in the same datacube. The CIS 1.1 model encompasses and generalizes GML 3.3.

� This is in contrast to, e.g., the incremental approach taken by GML 3.3 which adds definitions to GML 3.2.1.

	iv
	Copyright © 2015 Open Geospatial Consortium, Inc. All Rights Reserved.

	iii
	Copyright © 2015 Open Geospatial Consortium, Inc. All Rights Reserved.

