Open Geospatial Consortium

Submission Date: 2018-06-04

Approval Date: 2018-12-14

Publication Date: 2019-01-31

External identifier of this OGC® document: http://www.opengis.net/doc/CS/3DTiles/1.0
Internal reference number of this OGC® document: 18-053r2

Version: 1.0

Category: Candidate OGC® Community Standard

Editors: Patrick Cozzi, Sean Lilley, Gabby Getz

3D Tiles Specification 1.0

Copyright notice

Copyright © 2016-2019 Cesium and Open Geospatial Consortium

Warning

This document is an OGC Member endorsed international Community standard. This
Community standard was developed outside of the OGC and the originating party may continue
to update their work; however, this document is fixed in content. This document is available on a
royalty free, non-discriminatory basis. Recipients of this document are invited to submit, with
their comments, notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Document number: 18-053r2

Document type: OGC® Community Standard
Document subtype:

Document stage: Approved

Document language: English

The companies listed above have granted the Open Geospatial Consortium (OGC) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this document and
to modify this document and distribute copies of the modified version under a Attribution 4.0
International (CC BY 4.0) license (see below).

License Agreement
Copyright © 2016-2018 Cesium and Open Geospatial Consortium

This Specification is licensed under a Creative Commons Attribution 4.0 International License
(CC BY 4.0).

Some parts of this Specification are purely informative and do not define requirements necessary
for compliance and so are outside the Scope of this Specification. These parts of the
Specification are marked as being non-normative, or identified as Implementation Notes.

Contents

COMEETIES .neteieeeiie ettt ettt et ettt e bt e et e bt e et e e bt e e ab e e bt e eabe e bt e eab e e bt e sabe e bt e sabeeaseesaseenbeennbeenseenaee 3
Table Of FIGUTES....c..eouiiiiieete ettt ettt 7
Source of the content for this OGC dOCUMENTcocveeiiriieriiriiriieieeieeee e 9
Validity Of COMTENL.....couiiiiiiiiiiieeet ettt ettt ettt sae e nbe s 9
PTOIACE ...ttt sttt et st a et et ae e teeaeens 9
FULUTE WOTK .ttt sttt et et e bt st e s st e be et e sseesesanans 9

L SCOPE .ttt sttt ae e ae s 10

2 CONFOTINATICEieuieiieiieiieetteetee ettt ettt e sttt et e st et s ate st e e besatesse e seeaeesseenbesaeesseenseeneesaeenee 10

3 REFEIEIICES ..ottt ettt ettt ettt et ettt e b neas 11
3.1 NOTTIALIVE ..ttt ettt ettt et e sh e e et e s bt e st e e s bt e e bt e saee s bt esate e bt esabesabeenneens 11

4 Terms and DefiNitionscccuereerierierieieeierieete ettt ettt et sttt e et eeeeneesaeenee 11

5 COMVEITIONS .uuttiitiiiieeiteette et et e et e st e et e bt e e bt esteesabeesbeeeabeesseesabeesaee e bt esbbeeaseenabeenseenaeeeasees 13

6 3D Tiles SPECIfICAtIONeoueuiiiieiitiierieeeeiee ettt ettt 13
0.1 OVEIVIEW ..ottt ettt ettt e sa e st et e s it e e bt e sabe s bt e sabe e bt e sabesbeenaneens 13
6.2 File extensions and MIME tyPesccccuerierirerinininieietctecsesesieeiese e 15
6.3 JSON €NCOAINE ..euveririiiiieiiietert ettt ettt ettt sb e sttt sae e e 15
0.4 URIS..c ottt ettt et sttt b et a et eatesae e be et e naeenee 15
0.5 Uit ettt ettt ettt a e et b e et e e bt e et e e bt e et e e bt e sabe e beenaneens 15
6.6 Coordinate reference system (CRS)ccceririmiminininicceeeneseeeeeee e 16
0.7 LIl ettt ettt et b et a et et esae e be et e naeenee 16

6.7.1 GEOMELTIC ETTOT ..eouutieuiiiiiiiiteeiteett et et e st e et e sateebeesate e bt esabesbeesateebeesseesbeesueeans 16
6.7.2 REfINEMENT..cc.iiiiiiiiiieiieieceee ettt ettt 17
6.7.3 Bounding VOIUIMEScociiiiiiiiiiininieneeeeeetee e 18
6.7.4 Viewer requeSt VOIUINE.cccueiiiriirininiinieeierteteteteteste ettt 21
6.7.5 TranSfOrIS....cccoviiiieieiieieetecee ettt sttt et sttt sae e et ae e 23
6.7.6 Tile JSON ...ttt ettt et sttt et sttt e bt et et e b nee 27
6.8 TILESEL JSON.....uuiiietieeeetie ettt ettt et eete e e etae e et e e eraeeeseeeeaeeeesaeeeesseeesaeeeseeeenseeennnes 32

0.8.1 EXEOINIAL T1leSOLS c.eeeeeeeeieeeeeeeeeeeeeeeeeeeeeee ettt ettt eeee et eeee e eneneeeeeeeeeeenanenenenas 33

6.8.2 Bounding volume spatial coherence.........c.cccecueviiiieninininininccceceeee 35
6.8.3 Spatial data SEIUCTUIES.....c.ceceiieieierierteetereeeete ettt 36
6.9 Specifying extensions and application specific €Xtras..........ccocervererenrerreeienienienennenn 39
6.9.1 EXTENSIONS.....cciiiiiiiiiiiiiiiiiiii i 39
6.9.2 EXLTAS ..ottt 41
6.10 Tile format SPECIfiCAtIONScc.eeveruieuiriiiieiiterter et 41
Property TefeTenICec.oouiriiiiiiirieeee e e 42
7.1 THLESEE ..ttt 42
7.2 ASSEE ..t 44
7.3 Bounding VOIUINEccocoiiiiiiiiiiiniteeetetectete sttt sttt 45
7.4 EXEENISION ..ottt 47
7.5 EXLTAS...coiiiiiiiiiiiiic e 47
7.6 PTOPEITIES.c..iiiiiiiiiiiiieitctct ettt ettt ettt b et 47
7T TTHLE e 48
7.8 Tile COMLENL...c.coiriiiiiiiiiicicieteeetee et 52
Featture Table.........cociiiiiiiiiicec et 53
8.1 OVEIVIEW ..ttt 53
8.2 LAYOUL ettt sttt sttt be e 54
8.2.1 Padding...cecoverieeiiiiniieieeeee et 54
8.2.2 JSON REAAET ...oeeeevieeeirie ettt ettt et e e et e etae e e eaeeeeraeeereeeeneeeeareeeenns 54
8.2.3 BINArY DOAY ..ceeoiiiiriiiiriieietcteetesese et 55
8.3 Implementation eXamPlec.coceviriririiieriiiertenieee ettt 56
8.4 Property refereNCecccooiiiiriininiirieeetetet ettt 56
8.4.1 Feature Table......ccccooiiiiiiiiiiiceeee e 56
8.4.2 BinaryBodyReference.........cccooiiinininininiiicicccecce e 57
843 PrOPEILY .ottt st 57
BatCh Table.......cooiiiiiiicicc e 58
0.1 OVEIVIEW .ot 58

10

0.2 LAYOUL ettt sttt e st sa b be e 58

0.2.1 Padding...ceeovevieienieniiieeeeeeteee ettt 59
0.2.2 JSON REAAET ...oeeeeuvieeeitieeeeee ettt et e eetae e e etee e e eaeeeeraeeeteeeeneeeeaseeennns 59
0.2.3 BiINATY DOAY ..cueeiiiiiiiiriieiietcteetesestee ettt 60
9.3 Implementation eXamMPLecocevirieiriiieriiiententeete ettt 61
0.4 Property refereNCeccooviiriiriiriirieieeeeteteet ettt 63
0.4.1 Batch Table......coooiiiiee et 63
9.4.2 BinaryBodyReference.........cccooiiininininiiiiiciciceeccee e 63
0.4.3 PrOPEILY c.eeeiiiieiieteeeeet ettt et 65
Tile format SPeCIfiCAtiONScoevuerieiriiieiceerer ettt 65
10.1 Batched 3D Modelcoooiiiiiiiiieiere ettt 65
TO. 1.1 OVEIVIEW ..ottt ettt sttt st be st sb bt st e beesnesanens 65
10.1.2 LaYOUL ettt et sttt et be bbb st be e nesan e 66
10.1.3 HeEAAET ..ttt ettt 66
10.1.4 Feature Table. ..ottt 67
10.1.5 BatCh Table. ..ottt 68
10.1.6 Binary GITE ..ottt 68
10.1.7 File extension and MIME tyPe.......cccoiririririiieieinenieneeene ettt 70
10.1.8 Implementation eXamPLe.......c.ccocerirririreririeieietenestesre ettt ettt seesaesaens 70
10.2 Instanced 3D Modelcocooiririiiiiiiiiiieeee et 72
10.2.1 OVEIVIEW ..ttt ettt sttt et ae st sbt bt st e beesaesanen 72
10.2.2 LaYOUL ettt ettt et ae st sb bt et be e ae s 73
10.2.3 HeEAAET .ttt sttt 73
10.2.4 Feature Table....c..coioiiiiiiiiicicce ettt 74
10.2.5 BatCh Table. ..ottt 82
T0.2.6 GITE oot 82
10.2.7 File extension and MIME tyPe.......ccccoviririririiieienineneneeeee ettt 83
10.2.8 Property referenCecccooiiieiirieriiniiniinieeiee ettt 83
10.3 PoOINt CloUd ..ottt sttt 89

10.3.1 OVEIVIEW ..ottt 89
10.3.2 LaYOUL c..eeiiieiieiieiteteeeetet ettt sttt be st sb et et be e ae s 89
10.3.3 HEAAET ... e 90
10.3.4 Feature Table........ccccoioiiiiiniiiiiiccee s 90
10.3.5 Batch Table.......cccoiiiiiiiiiiciee s 99
10.3.6 File extension and MIME tyPe.......cccoveririririeieieniireneneneeeceeeteteteee e 99
10.3.7 Implementation eXamPle.......c.ccoceriririreririeeeietenientesre sttt sresaesnens 99
10.3.8 Property referenCe.......cccociiieiirieriiniiniiniieeetetetete ettt 99
10.4 COTMPOSILE ..ttt ettt ettt ettt et st e be bt st sbe et e st sbeenesanens 106
10.4. 1 OVEIVIEW ..uiiiiiiiiicecteteete ettt 106
1042 LaYOUL c.eiiiiiiieieetciteeeet ettt sttt e b e st b e s 106
10.4.3 HeEAET ..oviuiiiiiieieiicee e 107
10.4.4 INNET tIleS wuvuiiiiiieiiicecec e 107
10.4.5 File extension and MIME tyPe.......ccccoveriririeieiienienineneneeeeeeecteeeee e 108
10.4.6 Implementation XAMPLESccccoerereriririeieieienenrene ettt sae e 108
11 Declarative styling SpeCifiCationceceeeeierierieninenieirt ettt 108
11.1 OVEIVIEW ...ttt 108
11.2 COMICEPLS ..ttt ettt ettt et sttt et et be bt sae e bbb e b sanens 109
11.2.1 Styling featlires....cc.ccereeuiiiiieieieeeeee ettt 109
11.2.2 CONAILIONS ..veiiniiieiiieieiteieteeeesteee ettt 110
11.2.3 Defining variablescccecuiieriiriininininieieteecteeese ettt 111
11.2:4 Mt PIOPEILY...ccuviruiiiiriiiniteieeiteeit ettt ettt ettt st sat b et st saesane bt beenesae e 112
11.3 EXPIESSIONS. ...ttt ettt ettt ettt b et s bbbt bt et ne s ens 112
11.3.1 SemMANTICS...cciiiiiiiiiiiic e 112
11.3.2 OPEIALOTS ..ottt ettt ettt ettt r e st sbe et st sae st sbe b e e sae e 113
11,33 TYPES ittt ettt e 113
11.3:4 OPETator TULES ..c..eoueruiriieiieiicieeeeste ettt ettt 118
11.3.5 TyPe COMVETSIONSeeuviruiiiiiiiieiieiieie ettt ettt ettt sre st st beenesae e 119
11.3.6 String CONVETSIOMS. ..cccueruririierieiieniieieritentteteetesre e et srtesreete s e esresanesreeneeaesneenne 120

T1.3.7 COTISTATIES wevneneeeeeeteeeeeeeeeeeeeeteea e eeeeeeeteueeanaaaeseeesesaannnaaaeseeeseseannnnaesseeassennnnnaaaess 120

11.3.8 Variablescueoiiririiiiriieeceeeee ettt 121
11.3.9 Built-in fUnCHONS ..coueruieiieiiiiciceeerer ettt 123
T1.3.100 INOES .ottt s 132
11.4 PNt ClOUd ..oueiiiiieiieiecee ettt sttt 132
11.5 File extension and MIME tyPeccccoueviriininininieiccteeencseeeeteeee e 133
11.6 Property referemnCe........cccoiriririiiiieieieetesteeert ettt 133
T1.6.1 SEYLE e 133
11.6.2 DOOLean EXPIESSION....co.eeuirueiuieuieierienientenieete ettt stesbe s bbbt ettt neesaesae e e 135
11.6.3 COLOT @XPIESSION ..cuveuviriiiiiieiieiieieniesteete sttt sa e s b ettt et sae e 135
11.6.4 CONAITIONS ...ouviutiiiiiiiriteie ettt ettt a e bttt et e sae e 135
11.6.5 CONAITION ..utiutiniiiiiiiirieeieeie ettt ettt ettt sae s e 136
11.6.6 @XPIESSIOM ..uuiiuriuiiiiiieiiieett ettt ettt ettt ettt b e et sbe st s be b e sae e 136
11067 INELA ceeeiiiiiieceetee ettt et 136
11.6.8 NUMDET EXPIESSION....couteuiiiiiieiieieienteeterteete ettt sttt 136
11.6.9 Point Cloud SEYLecouiemiiiiiiiiiieieeee ettt 136
12 Annex A: Conformance Class Abstract Test Suite (NOrmative)..........coceeevvveeeereeeereeennne. 138
13 Annex B: Contributor Acknowledgements (NON-normative)c.ccecceeeueeveceenvenennene. 138
14 Annex C: Revision HiIStOTYccciiriiririiiriiiieienieteeeiteteetesie ettt 138
Table of figures

Figure 1: A sample 3D Tiles bounding volume hierarchy

Figure 2: A parent tile with replacement refinement

Figure 3: A refined child tile of a tile with replacement refinement
Figure 4: A parent tile with additive refinement

Figure 5: A refined child tile of a tile with additive refinement
Figure 6: A bounding box

Figure 7: A bounding sphere

Figure 8: A bounding region

Figure 9: A bounding region

Figure 10: A bounding box

Figure 11: A bounding sphere

Figure 12: A tileset with transformed children tiles

Figure 13: Tile JSON properties

Figure 14: A tile bounding volume in red, and a content bounding volume in blue
Figure 15: A tileset JSON file with external tileset JSON files
Figure 16: A tileset with transforms referencing an external tileset with transforms
Figure 17: A root tile and its four children tiles

Figure 18: Two sibling tiles with overlapping bounding volumes
Figure 19: A tileset with an overlapping grid spatial data structure
Figure 20: Feature Table layout

Figure 21: Feature Table binary body layout

Figure 22: Batch Table layout

Figure 23: Batch Table binary body layout

Figure 24: Batched 3D Model layout

Figure 25: Instanced 3D Model layout

Figure 26: A box in the standard basis

Figure 27: A box transformed into a rotated basis

Figure 28: A quantized volume

Figure 29: Point Cloud layout

Figure 30: A quantized volume

Figure 31: Composite layout

Source of the content for this OGC document

The majority of the content in this OGC document is a direct copy of the content contained
at https://github.com/AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0 (the 1.0 tag of the 3d-
tiles repo). No normative changes have been made to the content. This OGC document
does contain content not contained in the 1.0 tag of the 3d-tiles repo.

Note: Some elements (such as Vector Data) contained in
https://github.com/AnalyticalGraphicsInc/3d-tiles (the 3d-tiles repo) have been removed
from the OGC document because they are currently under development and not a part of
this specification. These elements are identified as future work in this OGC document.

Validity of content

The Submission Team has reviewed and certified that the “snapshot” content in this
Community Standard is true and accurate.

Preface

Bringing techniques from graphics research, the movie industry, and the game industry to
3D geospatial, 3D Tiles defines a spatial data structure and a set of tile formats designed for
3D, and optimized for streaming and rendering.

NOTE: This draft policy does not address the issue of how the OGC migrates from WKT for
CRS version 2 -CRS2 - (ISO 19162 and OGC 12-063r5 Geographic information - Well-
known text representation of coordinate reference systems) to any subsequent future
versions.

If approved, the contents of this document regarding coordinate reference systems will be
updated as needed to ensure compatibility.

Future work

The 3D Tiles community anticipates that revisions to this Community Standard will be
required to prescribe content appropriate to meet new use cases. These use cases may arise
from either (or both) the external user and developer community or from OGC review and
comments. Further, future revisions will be driven by any submitted change requests that
document community uses cases and requirements.

Additions planned for future inclusion in the 3D Tiles Specification (future work) are
described at https://github.com/AnalyticalGraphicsInc/3d-tiles/issues/247.

9

1 Scope

3D Tiles is designed for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a
hierarchical data structure and a set of tile formats which deliver renderable content. 3D
Tiles does not define explicit rules for visualization of the content; a client may visualize 3D
Tiles data however it sees fit.

A 3D Tiles data set, called a tileset, contains any combination of tile formats organized into a
spatial data structure.

3D Tiles are declarative, extendable, and applicable to various types of 3D data. The
following tile formats have been specified as part of this document:

e Batched 3D Model
e Instanced 3D Model
e Point Cloud

e Composite

This document also describes 3D Tile Styles, a declarative styling specification which may be
applied to tilesets.

The 3D Tiles specification for tilesets, associated tile formats, and the associated styling
specification are open formats that are not dependent on any vendor-specific solution,
technology, or products.

2 Conformance

Sections 7 through 11 of this document describe the Objects and Properties required to
implement 3D Tiles. Conformance is relative to these elements and as partly expressed via
the associated 3D Tiles JSON schema documents located at
https://github.com/AnalyticalGraphicsInc/3d-tiles/releases/tag/1.0/specification/schema

All figures, examples, notes, and background information are non-normative.

10

3 References

3.1 Normative
EPSG: 4979, 2007. http://spatialreference.org/ref/epsg/wgs-84-3/.
IETF RFC2397: The "data" URL scheme, 1998. https://tools.ietf.org/html/rfc2397.

IETF RFC3629: UTF-8, a transformation format of ISO 10646, 2003.
https://tools.ietf.org/html/rfc3629.

IETF RFC3986: IANA Registration for Enumservice 'XMPP', 2007.
https://tools.ietf.org/html/rfc4979.

Khronos Group: gITF 2.0 - Runtime 3D Asset Delivery, 2017.
https://github.com/KhronosGroup/glTF/blob/master/README.md.

OGC: [OGC 12-063r5] Geographic information - Well-known text representation of
coordinate reference systems, 2015. http://docs.opengeospatial.org/is/12-063r5/12-
063r5.html.

W3C: CSS3 Color, 2018. https://www.w3.org/TR/css-color-3/.

4 Terms and Definitions

4.1 Bounding Volume
A closed volume completely containing the union of a set of geometric objects. [

4.2 TFeature

In 3D Tiles, an individual component of a tile, such as a 3D model in a Batched 3D Model or
a point in a Point Cloud which contains position, appearance, and metadata properties.

4.3 Geometric Error

The difference, in meters, of a tile’s simplified representation of its source geometry used to
calculate the screen space error introduced if a tile’s content is rendered and its children’s are
not.

11

4.4 gITF

An API-neutral runtime asset delivery format for 3D assets.

4.5 Hierarchical Level of Detail (HLOD)

Decreasing the complexity of a 3D representation according to metrics such as object
importance or distance from the tile to the observation point or camera position. Generally,
higher levels of detail provide greater visual fidelity. [?

4.6 Tile

In 3D Tiles, a subset of a tileset containing a reference to renderable content and the
metadata, such as the content’s bounding volume, which is used by a client to determine if
the content is rendered.

4.7 Tile Content

A binary blob containing information necessary to render a tile which is an instance of a
specific tile format (Batched 3D Model, Instanced 3D Model, Point Clouds, or Composite).

4.8 Tile Format

The structure or layout of tile content data, (Batched 3D Model, Instanced 3D Model, Point
Clouds, or Composite).

49 Tileset

In 3D Tiles, a collection of 3D Tiles tile instances organized into a spatial data structure and
additional metadata, such that the aggregation of these tiles represent some 3D content at
various levels of detail.

4.10 Screen-Space Error (SSE)

The difference, in pixels, of a tile's simplified representation of its source geometry
introduced if a tile’s content is rendered and its children’s are not.

4.11 Spatial Coherence

The union of all content of the child tiles is completely inside the parent tile's bounding
volume

12

4.12 Style

A set of expressions to be evaluated which modify how each feature in a tileset is displayed

5 Conventions

No conventions are specified in this document.

6 3D Tiles Specification

6.1 Overview

3D Tiles is designed for streaming and rendering massive 3D geospatial content such as
Photogrammetry, 3D Buildings, BIM/CAD, Instanced Features, and Point Clouds. It defines a
hierarchical data structure and a set of tile formats which deliver renderable content. 3D
Tiles does not define explicit rules for visualization of the content; a client may visualize 3D
Tiles data however it sees fit.

In 3D Tiles, a tileset is a set of tiles organized in a spatial data structure, the tree. A tileset is
described by at least one tileset JSON file containing tileset metadata and a tree of tile
objects, each of which may reference renderable content of one of the following formats:

Format Uses

Batched 3D Model (b3dm) Heterogeneous 3D models. E.g. textured terrain and
surfaces, 3D building exteriors and interiors, massive
models.

Instanced 3D Model (i3dm) 3D model instances. E.g. trees, windmills, bolts.

Point Cloud (pnts) Massive number of points.

Composite (cmpt) Concatenate tiles of different formats into one tile.

A tile's content, an individual instance of a tile format, is a binary blob with format-specific
components including a Feature Table and a Batch Table.

The content references a set of features, such as 3D models representing buildings or trees, or
points in a point cloud. Each feature has position and appearance properties stored in the
tile's Feature Table, and additional application-specific properties stored in the Batch Table.
A client may choose to select features at runtime and retrieve their properties for
visualization or analysis.

13

The Batched 3D Model and Instanced 3D Model formats are built on g/TF, an open
specification designed for the efficient transmission of 3D content. The tile content of these
formats embed a gITF asset, which contains model geometry and texture information, in the
binary body. The Point Cloud format does not embed gITF.

Tiles are organized in a tree which incorporates the concept of Hierarchical Level of Detail
(HLOD) for optimal rendering of spatial data. Each tile has a bounding volume, an object
defining a spatial extent completely enclosing its content. The tree has spatial coherence; the
content for child tiles are completely inside the parent's bounding volume.

bounding volume

tile

m’

Figure 1: A sample 3D Tiles bounding volume hierarchy

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes (like a
Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at several levels
of detail (or zoom levels). However since the content of a tileset is often non-uniform or may
not easily be organized in only two dimensions, the tree can be any spatial data structure
with spatial coherence, including k-d trees, quadtrees, octrees, and grids.

14

Optionally a 3D Tiles Style, or style, may be applied to a tileset. A style defines expressions to
be evaluated which modify how each feature is displayed.

6.2 File extensions and MIME types
3D Tiles uses the following file extensions and MIME types.

e Tileset files use the .json extension and the application/json MIME type.

¢ Tile content files use the file type and MIME format specific to their tile format

specification, see Tile format specifications.

o Tileset style files use the . json extension and the application/json MIME type.

Explicit file extensions are optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

6.3 JSON encoding
3D Tiles has the following restrictions on JSON formatting and encoding.

1. JSON must use UTF-8 encoding without BOM.

2. All strings defined in this spec (properties names, enums) use only ASCII charset and
must be written as plain text.

3. Names (keys) within JSON objects must be unique, i.e., duplicate keys aren't allowed.

6.4 URIs

3D Tiles uses URIs to reference tile content. These URIs may point to relative external
references (RFC3986) or be data URIs that embed resources in the JSON. Embedded
resources use the "data" URI scheme (RFC2397).

When the URI is relative, its base is always relative to the referring tileset JSON file.

Client implementations are required to support relative external references and embedded
resources. Optionally, client implementations may support other schemes (such as http://).
All URIs must be valid and resolvable.

6.5 Units

The unit for all linear distances is meters.

All angles are in radians.

15

6.6 Coordinate reference system (CRS)

3D Tiles uses a right-handed Cartesian coordinate system; that is, the cross product of xand y
yields z. 3D Tiles defines the z axis as up for local Cartesian coordinate systems. A tileset's
global coordinate system will often be in a WGS 84 earth-centered, earth-fixed (ECEF)
reference frame (EPSG 4979), but it doesn't have to be, e.g., a power plant may be defined
fully in its local coordinate system for use with a modeling tool without a geospatial context.

An additional tile transform may be applied to transform a tile's local coordinate system to
the parent tile's coordinate system.

The Region bounding volume specifies bounds using a geographic coordinate system
(latitude, longitude, height), specifically EPSG 4979.

6.7 Tiles

Tiles consist of metadata used to determine if a tile is rendered, a reference to the renderable
content, and an array of any children tiles.

6.7.1 Geometric error

Tiles are structured into a tree incorporating Hierarchical Level of Detail (HLOD) so that at
runtime a client implementation will need to determine if a tile is sufficiently detailed for
rendering and if the content of tiles should be successively refined by children tiles of higher
resolution. An implementation will consider a maximum allowed Screen-Space Error (SSE),
the error measured in pixels.

A tile's geometric error defines the selection metric for that tile. Its value is a nonnegative
number that specifies the error, in meters, of the tile's simplified representation of its source
geometry. The root tile, being the most simplified version of the source geometry, will have
the greatest geometric error. Then each successive level of children will have a lower
geometric error than its parent, with leaf tiles having a geometric error of or close to 0.

In a client implementation, geometric error is used with other screen space metrics—e.g.,
distance from the tile to the camera, screen size, and resolution— to calculate the SSE
introduced if this tile is rendered and its children are not. If the introduced SSE exceeds the
maximum allowed, then the tile is refined and its children are considered for rendering.

The geometric error is formulated based on a metric like point density, tile size in meters, or
another factor specific to that tileset. In general, a higher geometric error means a tile will be
refined more aggressively, and children tiles will be loaded and rendered sooner.

16

6.7.2 Refinement

Refinement determines the process by which a lower resolution parent tile renders when its
higher resolution children are selected to be rendered. Permitted refinement types are
replacement ("REPLACE") and additive ("ADD"). If the tile has replacement refinement, the
children tiles are rendered in place of the parent, that is, the parent tile is no longer
rendered. If the tile has additive refinement, the children are rendered in addition to the
parent tile.

A tileset can use replacement refinement exclusively, additive refinement exclusively, or any
combination of additive and replacement refinement.

A refinement type is required for the root tile of a tileset; it is optional for all other tiles.
When omitted, a tile inherits the refinement type of its parent.

6.7.2.1 Replacement

If a tile uses replacement refinement, when refined it renders its children in place of itself.

Parent Tile Refined

Figure 2: A parent tile with replacement refinement Figure 3: A refined child tile of a tile with

replacement refinement

6.7.2.2 Additive

If a tile uses additive refinement, when refined it renders itself and its children
simultaneously.

Parent Tile Refined

17

Figure 4: A parent tile with additive refinement Figure 5: A refined child tile of a tile with additive
refinement

6.7.3 Bounding volumes

A bounding volume defines the spatial extent enclosing a tile or a tile's content. To support
tight fitting volumes for a variety of datasets such as regularly divided terrain, cities not
aligned with a line of latitude or longitude, or arbitrary point clouds, the bounding volume
types include an oriented bounding box, a bounding sphere, and a geographic region defined
by minimum and maximum latitudes, longitudes, and heights.

Bounding box Bounding sphere Bounding region
Figure 6: A bounding box Figure 7: A bounding sphere Figure 8: A bounding region

6.7.3.1 Region

The boundingVolume.region property is an array of six numbers that define the bounding
geographic region with latitude, longitude, and height coordinates with the order [west,
south, east, north, minimum height, maximum height]. Latitudes and longitudes are

18

in the WGS 84 datum as defined in EPSG 4979 and are in radians. Heights are in meters
above (or below) the WGS 84 ellipsoid.

Figure 9: A bounding region

"boundingVolume": {
"region": [
-1.3197004795898053,
0.6988582109,
-1.3196595204101946,
9.6988897891,
9,
20
]
}

6.7.3.2 Box

The boundingVolume.box property is an array of 12 numbers that define an oriented
bounding box in a right-handed 3-axis (x, y, z) Cartesian coordinate system where the z-axis
is up. The first three elements define the x, y, and z values for the center of the box. The next

19

three elements (with indices 3, 4, and 5) define the x-axis direction and half-length. The next
three elements (indices 6, 7, and 8) define the y-axis direction and half-length. The last three
elements (indices 9, 10, and 11) define the z-axis direction and half-length.

Figure 10: A bounding box

"boundingVolume": {

"box": [
9, Q, 10,
100, 09, 9,
9, 100, 09,
9, Q, 10

]
}

6.7.3.3 Sphere

The boundingVolume.sphere property is an array of four numbers that define a bounding
sphere. The first three elements define the x, y, and z values for the center of the sphere in a
right-handed 3-axis (x, y, z) Cartesian coordinate system where the z-axis is up. The last
element (with index 3) defines the radius in meters.

20

Figure 11: A bounding sphere

"boundingVolume": {
"sphere": [
9,
9,
10,
141.4214
]
}

6.7.4 Viewer request volume

A tile's viewerRequestVolume can be used for combining heterogeneous datasets, and can be
combined with External tilesets.

The following example has a building in a b3dm tile and a point cloud inside the building in a
pnts tile. The point cloud tile's boundingVolume is a sphere with a radius of 1.25. It also has
a larger sphere with a radius of 15 for the viewerRequestVolume. Since the geometricError
is zero, the point cloud tile's content is always rendered (and initially requested) when the
viewer is inside the large sphere defined by viewerRequestVolume.

21

{
"children": [{

"transform": [
4.,843178171884396, 1.2424271388626869, 0, o,
-0.7993325488216595, 3.1159251367235608, 3.8278032889280675, 0O,
0.9511533376784163, -3.7077466670407433, 3.2168186118075526, 0O,
1215001.7612985559, -4736269.697480114, 4081650.708604793, 1

1,
"boundingVolume": {
"box": [
o, 9, 6.701,
3.738, 0, Q,
o, 3.72, 0,
o, 9, 13.402
]
s

"geometricError": 32,

"content": {
"uri": "building.b3dm"

}

b A

"transform": [
0.968635634376879, 0.24848542777253732, 0, o,
-0.15986650990768783, 0.6231850279035362, 0.7655606573007809, O

0.19023066741520941, -0.7415493329385225, ©0.6433637229384295, 0,
1215002.0371330238, -4736270.772726648, 4081651.6414821907, 1

1,

"viewerRequestVolume": {
"sphere": [0, 0, 0, 15]

3

"boundingVolume": {
"sphere": [0, 0, 0, 1.25]

3

"geometricError": 0,

"content": {
"uri": "points.pnts”

¥

]
by

For more on request volumes, see the sample tileset and demo video.

22

6.7.5 Transforms
6.7.5.1 Tile transforms

To support local coordinate systems—e.g., so a building tileset inside a city tileset can be
defined in its own coordinate system, and a point cloud tileset inside the building could,
again, be defined in its own coordinate system—each tile has an optional transform
property.

The transform property is a 4x4 affine transformation matrix, stored in column-major order,
that transforms from the tile's local coordinate system to the parent tile's coordinate
system—or the tileset's coordinate system in the case of the root tile.

The transform property applies to:

e tile.content

e Each feature's position.

e Each feature's normal should be transformed by the top-left 3x3 matrix of the
inverse-transpose of transform to account for correct vector transforms when scale is
used.

e content.boundingVolume, except when content.boundingVolume.region is
defined, which is explicitly in EPSG:4979 coordinates.

e tile.boundingVolume, except when tile.boundingVolume.region is defined,
which is explicitly in EPSG:4979 coordinates.

e tile.viewerRequestVolume, except when tile.viewerRequestVolume.region is
defined, which is explicitly in EPSG:4979 coordinates.

The transform property does not apply to geometricError—i.e., the scale defined by
transform does not scale the geometric error—the geometric error is always defined in
meters.

When transform is not defined, it defaults to the identity matrix:

[

1.0, 0.9, 0.0, 0.0,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 1.0, 0.0,
0.0, 0.0, 0.0, 1.0
]

The transformation from each tile's local coordinate system to the tileset's global coordinate
system is computed by a top-down traversal of the tileset and by post-multiplying a child's

23

transform with its parent's transform like a traditional scene graph or node hierarchy in
computer graphics.

6.7.5.2 gITF transforms

Batched 3D Model and Instanced 3D Model tiles embed glTF, which defines its own node
hierarchy and uses a y-up coordinate system. Any transforms specific to a tile format and the
tile.transform property are applied after these transforms are resolved.

6.7.5.2.1 gITF node hierarchy
First, glTF node hierarchy transforms are applied according to the glTF specification.
6.7.5.2.2 y-up to z-up

Next, for consistency with the z-up coordinate system of 3D Tiles, glTFs must be transformed
from y~up to z-up at runtime. This is done by rotating the model about the x-axis by /2
radians. Equivalently, apply the following matrix transform (shown here as row-major):

[

1.0, 9.0, 0.0, 0.0,
0.0, 0.0, -1.0, 0.9,
0.0, 1.0, 0.0, 0.0,
0.0, 0.0, 0.0, 1.0
]

More broadly the order of transformations is:

1. gITF node hierarchy transformations
2. gITF y~up to z-up transform
3. Any tile format specific transforms.

e Batched 3D Model Feature Table may define RTC_CENTER which is used to
translate model vertices.

e Instanced 3D Model Feature Table defines per-instance position, normals, and
scales. These are used to create per-instance 4x4 affine transform matrices that
are applied to each instance.

4, Tile transform

Implementation note: when working with source data that is inherently z-up, such as data in WGS 84
coordinates or in a local z-up coordinate system, a common workflow is:

Mesh data, including positions and normals, are not modified - they remain z-up.

The root node matrix specifies a column-major z-up to y-up transform. This transforms the source data
into a y~up coordinate system as required by glTF.

24

At runtime the gITF is transformed back from y~up to z-up with the matrix above. Effectively the
transforms cancel out.

Example glTF root node:

"nodes": [

{
“matrix": [1,0,90,0,0,0,-1,0,0,1,0,0,0,0,0,1],
"mesh": 0,
"name": "rootNode"

}

]

6.7.5.2.3 Example

For an example of the computed transforms (transformToRoot in the code above) for a
tileset, consider:

10

T1 T2

pnts

T3 T4
b3dm i3dm

Figure 12: A tileset with transformed children tiles

The computed transform for each tile is:

e TO:[TO]
e T1:[TO][T1]
e T2:[TO][T2]
25

T3: [TO][T1][T3]
T4: [TO][T1][T4]

The positions and normals in a tile's content may also have tile-specific transformations
applied to them before the tile's transform (before indicates post-multiplying for affine
transformations). Some examples are:

b3dm and i3dm tiles embed gl TF, which defines its own node hierarchy and
coordinate system. tile.transform is applied after these transforms are resolved. See
glTF transforms.

i3dm's Feature Table defines per-instance position, normals, and scales. These are used
to create per-instance 4x4 affine transform matrices that are applied to each instance
before tile.transform.

Compressed attributes, such as POSITION_QUANTIZED in the Feature Tables for i3dm
and pnts, and NORMAL_OCT16P in pnts should be decompressed before any other
transforms.

Therefore, the full computed transforms for the above example are:

TO: [TO]
T1: [TO][T1]
T2: [TO][T2][pnts-specific transform, including RTC_CENTER (if defined)]

T3: [TO][T1][T3][b3dm-specific transform, including RTC_CENTER (if
defined), coordinate system transform, and glTF node hierarchy]

T4: [TO][T1][T4][i3dm-specific transform, including per-instance
transform, coordinate system transform, and glTF node hierarchy]

6.7.5.2.4 Implementation example

This section iIs non-normative

The following JavaScript code shows how to compute this using Cesium's Matrix4 and

Matrix3 types.

function computeTransforms(tileset) {

m)

var t = tileset.root;
var transformToRoot = defined(t.transform) ? Matrix4.fromArray(t.transfor

: Matrix4.IDENTITY;

computeTransform(t, transformToRoot);

26

function computeTransform(tile, transformToRoot) {
// Apply 4x4 transformToRoot to this tile's positions and bounding volume
s

var inverseTransform = Matrix4.inverse(transformToRoot, new Matrix4());

var normalTransform = Matrix4.getRotation(inverseTransform, new Matrix3()
)

normalTransform = Matrix3.transpose(normalTransform, normalTransform);

// Apply 3x3 normalTransform to this tile's normals

var children = tile.children;
var length = children.length;
for (var i = 0; i < length; ++i) {
var child = children[i];
var childToRoot = defined(child.transform) ? Matrix4.fromArray(child.
transform) : Matrix4.clone(Matrix4.IDENTITY);
childToRoot = Matrix4.multiplyTransformation(transformToRoot, childTo
Root, childToRoot);
computeTransform(child, childToRoot);

}
}

6.7.6 Tile JSON

A tile JSON object consists of the following properties.

27

tile
‘ boundingVolume

= e @
box

region sphere

® geometricError
® refine

® content

- boundingVolume (box, region, or sphere)

—urj ==----=---- » Separate file with tile contents,
streamed on demand

T children[]

Figure 13: Tile JSON properties

The following example shows one non-leaf tile.

28

{

"boundingVolume": {
"region": [
-1.2419052957251926,
0.739501624030189%4,
-1.2415404171917719,
0.7396563300150859,

9,
20.4
]
¥
"geometricError": 43.88464075650763,
"refine" : "ADD",

"content": {
"boundingVolume": {
"region": [

-1.2418882438584018,
0.7395016240301894,
-1.2415422846940714,
0.7396461198389616,
9,

19.4

]

¥
"uri": "2/0/0.b3dm"

}s
"children": [...]

}

The boundingVolume defines a volume enclosing the tile, and is used to determine which
tiles to render at runtime. The above example uses a region volume, but other bounding
volumes, such as box or sphere, may be used.

The geometricError property is a nonnegative number that defines the error, in meters,
introduced if this tile is rendered and its children are not. At runtime, the geometric error is
used to compute Screen-Space Error (SSE), the error measured in pixels. The SSE determines
if a tile is sufficiently detailed for the current view or if its children should be considered, see
Tiles consist of metadata used to determine if a tile is rendered, a reference to the renderable
content, and an array of any children tiles.

Geometric error.

The optional viewerRequestVolume property (not shown above) defines a volume, using the
same schema as boundingVolume, which the viewer must be inside of before the tile's

29

content will be requested and before the tile will be refined based on geometricError. See
the Viewer request volume section.

The refine property is a string that is either "REPLACE" for replacement refinement or
"ADD" for additive refinement, see Tiles are structured into a tree incorporating Hierarchical
Level of Detail (HLOD) so that at runtime a client implementation will need to determine if
a tile is sufficiently detailed for rendering and if the content of tiles should be successively
refined by children tiles of higher resolution. An implementation will consider a maximum

allowed Screen-Space Error (SSE), the error measured in pixels.

A tile's geometric error defines the selection metric for that tile. Its value is a nonnegative
number that specifies the error, in meters, of the tile's simplified representation of its source
geometry. The root tile, being the most simplified version of the source geometry, will have
the greatest geometric error. Then each successive level of children will have a lower
geometric error than its parent, with leaf tiles having a geometric error of or close to 0.

In a client implementation, geometric error is used with other screen space metrics—e.g.,
distance from the tile to the camera, screen size, and resolution— to calculate the SSE
introduced if this tile is rendered and its children are not. If the introduced SSE exceeds the
maximum allowed, then the tile is refined and its children are considered for rendering.

The geometric error is formulated based on a metric like point density, tile size in meters, or
another factor specific to that tileset. In general, a higher geometric error means a tile will be
refined more aggressively, and children tiles will be loaded and rendered sooner.

Refinement. It is required for the root tile of a tileset; it is optional for all other tiles. A tileset
can use any combination of additive and replacement refinement. When the refine
property is omitted, it is inherited from the parent tile.

The content property is an object that contains metadata about the tile's renderable content.
content.uri is a uri that points to the tile's binary content (see Tile format specifications),
or another tileset JSON to create a tileset of tileset (see External tilesets).

A file extension is not required for content.uri. A content's tile format (see Tile format
specifications) can be identified by the magic field in its header, or else as an external tileset
if the content is JSON.

The content.boundingVolume property defines an optional bounding volume similar to the
top-level boundingVolume property. But unlike the top-level boundingVolume property,
content.boundingVolume is a tightly fit bounding volume enclosing just the tile's content.
boundingVolume provides spatial coherence and content.boundingVolume enables tight

30

view frustum culling, excluding from rendering any content not in the volume of what is
potentially in view. When it is not defined, the tile's bounding volume is still used for culling
(see Grids).

The screenshot below shows the bounding volumes for the root tile for Canary Wharf.
boundingVolume, shown in red, encloses the entire area of the tileset;

content.boundingVolume shown in blue, encloses just the four features (models) in the root
tile.

5 e

Figure 14: A tile bounding volume in red, and a content bounding volume in blue

The optional transform property (not shown above) defines a 4x4 affine transformation
matrix that transforms the tile's content, boundingVolume, and viewerRequestVolume as
described in the T section.

The children property is an array of objects that define child tiles. Each child tile's content
is fully enclosed by its parent tile's boundingVolume and, generally, a geometricError less
than its parent tile's geometricError. For leaf tiles, the length of this array is zero, and
children may not be defined.

31

6.8 Tileset JSON

3D Tiles uses one main tileset JSON file as the entry point to define a tileset. Both entry and
external tileset JSON files are not required to follow a specific naming convention.

Here is a subset of the tileset JSON used for Canary Wharf (also see the complete file,
tileset.json):

{
"asset" : {
"version": "1.0",
"tilesetVersion": "e575c6f1-a45b-420a-b172-6449fa6e0a59",
¥
"properties": {
"Height": {
"minimum": 1,
"maximum": 241.6
}
¥
"geometricError": 494.50961650991815,
"root": {

"boundingVolume": {
"region": [

-0.0005682966577418737,
0.8987233516605286,
0.00011646582098558159,
0.8990603398325034,
9,
241.6

]
s
"geometricError": 268.37878244706053,
"refine": "ADD",
"content": {
"uri": "0/0/0.b3dm",
"boundingVolume": {
"region": [
-0.0004001690908972599,
0.8988700116775743,
0.00010096729722787196,
0.8989625664878067,
9,
241.6

}s
32

"children": [..]
}
}

The tileset JSON has four top-level properties: asset, properties, geometricError, and
root.

asset is an object containing metadata about the entire tileset. The asset.version property
is a string that defines the 3D Tiles version, which specifies the JSON schema for the tileset
and the base set of tile formats. The tilesetVersion property is an optional string that
defines an application-specific version of a tileset, e.g., for when an existing tileset is updated.

properties is an object containing objects for each per-feature property in the tileset. This
tileset JSON snippet is for 3D buildings, so each tile has building models, and each building
model has a Height property (see Batch Table). The name of each object in properties
matches the name of a per-feature property, and its value defines its minimum and maximum
numeric values, which are useful, for example, for creating color ramps for styling.

geometricError is a nonnegative number that defines the error, in meters, when the tileset
is not rendered. See Tiles consist of metadata used to determine if a tile is rendered, a
reference to the renderable content, and an array of any children tiles.

Geometric error for how this value is used to drive refinement.

root is an object that defines the root tile using the JSON described in the above section.
root.geometricError is not the same as the tileset's top-level geometricError. The tileset's
geometricError is the error when the entire tileset is not rendered; root.geometricError
is the error when only the root tile is rendered.

root.children is an array of objects that define child tiles. Each child tile's content is fully
enclosed by its parent tile's boundingVolume and, generally, a geometricError less than its
parent tile's geometricError. For leaf tiles, the length of this array is zero, and children
may not be defined.

6.8.1 External tilesets

To create a tree of trees, a tile's content.uri can point to an external tileset (the uri of
another tileset JSON file). This enables, for example, storing each city in a tileset and then
having a global tileset of tilesets.

33

tileset.json

tileset.json tileset.json tileset.json tileset.json

Figure 15: A tileset JSON file with external tileset JSON files

When a tile points to an external tileset, the tile:

e Cannot have any children; tile.children must be undefined or an empty array.

34

e Cannot be used to create cycles, for example, by pointing to the same tileset file
containing the tile or by pointing to another tileset file that then points back to
the initial file containing the tile.

e Will be transformed by both the tile's transform and root tile's transform. For
example, in the following tileset referencing an external tileset, the computed
transform for T3 is [TO][T1][T2][T3].

T0

T1

References
external tileset

Figure 16: A tileset with transforms reférencing an external tileset with transforms

6.8.2 Bounding volume spatial coherence

As described above, the tree has spatial coherence; each tile has a bounding volume
completely enclosing its content, and the content for child tiles are completely inside the
parent's bounding volume. This does not imply that a child's bounding volume is completely
inside its parent's bounding volume. For example:

35

6.8.3 Spatial data structures

3D Tiles incorporates the concept of Hierarchical Level of Detail (HLOD) for optimal
rendering of spatial data. A tileset is composed of a tree, defined by root and, recursively, its
children tiles, which can be organized by different types of spatial data structures.

A runtime engine is generic and will render any tree defined by a tileset. Any combination
of tile formats and refinement approaches can be used, enabling flexibility in supporting
heterogeneous datasets, see Refinement.

A tileset may use a 2D spatial tiling scheme similar to raster and vector tiling schemes (like a
Web Map Tile Service (WMTS) or XYZ scheme) that serve predefined tiles at several levels
of detail (or zoom levels). However since the content of a tileset is often non-uniform or may
not easily be organized in only two dimensions, other spatial data structures may be more
optimal.

Included below is a brief description of how 3D Tiles can represent various spatial data
structures.

6.8.3.1 Quadtrees

A quadtree is created when each tile has four uniformly subdivided children (e.g., using the
center latitude and longitude), similar to typical 2D geospatial tiling schemes. Empty child
tiles can be omitted.

3D Tiles enable quadtree variations such as non-uniform subdivision and tight bounding
volumes (as opposed to bounding, for example, the full 25% of the parent tile, which is
wasteful for sparse datasets).

For example, here is the root tile and its children for Canary Wharf. Note the bottom left,
where the bounding volume does not include the water on the left where no buildings will
appear:

36

Salter Roacy

W Kiapisapy

Trading .',“

/
o ‘("4 Estate

< Mudchute S,
7 & Park ®

s‘;'l: = Lawrence Tradmg

@ o Estate
H Q.
g k. s

Figure 17: A root tile and its four children tiles

3D Tiles also enable other quadtree variations such as loose quadtrees, where child tiles
overlap but spatial coherence is still preserved, i.e., a parent tile completely encloses all of its
children. This approach can be useful to avoid splitting features, such as 3D models, across

tiles.

Below, the green buildings are in the left child and the purple buildings are in the right
child. Note that the tiles overlap so the two green and one purple building in the center are

not split.

37

West India Docks

Manilla Street

Mdr;}, wa/
< South Quay

Great

>
3
Eastern €
&

Entreprise 2
Greater
g B 2

‘aﬂsaM
Roay
uay

= Centre

Figure 18: Two sibling tiles with overlapping bounding volumes

6.8.3.2 K-d trees

A k-d tree is created when each tile has two children separated by a splitting plane parallel to
the x, y, or zaxis (or latitude, longitude, height). The split axis is often round-robin rotated as
levels increase down the tree, and the splitting plane may be selected using the median split,
surface area heuristics, or other approaches.

Note that a k-d tree does not have uniform subdivision like typical 2D geospatial tiling
schemes and, therefore, can create a more balanced tree for sparse and non-uniformly
distributed datasets.

3D Tiles enables variations on k-d trees such as multi-way k-d trees where, at each leaf of the
tree, there are multiple splits along an axis. Instead of having two children per tile, there are
n children.

6.8.3.3 Octrees

An octree extends a quadtree by using three orthogonal splitting planes to subdivide a tile
into eight children. Like quadtrees, 3D Tiles allows variations to octrees such as non-uniform
subdivision, tight bounding volumes, and overlapping children.

38

6.8.3.4 Grids

3D Tiles enables uniform, non-uniform, and overlapping grids by supporting an arbitrary
number of child tiles. For example, here is a top-down view of a non-uniform overlapping
grid of Cambridge:

) T @y, PN I
= lp STATION || !
5 ¥ LANDING Revet®
Lo
Gatewa 6‘{5\
g Center &
it Q.';éb %464
by] ‘ |'Tg
O -
"""" *
“| k- -
Wash . ~Mystic
'Pror
Massp
¥ Tre Neg)
Sebman, 3 BUNKER
o .}’
¥ &)
East Watertdgw:
¢
wn
I A 4)
03¢ Arsenal s¢ westerm AY© \ i@ 75 O 1
-\ T Aégest) P
! > o' ; o
)= Massafhusetts Tpke Mass oy @51 (RS / R
m = gam N ' =8 .
ToN & \20) ~CsX"Boston\, M 21 | P Charles River
NER | -~ : | ; |
OAk Souars ,? BRIGHTON b Commoni.n .o = -Q'nr".... ~ Rarx Rav { rd

Figure 19: A tileset with an overlapping grid spatial data structure

3D Tiles takes advantage of empty tiles: those tiles that have a bounding volume, but no
content. Since a tile's content property does not need to be defined, empty non-leaf tiles can
be used to accelerate non-uniform grids with hierarchical culling. This essentially creates a
quadtree or octree without hierarchical levels of detail (HLOD).

6.9 Specifying extensions and application specific extras

3D Tiles defines extensions to allow the base specification to have extensibility for new
features, as well as extras to allow for application specific metadata.

6.9.1 Extensions

Extensions allow the base specification to be extended with new features. The optional
extensions dictionary property may be added to any 3D Tiles JSON object, which contains
the name of the extensions and the extension specific objects. The following example shows

39

a tile object with a hypothetical vendor extension which specifies a separate collision

volume.
{
"transform": [
4.843178171884396, 1.2424271388626869, 0, 0,

-0.7993325488216595, 3.1159251367235608, 3.8278032889280675, 0O,
0.9511533376784163, -3.7077466670407433, 3.2168186118075526, 0,
1215001.7612985559, -4736269.697480114, 4081650.708604793, 1

1,
"boundingVolume": {
"box": [
Q, o, 6.701,
3.738, 0, 9,
Q, 3.72, 0,
Q, o, 13.402
]
¥

"geometricError": 32,
"content": {
"uri": "building.b3dm"
¥
"extensions": {
"VENDOR_collision_volume": {

"box": [
9, 9, 6.8,
3.8, 9, Q,
9, 3.8, 0,
9, 9, 13.5
]

}
}
}

All extensions used in a tileset or any descendant external tilesets must be listed in the entry
tileset JSON in the top-level extensionsUsed array property, e.g.,

{

"extensionsUsed": [
"VENDOR_collision_volume"

]
}

All extensions required to load and render a tileset or any descendant external tilesets must
also be listed in the entry tileset JSON in the top-level extensionsRequired array property,

40

such that extensionsRequired is a subset of extensionsUsed. All values in
extensionsRequired must also exist in extensionsUsed.

6.9.2 Extras

The extras property allows application specific metadata to be added to any 3D Tiles JSON

object. The following example shows a tile object with an additional application specific

name property.

{

}

"transform": [
4,843178171884396,
-0.7993325488216595,
0.9511533376784163,
1215001.7612985559,

1.2424271388626869,

3.1159251367235608,
-3.7077466670407433,
-4736269.697480114,

1,
"boundingVolume": {
"box": [
Q, 9, 6.701,
3.738, 0, 9,
Q, 3.72, 0,
Q, 9, 13.402
]
¥

"geometricError": 32,
"content": {

"uri": "building.b3dm"
}s
"extras": {

"name": "Empire State Building"
}

6.10 Tile format specifications

9, 9,
3.8278032889280675, O,
3.2168186118075526, O,
4081650.708604793, 1

Each tile's content.uri property may be the uri of binary blob that contains information for

rendering the tile's 3D content. The content is an instance of one of the formats listed in the
table below.

41

Format Uses

Batched 3D Model Heterogeneous 3D models. E.g. textured terrain and surfaces,
3D building exteriors and interiors, massive models.

Instanced 3D Model 3D model instances. E.g. trees, windmills, bolts.

Point Cloud

Composite

Massive number of points.

Concatenate tiles of different formats into one tile.

A tileset can contain any combination of tile formats. 3D Tiles may also support different
formats in the same tile using a Composite tile.

7 Property reference

7.1 Tileset

A 3D Tiles tileset.
Properties
Type Description Required
asset object Metadata about the entire tileset. Yes
properties any A dictionary object of metadata about per- No
feature properties.
geometricError number The error, in meters, introduced if this tileset Yes
is not rendered. At runtime, the geometric
error is used to compute screen space error
(SSE), i.e., the error measured in pixels.
root object A tile in a 3D Tiles tileset. Yes
extensionsUsed string Names of 3D Tiles extensions used No
[1-*] somewhere in this tileset.
extensionsRequired String Names of 3D Tiles extensions required to No
[1-*] properly load this tileset.
extensions object Dictionary object with extension-specific No
objects.
extras any Application-specific data. No

Additional properties are not allowed.

7.1.1 Tileset.asset

Metadata about the entire tileset.

+ Type: object

42

Required: Yes
7.1.2 Tileset.properties

A dictionary object of metadata about per-feature properties.

Type: any
Required: No
Type of each property: object

7.1.3 Tileset.geometricError

The error, in meters, introduced if this tileset is not rendered. At runtime, the geometric
error is used to compute screen space error (SSE), i.e., the error measured in pixels.

Type: number
Required: Yes

Minimum: >= ©
7.1.4 Tileset.root
A tile in a 3D Tiles tileset.

Type: object
Required: Yes

7.1.5 Tileset.extensionsUsed
Names of 3D Tiles extensions used somewhere in this tileset.

Type: string [1-*]
Each element in the array must be unique.

Required: No
7.1.6 Tileset.extensionsRequired
Names of 3D Tiles extensions required to properly load this tileset.

Type: string [1-*]
Each element in the array must be unique.

Required: No

43

7.1.7 Tileset.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

7.1.8 Tileset.extras
Application-specific data.

Type: any
Required: No

7.2 Asset
Metadata about the entire tileset.

Properties

Type Description Required

version string The 3D Tiles version. The version defines the Yes
JSON schema for the tileset JSON and the base set
of tile formats.

tilesetVersion string Application-specific version of this tileset, e.g., for No
when an existing tileset is updated.

extensions object Dictionary object with extension-specific objects. ~ No

extras any Application-specific data. No
Additional properties are not allowed.

7.2.1 Asset.version

The 3D Tiles version. The version defines the JSON schema for the tileset JSON and the base
set of tile formats.

Type: string
Required: Yes

44

7.2.2 Asset.tilesetVersion

Application-specific version of this tileset, e.g., for when an existing tileset is updated.

Type: string

Required: No

7.2.3 Asset.extensions

Dictionary object with extension-specific objects.

Type: object

Required: No

Type of each property: Extension

7.2.4 Asset.extras

Application-specific data.

Type: any
Required: No

7.3 Bounding Volume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

Properties
Type Description Required
box number An array of 12 numbers that define an oriented No
[12] bounding box. The first three elements define the x, y,
and z values for the center of the box. The next three
elements (with indices 3, 4, and 5) define the x axis
direction and half-length. The next three elements
(indices 6, 7, and 8) define the y axis direction and
half-length. The last three elements (indices 9, 10, and
11) define the z axis direction and half-length.
region rfgr;]ber‘ An array of six numbers that define a bounding No

geographic region in EPSG:4979 coordinates with the
order [west, south, east, north, minimum height,

45

maximum height]. Longitudes and latitudes are in
radians, and heights are in meters above (or below)

the WGS84 ellipsoid.
sphere number An array of four numbers that define a bounding No
[4] sphere. The first three elements define the x, y, and z

values for the center of the sphere. The last element
(with index 3) defines the radius in meters.

extensions object Dictionary object with extension-specific objects. No

extras any Application-specific data. No
Additional properties are not allowed.
7.3.1 BoundingVolume.box

An array of 12 numbers that define an oriented bounding box. The first three elements
define the x, y, and z values for the center of the box. The next three elements (with indices
3, 4, and 5) define the x axis direction and half-length. The next three elements (indices 6, 7,
and 8) define the y axis direction and half-length. The last three elements (indices 9, 10, and
11) define the z axis direction and half-length.

Type: number [12]
Required: No

7.3.2 BoundingVolume.region

An array of six numbers that define a bounding geographic region in EPSG:4979 coordinates
with the order [west, south, east, north, minimum height, maximum height]. Longitudes and
latitudes are in radians, and heights are in meters above (or below) the W(GS84 ellipsoid.

Type: number [6]
Required: No

7.3.3 BoundingVolume.sphere

An array of four numbers that define a bounding sphere. The first three elements define the
X, ¥, and z values for the center of the sphere. The last element (with index 3) defines the
radius in meters.

Type: number [4]
Required: No

46

7.3.4 BoundingVolume.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

7.3.5 BoundingVolume.extras
Application-specific data.

Type: any
Required: No

7.4 Extension
Dictionary object with extension-specific objects.
Additional properties are allowed.
Type of each property: object
7.5 Extras
Application-specific data.
7.6 Properties

A dictionary object of metadata about per-feature properties.

Properties
Type Description Required

maximum humber The maximum value of this property of all the features Yes

in the tileset.
minimum humber The minimum value of this property of all the features Yes

in the tileset.
extensions object Dictionary object with extension-specific objects. No
extras any Application-specific data. No

Additional properties are not allowed.

47

7.6.1 Properties.maximum

The maximum value of this property of all the features in the tileset.

Type: number
Required: Yes

7.6.2 Properties.minimum

The minimum value of this property of all the features in the tileset.

Type: number
Required: Yes

7.6.3 Properties.extensions

Dictionary object with extension-specific objects.

Type: object
Required: No

Type of each property: Extension

7.6.4 Properties.extras
Application-specific data.

Type: any
Required: No

7.7 Tile

A tile in a 3D Tiles tileset.

Properties
Type Description Required
boundingVolume object A bounding volume that encloses a Yes
tile or its content. Exactly one box,
region, or sphere property is
required.
viewerRequestVolume object A bounding volume that encloses a No

tile or its content. Exactly one box,

48

region, or sphere property is
required.
geometricError number The error, in meters, introduced if Yes
this tile is rendered and its children
are not. At runtime, the geometric
error is used to compute screen space
error (SSE), i.e., the error measured in
pixels.

refine string Specifies if additive or replacement No
refinement is used when traversing
the tileset for rendering. This
property is required for the root tile
of a tileset; it is optional for all other
tiles. The default is to inherit from
the parent tile.

transform number A floating-point 4x4 affine No, default:

[16] transformation matrix, stored in [1,0,0,0,

column-major order, that transforms ~ ©,1,90,80,
0,90,1,0,

0,0,0,1]

the tile's content--i.e., its features as
well as content.boundingVolume,
boundingVolume, and
viewerRequestVolume--from the
tile's local coordinate system to the
parent tile's coordinate system, or, in
the case of a root tile, from the tile's
local coordinate system to the tileset's
coordinate system. transform does not
apply to geometricError, nor does it
apply any volume property when the
volume is a region, defined in
EPSG:4979 coordinates.

content object Metadata about the tile's content and No
a link to the content.
children array[] An array of objects that define child No

tiles. Each child tile content is fully
enclosed by its parent tile's bounding

49

volume and, generally, has a
geometricError less than its parent
tile's geometricError. For leaf tiles,
the length of this array is zero, and
children may not be defined.

extensions object Dictionary object with extension- No
specific objects.

extras any Application-specific data. No

Additional properties are not allowed.
7.7.1 Tile.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

Type: object
Required: Yes

7.7.2 Tile.viewerRequestVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere
property is required.

Type: object

Required: No

7.7.3 Tile.geometricError

The error, in meters, introduced if this tile is rendered and its children are not. At runtime,
the geometric error is used to compute screen space error (SSE), i.e., the error measured in
pixels.

Type: number
Required: Yes

Minimum: >= ©

50

7.7.4 Tile.refine

Specifies if additive or replacement refinement is used when traversing the tileset for
rendering. This property is required for the root tile of a tileset; it is optional for all other
tiles. The default is to inherit from the parent tile.

Type: string
Required: No
Allowed values:

- "ADD"

- "REPLACE"

7.7.5 Tile.transform

A floating-point 4x4 affine transformation matrix, stored in column-major order, that
transforms the tile's content--i.e., its features as well as content.boundingVolume,
boundingVolume, and viewerRequestVolume--from the tile's local coordinate system to the
parent tile's coordinate system, or, in the case of a root tile, from the tile's local coordinate
system to the tileset's coordinate system. transform does not apply to geometricError, nor
does it apply any volume property when the volume is a region, defined in EPSG:4979
coordinates.

Type: number [16]
Required: No, default: [1,0,0,0,0,1,0,0,0,0,1,0,0,0,0,1]

7.7.6 Tile.content
Metadata about the tile's content and a link to the content.

Type: object
Required: No

7.7.7 Tile.children

An array of objects that define child tiles. Each child tile content is fully enclosed by its
parent tile's bounding volume and, generally, has a geometricError less than its parent tile's

geometricError. For leaf tiles, the length of this array is zero, and children may not be
defined.

Type: array[]
— Each element in the array must be unique.

51

Required: No
7.7.8 Tile.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

7.7.9 Tile.extras
Application-specific data.

Type: any
Required: No

7.8 Tile Content

Metadata about the tile's content and a link to the content.

Properties
Type Description Required

boundingVolume ©object A bounding volume that encloses a tile or its No
content. Exactly one box, region, or sphere
property is required.

uri string A uri that points to the tile's content. When Yes
the uri is relative, it is relative to the referring
tileset JSON file.

extensions object Dictionary object with extension-specific No
objects.

extras any Application-specific data. No

Additional properties are not allowed.

7.8.1 TileContent.boundingVolume

A bounding volume that encloses a tile or its content. Exactly one box, region, or sphere

property is required.

Type: object
52

Required: No
7.8.2 TileContent.uri

A uri that points to the tile's content. When the uri is relative, it is relative to the referring
tileset JSON file.

Type: string
Required: Yes

7.8.3 TileContent.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

7.8.4 TileContent.extras
Application-specific data.

Type: any
Required: No

8 Feature Table

8.1 Overview

A Feature Tableis a component of a tile's binary body and describes position and appearance
properties required to render each feature in a tile. The Batch Table, on the other hand,
contains per-feature application-specific properties not necessarily used for rendering.

A Feature Table is used by tile formats like Batched 3D Model (b3dm) where each model is a
feature, and Point Cloud (pnts) where each point is a feature.

Per-feature properties are defined using tile format-specific semantics defined in each tile
format's specification. For example, for /nstanced 3D Model, SCALE_NON_UNIFORM defines the
non-uniform scale applied to each 3D model instance.

53

8.2 Layout

A Feature Table is composed of two parts: a JSON header and an optional binary body in
little endian. The JSON property names are tile format-specific semantics, and their values
can either be defined directly in the JSON, or refer to sections in the binary body. It is more
efficient to store long numeric arrays in the binary body. The following figure shows the
Feature Table layout:

Feature Tabkle
s ~
\ /

JSON Header Binary Body

(UTF-8)

Figure 20: Feature Table layout

When a tile format includes a Feature Table, the Feature Table immediately follows the tile's
header. The header will also contain featureTableJSONBytelLength and
featureTableBinaryBytelLength uint32 fields, which can be used to extract each respective
part of the Feature Table.

8.2.1 Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The
JSON header must be padded with trailing Space characters (0x20) to satisfy this
requirement.

The binary body must start and end on an 8-byte boundary within the containing tile binary.
The binary body must be padded with additional bytes, of any value, to satisfy this
requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property's implicit component type. For example, a property with the implicit component
type FLOAT has 4 bytes per element, and therefore must start at an offset that is a multiple of
4. Preceding binary properties must be padded with additional bytes, of any value, to satisfy
this requirement.

8.2.2 JSON header

Feature Table values can be represented in the JSON header in three different ways:

54

1. A single value or object, e.g., "INSTANCES_LENGTH" : 4.

e This is used for global semantics like "INSTANCES_LENGTH", which defines the
number of model instances in an Instanced 3D Model tile.

2. An array of values, e.g., "POSITION" : [1.0, 0.0, 0.0, 0.0, 1.0, 0.0, 0.0,
0.0, 1.0].

e This is used for per-feature semantics like "POSITION" in Instanced 3D Model.
Above, each POSITION refers to a float32[3] data type so there are three
features: Feature 0's position=(1.0, 0.0, 0.0), Feature 1's
position=(0.0, 1.0, 0.9), Feature 2's position=(0.0, 0.0, 1.0).

3. A reference to data in the binary body, denoted by an object with a byteOffset
property, e.g., "SCALE" : { "byteOffset" : 24}.

e byteOffset specifies a zero-based offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of the
property's implicit component type, e.g., the "POSITION" property has the
component type FLOAT (4 bytes), so the value of byteOffset must be of a
multiple of 4.

e The semantic defines the allowed data type, e.g., when "POSITION" in
Instanced 3D Model refers to the binary body, the component type is FLOAT
and the number of components is 3.

e Some semantics allow for overriding the implicit component type. These cases
are specified in each tile format, e.g., "BATCH_ID" : { "byteOffset" : 24,
"componentType" : "UNSIGNED_BYTE"}.

The only valid properties in the JSON header are the defined semantics by the
tile format and optional extras and extensions properties. Application-
specific data should be stored in the Batch Table.

8.2.3 Binary body

When the JSON header includes a reference to the binary, the provided byteOffset is used

to index into the data. The following figure shows indexing into the Feature Table binary
body:

55

JSON Header Binary Body

POSITION: .
{byteOffset: 16} | i i
i

Figure 21: Feature Table binary body layout

Values can be retrieved using the number of features, featuresLength; the desired feature
id, featureld; and the data type (component type and number of components) for the
feature semantic.

8.3 Implementation example
This section Is non-normative

The following example accesses the position property using the POSITION semantic, which
has a float32[3] data type:

var byteOffset = featureTableJSON.POSITION.byteOffset;

var positionArray = new Float32Array(featureTableBinary.buffer, byteOffset, f
eaturesLength * 3); // There are three components for each POSITION feature.
var position = positionArray.subarray(featureld * 3, featureld * 3 + 3); // U
sing subarray creates a view into the array, and not a new array.

Code for reading the Feature Table can be found in Cesium3DTileFeatureTable js in the
Cesium implementation of 3D Tiles.

8.4 Property reference

8.4.1 Feature Table

A set of semantics containing per-tile and per-feature values defining the position and
appearance properties for features in a tile.

Properties
Type Description Required
extensions Object Dictionary object with extension-specific objects. No
extras any Application-specific data. No

56

Additional properties are allowed.
Type of each property: Property
8.4.1.1 FeatureTable.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

8.4.1.2 FeatureTable.extras
Application-specific data.

Type: any
Required: No

8.4.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where
the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.
8.4.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

Type: number
Required: Yes

Minimum: >= @
8.4.3 Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

57

9 Batch Table

9.1 Overview

A Batch Table is a component of a tile's binary body and contains per-feature application-
specific properties in a tile. These properties are queried at runtime for declarative styling
and any application-specific use cases such as populating a Ul or issuing a REST API request.
Some example Batch Table properties are building heights, geographic coordinates, and
database primary keys.

A Batch Table is used by the following tile formats:

e Batched 3D Model (b3dm)
e Instanced 3D Model (i3dm)
e Point Cloud (pnts)

9.2 Layout

A Batch Table is composed of two parts: a JSON header and an optional binary body in little
endian. The JSON describes the properties, whose values either can be defined directly in the
JSON as an array, or can refer to sections in the binary body. It is more efficient to store long
numeric arrays in the binary body. The following figure shows the Batch Table layout:

Batch Table

- =
iy -

JSON Header Binary Body

(UTF-2)

Figure 22: Batch Table layout

When a tile format includes a Batch Table, the Batch Table immediately follows the tile's
Feature Table.

The header will also contain batchTableJSONBytelLength and
batchTableBinaryBytelLength uint32 fields, which can be used to extract each respective
part of the Batch Table.

58

9.2.1 Padding

The JSON header must end on an 8-byte boundary within the containing tile binary. The
JSON header must be padded with trailing Space characters (0x20) to satisfy this
requirement.

The binary body must start and end on an 8-byte boundary within the containing tile binary.
The binary body must be padded with additional bytes, of any value, to satisfy this
requirement.

Binary properties must start at a byte offset that is a multiple of the size in bytes of the
property's componentType. For example, a property with the component type FLOAT has 4
bytes per element, and therefore must start at an offset that is a multiple of 4. Preceding
binary properties must be padded with additional bytes, of any value, to satisfy this
requirement.

9.2.2 JSON header
Batch Table values can be represented in the JSON header in two different ways:

1. An array of values, e.g., "name": ['namel’, 'name2', 'name3'] or "height" :
[10.0, 20.0, 15.0].

e Array elements can be any valid JSON data type, including objects and arrays.
Elements may be null.

e The length of each array is equal to batchLength, which is specified in each
tile format. This is the number of features in the tile. For example,
batchLength may be the number of models in a b3dm tile, the number of
instances in a i3dm tile, or the number of points (or number of objects) in a
pnts tile.

2. A reference to data in the binary body, denoted by an object with byteOffset,
componentType, and type properties, e.g., "height" : { "byteOffset" : 24,
"componentType" : "FLOAT", "type" : "SCALAR"}.

e byteOffset specifies a zero-based offset relative to the start of the binary
body. The value of byteOffset must be a multiple of the size in bytes of the
property's componentType, e.g., a property with the component type FLOAT
must have a byteOffset value that is a multiple of 4.

e componentType is the datatype of components in the attribute. Allowed values
are "BYTE", "UNSIGNED_BYTE", "SHORT", "UNSIGNED_SHORT", "INT",
"UNSIGNED_INT", "FLOAT", and "DOUBLE".

59

e type specifies if the property is a scalar or vector. Allowed values are
"SCALAR", "VEC2", "VEC3", and "VEC4".

The Batch Table JSON is a UTF -8 string containing JSON.

Implementation Note: In JavaScript, the Batch Table JSON can be extracted from an ArrayBuffer using the
TextDecoder JavaScript API and transformed to a JavaScript object with JSON. parse.

A batchId is used to access elements in each array and extract the corresponding properties.
For example, the following Batch Table has properties for a batch of two features:

{

"id" : ["unique id", "another unique id"],

"displayName" : ["Building name", "Another building name"],

"yearBuilt" : [1999, 2015],

"address" : [{"street" : "Main Street", "houseNumber" : "1"}, {"street"
"Main Street", "houseNumber" : "2"}]

}

The properties for the feature with batchId = 0 are

id[@] = 'unique id';

displayName[@] = 'Building name';

yearBuilt[@] = 1999;

address[0] = {street : 'Main Street', houseNumber : '1'};

The properties for batchId = 1 are
id[1] = 'another unique id';
displayName[1] = "Another building name';

yearBuilt[1] = 2015;
address[1] = {street : 'Main Street', houseNumber : '2'};

9.2.3 Binary body

When the JSON header includes a reference to the binary section, the provided byteOffset
is used to index into the data, as shown in the following figure:

60

JSON Header Binary Body

id: { : E |
componentType: “INI”, | ! |
type: “SCALAR”, e :
byteCffset: 16 0 16 batchTableBinaryByteLength

A

Figure 23: Batch Table binary body layout

Values can be retrieved using the number of features, batchLength; the desired batch id,
batchId; and the componentType and type defined in the JSON header.

The following tables can be used to compute the byte size of a property.

componentType Size in bytes
"BYTE"

"UNSIGNED_BYTE"
"SHORT"
"UNSIGNED_SHORT"
"INT"
"UNSIGNED_INT"
"FLOAT"

"DOUBLE"

0 B B R NN = =

type Number of components
"SCALAR" 1

IIVECZII 2
IIVEC3II 3
"VEC4" 4

9.3 Implementation example
This section Is non-normative

The following examples access the "height" and "geographic" values respectively given the
following Batch Table JSON with batchLength of 10:

61

"height" : {
"byteOffset" : 0,
"componentType" : "FLOAT",
"type" : "SCALAR"

¥

"geographic" : {
"byteOffset" : 40,
"componentType" : "DOUBLE",
"type" : "VEC3"

}

To get the "height" values:

var height = batchTableJSON.height;

var byteOffset = height.byteOffset;

var componentType = height.componentType;
var type = height.type;

var heightArrayBytelLength = batchLength * sizeInBytes(componentType) * number
OfComponents(type); // 160 * 4 * 1

var heightArray = new Float32Array(batchTableBinary.buffer, byteOffset, heigh
tArrayBytelLength);

var heightOfFeature = heightArray[batchId];

To get the "geographic" values:

var geographic = batchTableJSON.geographic;

var byteOffset = geographic.byteOffset;

var componentType = geographic.componentType;

var type = geographic.type;

var componentSizeInBytes = sizeInBytes(componentType)
var numberOfComponents = numberOfComponents(type);

var geographicArrayBytelLength = batchLength * componentSizeInBytes * numberOf
Components // 16 * 8 * 3

var geographicArray = new Float64Array(batchTableBinary.buffer, byteOffset, g
eographicArrayBytelLength);

// Using subarray creates a view into the array, and not a new array.
var geographicOfFeature = positionArray.subarray(batchId * numberOfComponents
, batchId * numberOfComponents + numberOfComponents);

Code for reading the Batch Table can be found in Cesium3DTileBatchTable js in the Cesium
implementation of 3D Tiles.

62

9.4 Property reference

9.4.1 Batch Table
A set of properties defining application-specific metadata for features in a tile.

Properties

Type Description Required

extensions ©Object Dictionary object with extension-specific objects. No

extras any Application-specific data. No

Additional properties are allowed.

Type of each property: Property

9.4.1.1 BatchTable.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

9.4.1.2 BatchTable.extras
Application-specific data.

Type: any
Required: No

9.4.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the batch table where the

property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

componentType String The datatype of components in the property. Yes

63

type

string Specifies if the property is a scalar or vector.

Additional properties are allowed.

9.42.1 BinaryBodyReference.byteOffset

The offset into the buffer in bytes.

Type: number

Required: Yes

Minimum: >= ©

9.4.2.2 BinaryBodyReference.componentType

The datatype of components in the property.

Type: string

Required: Yes
Allowed values:

"BYTE"
"UNSIGNED_BYTE"
"SHORT"
"UNSIGNED_SHORT"
"INT"
"UNSIGNED_INT"
"FLOAT"

"DOUBLE"

9.4.2.3 BinaryBodyReference.type

Specifies if the property is a scalar or vector.

Type: string

Required: Yes
Allowed values:

"SCALAR"
"VEC2"
"VEC3"
"VEC4"

64

Yes

9.4.3 Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10 Tile format specifications

Each tile's content.uri property points to a tile that is one of the formats listed in the table
below.

Format Uses

Batched 3D Model =~ Heterogeneous 3D models. E.g. textured terrain and surfaces, 3D
(b3dm) building exteriors and interiors, massive models.

Instanced 3D Model 3D model instances. E.g. trees, windmills, bolts.
(i3dm)

Point Cloud (pnts) Massive number of points.

Composite (cmpt) Concatenate tiles of different formats into one tile.

A tileset can contain any combination of tile formats. 3D Tiles may also support different
formats in the same tile using a Composite tile.

10.1 Batched 3D Model

10.1.1 Overview

Batched 3D Model allows offline batching of heterogeneous 3D models, such as different
buildings in a city, for efficient streaming to a web client for rendering and interaction.
Efficiency comes from transferring multiple models in a single request and rendering them in
the least number of WebGL draw calls necessary. Using the core 3D Tiles spec language, each
model is a feature.

Per-model properties, such as IDs, enable individual models to be identified and updated at
runtime, e.g., show/hide, highlight color, etc. Properties may be used, for example, to query a
web service to access metadata, such as passing a building's ID to get its address. Or a
property might be referenced on the fly for changing a model's appearance, e.g., changing
highlight color based on a property value.

65

A Batched 3D Model tile is a binary blob in little endian.

10.1.2 Layout

A tile is composed of two sections: a header immediately followed by a body. The following
figure shows the Batched 3D Model layout (dashes indicate optional fields):

28-byte header (first 20 bytes)

magic version byteLength featureTableJSONByteLength featureTableBinaryByteLength
(unsigned char[4]) (uint32) (uint32) (uint32) (uint32)

28-byte header (next 8 bytes)

batchTableJSONByteLength | batchTableBinaryByteLength
(uint32) (uint32)

featureTable | batchTable Binary glTF

——
- =~
(/ External \1
N data //

- -

Figure 24: Batched 3D Model layout

10.1.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table and
Batch Table must conform to their respective padding requirement.

The binary gITF must start and end on an 8-byte boundary so that glTF's byte-alignment
guarantees are met. This can be done by padding the Feature Table or Batch Table if they are

present.
10.1.3 Header

The 28-byte header contains the following fields:

Field name Data type Description

66

magic 4-byte ANSI

string
version uint32
bytelLength uint32

featureTableJSONBytelLength uint32

featureTableBinaryBytelLength uint32

batchTableJSONBytelLength uint32

batchTableBinaryBytelength uint32

"b3dm". This can be used to identify
the content as a Batched 3D Model
tile.

The version of the Batched 3D Model
format. It is currently 1.

The length of the entire tile, including
the header, in bytes.

The length of the Feature Table JSON
section in bytes.

The length of the Feature Table binary
section in bytes.

The length of the Batch Table JSON
section in bytes. Zero indicates there is
no Batch Table.

The length of the Batch Table binary
section in bytes. If
batchTableJSONBytelLength is zero,
this will also be zero.

The body section immediately follows the header section, and is composed of three fields:

Feature Table, Batch Table, and Binary glTF.
10.1.4 Feature Table

Contains values for b3dm semantics.

More information is available in the Feature Table specification.

10.1.4.1 Semantics
10.1.4.1.1 Feature semantics

There are currently no per-feature semantics.

10.1.4.1.2 Global semantics

These semantics define global properties for all features.

Semantic Data Type Description

Required

67

BATCH_LENGTH uint32 The number of distinguishable models, also Yes.
called features, in the batch. If the Binary
glTF does not have a batchId attribute, this
field must be o.

RTC_CENTER float32[3] A 3-component array of numbers defining the No.

center position when positions are defined
relative-to-center, (see Coordinate system).

10.1.5 Batch Table

The Batch Table contains per-model application-specific metadata, indexable by batchId,
that can be used for declarative styling and application-specific use cases such as populating a
Ul or issuing a REST API request. In the binary glTF section, each vertex has an numeric
batchId attribute in the integer range [0, number of models in the batch - 1].The
batchId indicates the model to which the vertex belongs. This allows models to be batched
together and still be identifiable.

See the Batch Table reference for more information.
10.1.6 Binary gITF
Batched 3D Model embeds glTF 2.0 containing model geometry and texture information.

The binary gITF immediately follows the Feature Table and Batch Table. It may embed all of
its geometry, texture, and animations, or it may refer to external sources for some or all of
these data.

As described above, each vertex has a batchId attribute indicating the model to which it
belongs. For example, vertices for a batch with three models may look like this:

batchld: [@6, ©, ©, ..., 1, 1, 1, ..., 2, 2, 2, ...]
position: [Xyz, XyzZ, XYZ, ..., XYZ, XYZ, XYZ, «ee, XYZ, XYZ, XYZ, «..]
normal: [xyz, xyz, Xyz, ..., XYz, XYZ, XYZ, .., XYZ, XYZ, XYZ, ...]

Vertices do not need to be ordered by batchId, so the following is also OK:

batchld: [0, 1, 2, ..., 2, 1, ©, ..., 1, 2, o, ...]
position: [Xyz, XyzZ, XYZ, ..., XYZ, XYZ, XYZ, «ee, XYZ, XYZ, XYZ, «..]
normal: [xyz, xyz, Xyz, ..., XYz, XYZ, XYZ, .., XYZ, XYZ, XYZ, ...]

Note that a vertex can't belong to more than one model; in that case, the vertex needs to be
duplicated so the batchIds can be assigned.

68

The batchId parameter is specified in a glTF mesh primitive by providing the _BATCHID
attribute semantic, along with the index of the batchId accessor. For example,
"primitives": [

{
"attributes": {

"_BATCHID": ©
}

"accessors": [

{
"bufferView": 1,

"byteOffset": 0,
"componentType": 5125,
"count": 4860,

"max": [2],

"min": [©],

"type": "SCALAR"

}

The accessor.type must be a value of "SCALAR". All other properties must conform to the
glTF schema, but have no additional requirements.

When a Batch Table is present or the BATCH_LENGTH property is greater than 0, the _BATCHID
attribute is required; otherwise, it is not.

10.1.6.1 Coordinate system

By default embedded glTFs use a right handed coordinate system where the y-axis is up. For
consistency with the z-up coordinate system of 3D Tiles, gl TFs must be transformed at
runtime. See glTF transforms for more details.

Vertex positions may be defined relative-to-center for high-precision rendering, see
Precisions, Precisions. If defined, RTC_CENTER specifies the center position that all vertex
positions are relative to after the coordinate system transform and glTF node hierarchy
transforms have been applied.

69

10.1.7 File extension and MIME type

Batched 3D Model tiles use the .b3dm extension and application/octet-stream MIME
type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

10.1.8 Implementation example
This section Is non-normative

Code for reading the header can be found in
Batched3DModelTileContent.js
in the Cesium implementation of 3D Tiles.

10.1.8.1 Property reference
10.1.8.1.1 Batched 3D Model Feature Table

A set of Batched 3D Model semantics that contain additional information about features in a

tile.

Properties
Type Description Required
extensions object Dictionary object with extension-specific No
objects.
extras any Application-specific data. No
BATCH_LENGTH object, A GlobalPropertyScalar object defininga Yes
number [1], numeric property for all features. See the
number corresponding property semantic in
Semantics.
RTC_CENTER object, A GlobalPropertyCartesian3 object No
number [3] defining a 3-component numeric

Additional properties are allowed.

property for all features. See the
corresponding property semantic in
Semantics.

70

Type of each property: Property
10.1.8.1.1.1Batched3DModelFeatureTable.extensions
Dictionary object with extension-specific objects.

Type: object
Required: No
Type of each property: Extension

10.1.8.1.1.2Batched3DModelFeatureTable.extras
Application-specific data.

Type: any
Required: No

10.1.8.1.1.3Batched3DModelFeatureTable. BATCH LENGTH

A GlobalPropertyCartesian3 object defining a numeric property for all features. See the
corresponding property semantic in Semantics.

Type: object, number [1], number
Required: Yes

10.1.8.1.1.4Batched3DModelFeatureTable. RTC_CENTER

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics.

Type: object, number [3]
Required: No

10.1.8.1.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where
the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

71

Additional properties are allowed.
10.1.8.1.2.1BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

Type: number
Required: Yes

Minimum: >= @
10.1.8.1.3 GlobalPropertyCartesian3
An object defining a global 3-component numeric property values for all features.
10.1.8.1.4 GlobalPropertyScalar
An object defining a global numeric property values for all features.
10.1.8.1.5 Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10.2 Instanced 3D Model

10.2.1 Overview

Instanced 3D Modelis a tile format for efficient streaming and rendering of a large number
of models, called instances, with slight variations. In the simplest case, the same tree model,
for example, may be located—or instanced—in several places. Each instance references the
same model and has per-instance properties, such as position. Using the core 3D Tiles spec
language, each instance is a feature.

In addition to trees, Instanced 3D Model is useful for exterior features such as fire hydrants,
sewer caps, lamps, and traffic lights, and for interior CAD features such as bolts, valves, and
electrical outlets.

An Instanced 3D Model tile is a binary blob in little endian.

Implementation Note: A Composite tile can be used to create tiles with different types of instanced models, e.g.,
trees and traffic lights by combing two Instanced 3D Model tiles.

Implementation Note: Instanced 3D Model maps well to the ANGLE_instanced_arrays extension for efficient
rendering with WebGL.

72

10.2.2 Layout

A tile is composed of a header section immediately followed by a binary body. The following
figure shows the Instanced 3D Model layout (dashes indicate optional fields):

32-byte header (first 20 bytes)

featureTableBinaryByteLength

(uinc32)

featureTableJSONByteLength
(uint32)

byteLength
(uint32)

version

(uinc32)

magic
(unsign nar[4])

32-byte header (next 12 bytes)

gltfFormat

batchTableJSCNByteLength
: (uint32)

(uint32)

batchTableBinaryByteLength
(uint32)

data
AN e

Figure 25: Instanced 3D Model layout

10.2.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table and
Batch Table must conform to their respective padding requirement.

The binary glTF (if present) must start and end on an 8-byte boundary so that glTF's byte-
alignment guarantees are met. This can be done by padding the Feature Table or Batch Table

if they are present.

Otherwise, if the glTF field is a UTF-8 string, it must be padded with trailing Space
characters (0x20) to satisfy alignment requirements of the tile, which must be removed at
runtime before requesting the gITF asset.

10.2.3 Header
The 32-byte header contains the following fields:

Field name Datatype Description

magic 4-byte "i3dm". This can be used to identify the
ANSI string content as an Instanced 3D Model tile.

73

version uint32 The version of the Instanced 3D Model
format. It is currently 1.

byteLength uint32 The length of the entire tile, including
the header, in bytes.
featureTableJSONBytelLength uint32 The length of the Feature Table JSON
section in bytes.
featureTableBinaryBytelLength uint32 The length of the Feature Table binary
section in bytes.
batchTableJSONByteLength uint32 The length of the Batch Table JSON

section in bytes. Zero indicates that
there is no Batch Table.

batchTableBinaryByteLength uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero, this
will also be zero.

gltfFormat uint32 Indicates the format of the glTF field of
the body. 0 indicates it is a uri, 1
indicates it is embedded binary gITF. See
the gl TF section below.

The body section immediately follows the header section and is composed of three fields:
Feature Table, Batch Table, and glTF.

10.2.4 Feature Table

The Feature Table contains values for i3dm semantics used to create instanced models.
More information is available in the Feature Table specification.

10.2.4.1 Semantics
10.2.4. 1.1 Instance semantics

These semantics map to an array of feature values that are used to create instances. The
length of these arrays must be the same for all semantics and is equal to the number of
instances.

The value for each instance semantic must be a reference to the Feature Table binary body;
they cannot be embedded in the Feature Table JSON header.

74

If a semantic has a dependency on another semantic, that semantic must be defined.
If both SCALE and SCALE_NON_UNIFORM are defined for an instance, both scaling operations

will be applied.

If both POSITION and POSITION_QUANTIZED are defined for an instance, the higher precision

POSITION will be used.

If NORMAL_UP, NORMAL_RIGHT, NORMAL_UP_OCT32P, and NORMAL_RIGHT_OCT32P are defined for

an instance, the higher precision NORMAL_UP and NORMAL_RIGHT will be used.

Semantic Data Type Description Required

POSITION float32[3] A 3-component array of Yes, unless
numbers containing x, y, POSITION_QUANTIZED
and z Cartesian is defined.
coordinates for the
position of the instance.

POSITION_QUANTIZED = uintl6[3] A 3-component array of Yes, unless POSITION
numbers containing x, y, is defined.
and z in quantized
Cartesian coordinates
for the position of the
instance.

NORMAL_UP float32[3] A unit vector defining No, unless
the up direction for the NORMAL_RIGHT is
orientation of the defined.
instance.

NORMAL_RIGHT float32[3] A unit vector defining No, unless NORMAL_UP
the right direction for is defined.
the orientation of the
instance. Must be
orthogonal to up.

NORMAL_UP_OCT32P uintl6[2] An oct-encoded unit No, unless

vector with 32-bits of
precision defining the
up direction for the
orientation of the
instance.

75

NORMAL_RIGHT_OCT32P
is defined.

NORMAL_RIGHT_OCT32P uint16[2] An oct-encoded unit No, unless
vector with 32-bits of NORMAL_UP_OCT32P is
precision defining the defined.
right direction for the
orientation of the
instance. Must be
orthogonal to up.

SCALE float32 A number defining a No.
scale to apply to all axes
of the instance.

SCALE_NON_UNIFORM float32[3] A 3-component array of No.
numbers defining the
scale to apply to the x, y,
and z axes of the

instance.
BATCH_ID uints, The batchId of the No.
uintleé instance that can be
(default), or 3s5ed to retrieve

uint32 metadata from the

Batch Table.

10.2.4.1.2 Global semantics

These semantics define global properties for all instances.

Semantic Data Type Description Required

INSTANCES_LENGTH uint32 The number of instances ~ Yes.
to generate. The length of
each array value for an
instance semantic should
be equal to this.

RTC_CENTER float32[3 A 3-component array of No.
] numbers defining the
center position when
instance positions are
defined relative-to-center.

76

QUANTIZED_VOLUME_O float32[3 A 3-component array of No, unless

FRSET] numbers defining the POSITION_QUANTIZED
offset for the quantized is defined.
volume.

QUANTIZED_VOLUME_S float32[3 A 3-C0mp0nent array of No, unless

CALE] numbers defining the POSITION_QUANTIZED
scale for the quantized is defined.
volume.

EAST_NORTH_UP boolean When true and per- No.

instance orientation is not
defined, each instance will
default to the
east/north/up reference
frame's orientation on the
WGS84 ellipsoid.

Examples using these semantics can be found in the examples section.
10.2.4.2 Instance orientation

An instance's orientation is defined by an orthonormal basis created by an up and right
vector. The orientation will be transformed by the Tile transform.

The x vector in the standard basis maps to the right vector in the transformed basis, and the
y vector maps to the up vector.

The z vector would map to a forward vector, but it is omitted because it will always be the
cross product of right and up.

77

Figure 26: A box in the standard basis

right
X

Figure 27: A box transformed into a rotated basis

10.2.4.2 1 Oct-encoded normal vectors

If NORMAL_UP and NORMAL_RIGHT are not defined for an instance, its orientation may be
stored as oct-encoded normals in NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P.
These define up and right using the oct-encoding described in A Survey of Efficient

78

Representations of Independent Unit Vectors. Oct-encoded values are stored in unsigned,
unnormalized range ([0, 65535]) and then mapped to a signed normalized range ([-1.0,
1.0]) at runtime.

An implementation for encoding and decoding these unit vectors can be found in Cesium's
AttributeCompression
module.

10.2.4.2.2 Defaulr orientation

If NORMAL_UP and NORMAL_RIGHT or NORMAL_UP_OCT32P and NORMAL_RIGHT_OCT32P are not
present, the instance will not have a custom orientation. If EAST_NORTH_UP is true, the
instance is assumed to be on the WGS84 ellipsoid and its orientation will default to the
east/north/up reference frame at its cartographic position.

This is suitable for instanced models such as trees whose orientation is always facing up from
their position on the ellipsoid's surface.

10.2.4.3 Instance position
POSITION defines the location for an instance before any tile transforms are applied.
10.2.43.1 RTC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position and all instance positions are
treated as relative to this value.

10.2.4.3.2 Quantized positions

If POSITION is not defined for an instance, its position may be stored in
POSITION_QUANTIZED, which defines the instance position relative to the quantized volume.
If neither POSITION or POSITION_ QUANTIZED are defined, the instance will not be created.

A quantized volume is defined by offset and scale to map quantized positions into local
space, as shown in the following figure:

79

scale.y

(xy,2) scale.z
Figure 28: A quantized volume

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in
the global semantic QUANTIZED_VOLUME_SCALE.
If those global semantics are not defined, POSITION_QUANTIZED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 +
QUANTIZED_VOLUME_OFFSET

10.2.4.4 Instance scaling

Scaling can be applied to instances using the SCALE and SCALE_NON_UNIFORM semantics.
SCALE applies a uniform scale along all axes, and SCALE_NON_UNIFORM applies scaling to the x,
y, and z axes independently.

80

10.2.4.5 Examples
These examples show how to generate JSON and binary buffers for the Feature Table.
10.2.4.5.1 Positions only

In this minimal example, we place four instances on the corners of a unit length square with
the default orientation:

var featureTablelSON = {
INSTANCES_LENGTH : 4,
POSITION : {
byteOffset : 0
}
}s

var featureTableBinary = new Buffer(new Float32Array([
0.0, 0.9, 0.9,

0, 0.0,

.0, 1.0,

0, 1.0

10.2.4.5.2 Quantized positions and oct-encoded normals

In this example, the four instances will be placed with an orientation up of [0.0, 1.0, 0.0]
and right of [1.0, 0.0, ©.0] in oct-encoded format

and they will be placed on the corners of a quantized volume that spans from -250.0 to
250.0 units in the x and z directions:

var featureTablelSON = {
INSTANCES_LENGTH : 4,
QUANTIZED_VOLUME_OFFSET : [-250.0, 0.0, -250.0],
QUANTIZED VOLUME_SCALE : [500.0, 0.0, 500.0],
POSITION_QUANTIZED : {
byteOffset : 0
¥
NORMAL_UP_OCT32P : {
byteOffset : 24
¥
NORMAL_RIGHT_OCT32P : {
byteOffset : 40
}
}s

81

var positionQuantizedBinary = new Buffer(new Uintl6Array([
0, 0, 0,
65535, o, o,
0, 0, 65535,
65535, 0, 65535
1) .buffer);

var normalUpOct32PBinary = new Buffer(new Uintl6Array([
32768, 65535,
32768, 65535,
32768, 65535,
32768, 65535
1) .buffer);

var normalRightOct32PBinary = new Buffer(new Uintl6Array([
65535, 32768,
65535, 32768,
65535, 32768,
65535, 32768
1) .buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary, normalUpOct3
2PBinary, normalRightOct32PBinary]);

10.2.5 Batch Table

Contains metadata organized by batchId that can be used for declarative styling. See the
Batch Table reference for more information.

10.2.6 gITF
Instanced 3D Model embeds gITF 2.0 containing model geometry and texture information.

The gITF asset to be instanced is stored after the Feature Table and Batch Table. It may
embed all of its geometry, texture, and animations, or it may refer to external sources for
some or all of these data.

header.gltfFormat determines the format of the glTF field

When the value of header.gltfFormat is @, the glTF field is a UTF-8 string, which
contains a uri of the glTF or binary glTF model content.

When the value of header.gltfFormat is 1, the glTF field is a binary blob containing
binary gl TF.

82

In either case, header.gltfByteLength contains the length of the gITF field in bytes.
10.2.6.1 Coordinate system

By default glTFs use a right handed coordinate system where the y-axis is up. For consistency
with the z-up coordinate system of 3D Tiles, glTFs must be transformed at runtime. See glTF
transforms for more details.

10.2.7 File extension and MIME type

Instanced 3D models tiles use the .i3dm extension and application/octet-stream MIME
type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

10.2.8 Property reference
10.2.8.1 Instanced 3D Model Feature Table

A set of Instanced 3D Model semantics that contains values defining the position and
appearance properties for instanced models in a tile.

Properties
Type Description Required
extensions object Dictionary object with No
extension-specific objects.
extras any Application-specific data. No
POSITION object A BinaryBodyReference object ~ No
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.
POSITION_QUANTIZE object A BinaryBodyReference object ~ No
D defining the reference to a

section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.

83

NORMAL_UP

NORMAL_RIGHT

NORMAL_UP_OCT32P

NORMAL_RIGHT_OCT3

2P

SCALE

SCALE_NON_UNIFORM

object

object

object

object

object

object

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding

property semantic in Semantics.

84

No

No

No

BATCH_ID object A BinaryBodyReference object ~ No
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in Semantics.

INSTANCES_LENGTH object, A GlobalPropertyScalar object Yes
number [1], defining a numeric property for
number all features. See the

corresponding property
semantic in Semantics.

QUANTIZED_VOLUME object, A GlobalPropertyCartesian3 No
_OFFSET number [3] object defining a 3-component
numeric property for all
features. See the corresponding
property semantic in Semantics.

QUANTIZED_VOLUME object, A GlobalPropertyCartesian3 No
_SCALE number [3] object defining a 3-component
numeric property for all
features. See the corresponding
property semantic in Semantics.

Additional properties are allowed.
Type of each property: Property
10.2.8.1.1 Instanced3DModelFeature1able.extensions
Dictionary object with extension-specific objects.
Type: object
Required: No
Type of each property: Extension
10.2.8.1.2 Instanced3DModelFeaturelable.extras

Application-specific data.

Type: any
Required: No
85

10.2.8. 1.3 Instanced3DModelFeatureTable. POSITION

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.2.8.1.4 Instanced3DModelFeatureTable. POSITION QUANTIZED

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.2.8.1.5 Instanced3DModelFeatureTable. NORMAL UP

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.2.8.1.6 Instanced3DModelFeatureTable. NORMAIL RIGHT

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.2.8.1.7 Instanced3DModelFeatureTable. NORMAL UP_ OCT32P

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.
Type: object
Required: No

10.2.8.1.8 Instanced3DModelFeatureTable. NORMAL RIGHT OCT32P

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.
86

Type: object
Required: No

10.2.8. 1.9 Instanced3DModelFeatureTable. SCALE

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

102.8.1.10 Instanced3DModelFeatureTable. SCALE NON _ UNIFORM

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

102.8.1.11 Instanced3DModelFeatureTable. BATCH ID

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

102.8.1.12 Instanced3DModelFeatureTable. INSTANCES LENGTH

A GlobalPropertyScalar object defining a numeric property for all features. See the
corresponding property semantic in Semantics.

Type: object, number [1], number
Required: Yes

10.2.8.1.13 Instanced3DModelFeatureTable. QUANTIZED VOLUME OFFSET

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics.

Type: object, number [3]
Required: No

87

10.2.8.1.14 Instanced3DModelFeatureTable. QUANTIZED VOLUME SCALE

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all
features. See the corresponding property semantic in Semantics.

Type: object, number [3]
Required: No

10.2.8.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where
the property values are stored if not defined directly in the JSON.

Properties

Type Description Required
byteOffset nhumber The offset into the buffer in bytes. Yes

Additional properties are allowed.
10.2.8.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

Type: number
Required: Yes

Minimum: >= ©

10.2.8.3 GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.

10.2.8.4 GlobalPropertyScalar

An object defining a global numeric property values for all features.

88

10.2.8.5 Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10.3 Point Cloud

10.3.1 Overview

The Point Cloud tile format enables efficient streaming of massive point clouds for 3D
visualization. Each point is defined by a position and by optional properties used to define its
appearance, such as color and normal, as well as optional properties that define application-
specific metadata.

Using 3D Tiles terminology, each point is a feature.
A Point Cloud tile is a binary blob in little endian.
10.3.2 Layout

A tile is composed of a header section immediately followed by a body section. The following
figure shows the Point Cloud layout (dashes indicate optional fields):

28-byte header (first 20 bytes)

magic version | byteLength | featureTableJSONByteLength | featureTableBinaryByteLength B
(unsigned char[4]) (uint32) (uint32) (uint32) (uint32)

28-byte header (next 8 bytes)

batchTableJSONBytelength | batchTableBinaryByteLength
(uint32) (uint32)

featureTable | batchTable
|

Figure 29: Point Cloud layout

10.3.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. The contained Feature Table and
Batch Table must conform to their respective padding requirement.

89

10.3.3 Header

The 28-byte header contains the following fields:

Field name Data type Description
magic 4-byte ANSI "pnts". This can be used to identify
string the content as a Point Cloud tile.
version uint32 The version of the Point Cloud
format. It is currently 1.
bytelLength uint32 The length of the entire tile,
including the header, in bytes.
featureTableJSONBytelLength uint32 The length of the Feature Table
JSON section in bytes.
featureTableBinaryBytelLength wuint32 The length of the Feature Table
binary section in bytes.
batchTableJSONByteLength uint32 The length of the Batch Table JSON

section in bytes. Zero indicates that
there is no Batch Table.

batchTableBinaryByteLength uint32 The length of the Batch Table binary
section in bytes. If
batchTableJSONByteLength is zero,
this will also be zero.

The body section immediately follows the header section, and is composed of a Feature
Table and Batch Table.

10.3.4 Feature Table

Contains per-tile and per-point values that define where and how to render points.
More information is available in the Feature Table specification.

10.3.4.1 Semantics
10.3.4.1.1 Point semantics

These semantics map to an array of feature values that define each point. The length of these
arrays must be the same for all semantics and is equal to the number of points.

The value for each point semantic must be a reference to the Feature Table binary body; they
cannot be embedded in the Feature Table JSON header.

90

If a semantic has a dependency on another semantic, that semantic must be defined.

If both POSITION and POSITION_QUANTIZED are defined for a point, the higher precision
POSITION will be used.

If both NORMAL and NORMAL_OCT16P are defined for a point, the higher precision NORMAL will
be used.

Semantic Data Type Description Required

POSITION float32[3] A 3-component array of Yes, unless
numbers containing x, y, POSITION_QUANTIZED
and z Cartesian is defined.

coordinates for the
position of the point.

POSITION_QUANTIZED uint16[3] A 3-component array of Yes, unless POSITION
numbers containing x, y, is defined.
and z in quantized
Cartesian coordinates for
the position of the point.

RGBA uint8[4] A 4-component array of No.
values containing the RGBA
color of the point.

RGB uint8[3] A 3-component array of No.
values containing the RGB
color of the point.

RGB565 uint16 A lossy compressed color No.
format that packs the RGB
color into 16 bits,
providing 5 bits for red, 6
bits for green, and 5 bits

for blue.
NORMAL float32[3] A unit vector defining the = No.
normal of the point.
NORMAL_OCT16P uint8[2] An oct-encoded unit No.

vector with 16 bits of
precision defining the
normal of the point.

91

BATCH_ID

10.3.4.1.2 Global semantics

uints,
uintle
(default), or
uint32

The batchId of the point
that can be used to retrieve
metadata from the Batch
Table.

These semantics define global properties for all points.

Semantic

Data Type

Description

No.

Required

POINTS_LENGTH

RTC_CENTER

QUANTIZED_VOLUME_OFFSET

QUANTIZED_VOLUME_SCALE

CONSTANT_RGBA

uint32

float32[3]

float32[3]

float32[3]

uint8[4]

The number of
points to render. The
length of each array
value for a point
semantic should be
equal to this.

A 3-component
array of numbers
defining the center
position when point
positions are defined
relative-to-center.

A 3-component
array of numbers
defining the offset
for the quantized
volume.

A 3-component
array of numbers
defining the scale for
the quantized
volume.

A 4-component
array of values
defining a constant
RGBA color for all
points in the tile.

92

Yes.

No.

No, unless
POSITION_QUANTIZED

is defined.

No, unless
POSITION_QUANTIZED

is defined.

No.

BATCH_LENGTH uint32 The number of No, unless BATCH_ID
unique BATCH_ID is defined.
values.

Examples using these semantics can be found in the examples section below.
10.3.4.2 Point positions

POSITION defines the position for a point before any tileset transforms are applied.
10.3.4.2.1 Coordinate reference system (CRS)

3D Tiles local coordinate systems use a right-handed 3-axis (x, y, z) Cartesian coordinate
system; that is, the cross product of xand yyields z 3D Tiles defines the z axis as up for local
Cartesian coordinate systems (also see coordinate reference system).

10.3.42.2RTC_CENTER

Positions may be defined relative-to-center for high-precision rendering, see Precisions,
Precisions. If defined, RTC_CENTER specifies the center position and all point positions are
treated as relative to this value.

10.3.4.2.3 Quantized positions

If POSITION is not defined, positions may be stored in POSITION_QUANTIZED, which defines
point positions relative to the quantized volume.

If neither POSITION nor POSITION QUANTIZED is defined, the tile does not need to be
rendered.

A quantized volume is defined by offset and scale to map quantized positions to a position
in local space. The following figure shows a quantized volume based on offset and scale:

93

scale.y

(xy,2) scale.z
Figure 30: A quantized volume

offset is stored in the global semantic QUANTIZED_VOLUME_OFFSET, and scale is stored in
the global semantic QUANTIZED_VOLUME_SCALE.
If those global semantics are not defined, POSITION_QUANTIZED cannot be used.

Quantized positions can be mapped to local space using the following formula:

POSITION = POSITION_QUANTIZED * QUANTIZED_VOLUME_SCALE / 65535.0 +
QUANTIZED_VOLUME_OFFSET

10.3.4.3 Point colors

If more than one color semantic is defined, the precedence order is RGBA, RGB, RGB565, then
CONSTANT_RGBA. For example, if a tile's Feature Table contains both RGBA and CONSTANT_RGBA
properties, the runtime would render with per-point colors using RGBA.

94

If no color semantics are defined, the runtime is free to color points using an application-
specific default color.

In any case, a 3D Tiles Style may be used to change the final rendered color and other visual
properties at runtime.

10.3.4.4 Point normals

Per-point normals are an optional property that can help improve the visual quality of points
by enabling lighting, hidden surface removal, and other rendering techniques.
The normals will be transformed using the inverse transpose of the tileset transform.

10.3.4.4. 1 Oct-encoded normal vectors

Oct-encoding is described in A Survey of Efficient Representations of Independent Unit
Vectors. Oct-encoded values are stored in unsigned, unnormalized range ([0, 255]) and
then mapped to a signed normalized range ([-1.0, 1.0]) at runtime.

An implementation for encoding and decoding these unit vectors can be found in Cesium's
AttributeCompression
module.

10.3.4.5 Batched points

Points that make up distinct features of the Point Cloud may be batched together using the
BATCH_ID semantic. For example, the points that make up a door in a house would all be
assigned the same BATCH_ID, whereas points that make up a window would be assigned a
different BATCH_ID.

This is useful for per-object picking and storing application-specific metadata for declarative
styling and application-specific use cases such as populating a Ul or issuing a REST API
request on a per-object instead of per-point basis.

The BATCH_ID semantic may have a componentType of UNSIGNED_BYTE, UNSIGNED_SHORT, or
UNSIGNED_INT. When componentType is not present, UNSIGNED_SHORT is used.

The global semantic BATCH_LENGTH defines the number of unique batchId values, similar to
the batchLength field in the Batched 3D Model header.

10.3.4.6 Examples
This section Is non-normative

These examples show how to generate JSON and binary buffers for the Feature Table.

95

10.3.4.6.1 Positions only

This minimal example has four points on the corners of a unit length square:

var featureTablelSON = {
POINTS_LENGTH : 4,
POSITION : {
byteOffset : ©
}

}s

var featureTableBinary = new Buffer(new Float32Array([
0.0, 0.9, 0.9,

J

0, 0.0
.0, 1.0,
0, 1.0

10.3.4.6.2 Positions and colors

The following example has four points (red, green, blue, and yellow) above the globe. Their
positions are defined relative to center:

var featureTablelSON = {
POINTS_LENGTH : 4,
RTC_CENTER : [1215013.8, -4736316.7, 4081608.4],
POSITION : {
byteOffset : ©

}s
RGB : {
byteOffset : 48
}
¥
var positionBinary = new Buffer(new Float32Array([
0.0, 0.9, 0.9,
1.9, 0.9, 0.9,
0.0, 0.9, 1.9,
1.9, 0.9, 1.0
1) .buffer);

var colorBinary
255, o, o,
90, 255, 0,
0, 0, 255,
255, 255, 9,

new Buffer(new Uint8Array([

96

1) .buffer);

var featureTableBinary = Buffer.concat([positionBinary, colorBinary]);
10.3.4.6.3 Quantized positions and oct-encoded normals

In this example, the four points will have normals pointing up [0.0, 1.0, 0.0] in oct-
encoded format, and they will be placed on the corners of a quantized volume that spans
from -250.0 to 250.0 units in the x and z directions:

var featureTablelSON = {
POINTS_LENGTH : 4,
QUANTIZED_VOLUME_OFFSET : [-250.0, 0.0, -250.0],
QUANTIZED VOLUME_SCALE : [500.0, 0.0, 500.0],
POSITION_QUANTIZED : {
byteOffset : ©
¥
NORMAL_OCT16P : {
byteOffset : 24

}
}s

var positionQuantizedBinary = new Buffer(new Uintl6Array([
0, 0, 0,
65535, o, o,
0, 0, 65535,
65535, 0, 65535
1) .buffer);

var normalOctl6PBinary = new Buffer(new Uint8Array([
128, 255,
128, 255,
128, 255,
128, 255

1) .buffer);

var featureTableBinary = Buffer.concat([positionQuantizedBinary, normalOctl6P

Binary]);

10.3.4.6.4 Batched points

In this example, the first two points have a batchId of 0, and the next two points have a
batchId of 1. Note that the Batch Table only has two names:

97

var featureTablelSON = {
POINTS_LENGTH : 4,
BATCH_LENGTH : 2,
POSITION : {
byteOffset : ©

}s
BATCH_ID : {
byteOffset : 48,
componentType : "UNSIGNED BYTE"
}
}s
var positionBinary = new Buffer(new Float32Array([
0.0, 0.0, 0.0,
1.0, 0.9, 0.0,
0.0, 0.0, 1.9,
1.0, 0.0, 1.0
1) .buffer);

1) .buffer);
var featureTableBinary = Buffer.concat([positionBinary, batchIdBinary]);

var batchTableJSON = {
names : ['objectl', ‘'object2']
}s

10.3.4.6.5 Per-point properties

In this example, each of the 4 points will have metadata stored in the Batch Table JSON and
binary.
var featureTableJSON = {

POINTS_LENGTH : 4,

POSITION : {
byteOffset : ©

}
}s

var featureTableBinary = new Buffer(new Float32Array([

98

0.0, 0.9, 0.9,

1.9, 0.9, 0.9,

0.0, 0.9, 1.9,

1.0, 0.0, 1.0
1) .buffer);

var batchTableldSON = {

names : ['pointl', ‘'point2', 'point3', 'point4’]
}s
10.3.5 Batch Table

The Batch Table contains application-specific metadata, indexable by batchId, that can be
used for declarative styling and application-specific use cases such as populating a UI or
issuing a REST API request.

If the BATCH_ID semantic is defined, the Batch Table stores metadata for each batchId,
and the length of the Batch Table arrays will equal BATCH_LENGTH.

If the BATCH_ID semantic is not defined, then the Batch Table stores per-point metadata,
and the length of the Batch Table arrays will equal POINTS_LENGTH.

See the Batch Table reference for more information.
10.3.6 File extension and MIME type
Point cloud tiles use the .pnts extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

10.3.7 Implementation example
This section Is non-normative

Code for reading the header can be found in PointCloud3DModelTileContent.js in the
Cesium implementation of 3D Tiles.

10.3.8 Property reference
10.3.8.1 Point Cloud Feature Table

A set of Point Cloud semantics that contains values defining the position and appearance
properties for points in a tile.

Properties
99

Type

Description

Required

extensions

extras
POSITION

POSITION_QUANTIZED

RGBA

RGB

RGB565

object

any

object

object

object

object

object

Dictionary object with
extension-specific objects.
Application-specific data.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are

100

No

No

No

No

NORMAL

NORMAL_OCT16P

BATCH_ID

POINTS_LENGTH

RTC_CENTER

object

object

object

object,
number

[1],

number

object,
number

[3]

stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A BinaryBodyReference object
defining the reference to a
section of the binary body
where the property values are
stored. See the corresponding
property semantic in
Semantics.

A GlobalPropertyScalar object
defining a numeric property for
all points. See the
corresponding property
semantic in Semantics.

A GlobalPropertyCartesian3
object defining a 3-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

101

No

Yes

No

QUANTIZED_VOLUME_OFFSET

QUANTIZED_VOLUME_SCALE

CONSTANT_RGBA

BATCH_LENGTH

Additional properties are allowed.

Type of each property: Property

10.3.8.1.1 PointCloudFeatureTable.extensions

object,
number

[3]

object,
number

[3]

object,
number

[4]

object,
number

[1],

number

A GlobalPropertyCartesian3
object defining a 3-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyCartesian3
object defining a 3-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyCartesian4
object defining a 4-component
numeric property for all points.
See the corresponding property
semantic in Semantics.

A GlobalPropertyScalar object
defining a numeric property for
all points. See the
corresponding property
semantic in Semantics.

Dictionary object with extension-specific objects.

Type: object
Required: No

Type of each property: Extension

10.3.8.1.2 PointCloudFeatureTable.extras

Application-specific data.

Type: any
Required: No

102

No

No

No

10.3.8.1.3 PointCloudFeatureTable. POSITION

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.3.8.1.4 PointCloudFeatureTable. POSITION QUANTIZED

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.3.8.1.5 PointCloudFeatureTable. RGBA

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.3.8.1.6 PointCloudFeatureTable. RGB

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.3.8.1.7 PointCloudFeatureTable. RGB565

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.
Type: object
Required: No

10.3.8.1.8 PointCloudFeatureTable NORMAL

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.
103

Type: object
Required: No

10.3.8.1.9 PointCloudFeatureTable NORMAIL OCTI16P

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.3.8.1.10 PointCloudFeatureTable. BATCH ID

A BinaryBodyReference object defining the reference to a section of the binary body where
the property values are stored. See the corresponding property semantic in Semantics.

Type: object
Required: No

10.3.8.1.11 PointCloudFeatureTable. POINTS LENGTH

A GlobalPropertyScalar object defining a numeric property for all points. See the
corresponding property semantic in Semantics.

Type: object, number [1], number
Required: Yes

10.3.8.1.12 PointCloudFeatureTable. RTC CENTER

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all points.
See the corresponding property semantic in Semantics.

Type: object, number [3]
Required: No

10.3.8.1.13 PointCloudFeatureTable. QUANTIZED VOLUME OFFSET

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all points.
See the corresponding property semantic in Semantics.

Type: object, number [3]
Required: No

104

10.3.8.1.14 PointCloudFeatureTable. QUANTIZED VOLUME_SCALF

A GlobalPropertyCartesian3 object defining a 3-component numeric property for all points.
See the corresponding property semantic in Semantics.

Type: object, number [3]
Required: No

103.81.15 PointCloudFeatureTable. CONSTANT RGBA

A GlobalPropertyCartesian4 object defining a 4-component numeric property for all points.
See the corresponding property semantic in Semantics.

Type: object, number [4]
Required: No

1038116 PointCloudFeaturelable BATCH LENGTH

A GlobalPropertyScalar object defining a numeric property for all points. See the
corresponding property semantic in Semantics.

Type: object, number [1], number
Required: No

10.3.8.2 BinaryBodyReference

An object defining the reference to a section of the binary body of the features table where
the property values are stored if not defined directly in the JSON.

Properties

Type Description Required

byteOffset number The offset into the buffer in bytes. Yes

Additional properties are allowed.
10.3.8.2.1 BinaryBodyReference.byteOffset
The offset into the buffer in bytes.

Type: number
Required: Yes

Minimum: >= ©

105

10.3.8.3 GlobalPropertyCartesian3

An object defining a global 3-component numeric property values for all features.
10.3.8.4 GlobalPropertyCartesian4

An object defining a global 4-component numeric property values for all features.
10.3.8.5 GlobalPropertyScalar

An object defining a global numeric property values for all features.

10.3.8.6 Property

A user-defined property which specifies per-feature application-specific metadata in a tile.
Values either can be defined directly in the JSON as an array, or can refer to sections in the
binary body with a BinaryBodyReference object.

10.4 Composite
10.4.1 Overview

The Composite tile format enables concatenating tiles of different formats into one tile.

3D Tiles and the Composite tile allow flexibility for streaming heterogeneous datasets. For
example, buildings and trees could be stored either in two separate Batched 3D Model and
Instanced 3D Modeltiles or, using a Composite tile, the tiles can be combined.

Supporting heterogeneous datasets with both inter-tile (separate tiles of different formats
that are in the same tileset) and intra-tile (different tile formats that are in the same
Composite tile) options allows conversion tools to make trade-offs between number of
requests, optimal type-specific subdivision, and how visible/hidden layers are streamed.

A Composite tile is a binary blob in little endian.

10.4.2 Layout

Composite layout (dashes indicate optional fields):

106

16-byte header

magic version | byteLength | tilesLength | tiles[] |
=d char[4]) (uint32) (uint32) (uint32) |

—
m
[

0

Figure 31: Composite layout

10.4.2.1 Padding

A tile's byteLength must be aligned to an 8-byte boundary. All tiles contained in a composite
tile must also be aligned to an 8-byte boundary.

10.4.3 Header

The 16-byte header section contains the following fields:

Field name Data type Description

magic 4-byte ANSI "cmpt". This can be used to identify the content as a
string Composite tile.

version uint32 The version of the Composite format. It is currently 1.

byteLength uint32 The length of the entire Composite tile, including this

header and each inner tile, in bytes.

tileslength uint32 The number of tiles in the Composite.

10.4.4 Inner tiles

Inner tile fields are stored tightly packed immediately following the header section. The
following information describes general characteristics of all tile formats that a Composite
tile reader might exploit to find the boundaries of the inner tiles:

Each tile starts with a 4-byte ANSI string, magic, that can be used to determine the tile
format for further parsing. See tile format specifications for a list of possible formats.
Composite tiles can contain Composite tiles.

Each tile's header contains a uint32 byteLength, which defines the length of the inner
tile, including its header, in bytes. This can be used to traverse the inner tiles.

For any tile format's version 1, the first 12 bytes of all tiles is the following fields:

Field name Data type Description
107

magic 4-byte ANSI Indicates the tile format

string
version uint32 1
byteLength uint32 Length, in bytes, of the entire tile.

Refer to the spec for each tile format for more details.
10.4.5 File extension and MIME type
Composite tiles use the .cmpt extension and application/octet-stream MIME type.

An explicit file extension is optional. Valid implementations may ignore it and identify a
content's format by the magic field in its header.

10.4.6 Implementation examples
This section Is non-normative

Python packempt tool in gltf2glb toolset contains code for combining one or more
Batched 3D Model or Instanced 3D Modeltiles into a single Composite tile file.

Code for reading the header can be found in
Composite3DTileContent.js
in the Cesium implementation of 3D Tiles.

11 Declarative styling specification

11.1 Overview

3D Tiles styles provide concise declarative styling of tileset features. A style defines
expressions to evaluate the display of a feature, for example color (RGB and translucency)
and show properties, often based on the feature's properties stored in the tile's Batch Table.

A style may be applied to a tile that doesn't contain features, in which case the tile is treated
as an implicit single feature without properties.

While a style may be created for and reference properties of a tileset, a style is independent
of a tileset, such that any style can be applied to any tileset.

108

Styles are defined with JSON and expressions written in a small subset of JavaScript
augmented for styling. Additionally, the styling language provides a set of built-in functions
to support common math operations.

The following example assigns a color based on building height.

{
"show" : "${Area} > 0",
"color" : {
"conditions™ : [
["${Height} < 60", "color('#13293D"')"],
["${Height} < 120", "color('#1B98E0')"],
["true", "color('#E8F1F2', 0.5)"]
]
}
}

11.2 Concepts

11.2.1 Styling features

Visual properties available for styling features are the show property, the assigned expression
of which will evaluate to a boolean that determines if the feature is visible, and the color
property, the assigned expression of which will evaluate to a Color object (RGB and
translucency) which determines the displayed color of a feature.

The following style assigns the default show and color properties to each feature:

{

Ilshowll : "tr‘ue",
"color" : "color('#ffffff')"

}

Instead of showing all features, show can be an expression dependent on a feature's
properties, for example, the following expression will show only features in the 19341 zip
code:

{
}

show can also be used for more complex queries; for example, here a compound condition
and regular expression are used to show only features whose county starts with 'Chest' and

"show" : "${ZipCode} === '19341""

whose year built is greater than or equal to 1970:

109

{
}

Colors can also be defined by expressions dependent on a feature's properties. For example,
the following expression colors features with a temperature above 90 as red and the others as

"show" : "(regExp('~Chest').test(${County})) && (${YearBuilt} >= 1970)"

white:

{
}

The color's alpha component defines the feature's opacity. For example, the following sets
the feature's RGB color components from the feature's properties and makes features with

"color" : "(${Temperature} > 90) ? color('red') : color('white')"

volume greater than 100 transparent:

{

}
11.2.2 Conditions

"color" : "rgba(${red}, ${green}, ${blue}, (${volume} > 100 ? ©.5 : 1.0))"

In addition to a string containing an expression, color and show can be an array defining a
series of conditions (similar to if...else statements). Conditions can, for example, be used
to make color maps and color ramps with any type of inclusive/exclusive intervals.

For example, the following expression maps an ID property to colors. Conditions are
evaluated in order, so if ${id} isnot '1' or '2', the "true" condition returns white. If no
conditions are met, the color of the feature will be undefined:

{
"color" : {
"conditions™ : [
["${id} === "1'", "color('#FFeEE0')"],
["${id} === '2'", "color('#0OFF00')"],
["true", "color('#FFFFFF')"]
]
}
}

The next example shows how to use conditions to create a color ramp using intervals with an
inclusive lower bound and exclusive upper bound:

"color" : {
"conditions" : [

110

["(${Height} >= 1.0) && (${Height}
["(${Height} >= 10.0) && (${Height}
["(${Height} >= 30.0) && (${Height}
["(${Height} >= 50.0) && (${Height} < 70.0)", "color('#00FF0Q')"],
["(${Height} >= 70.0) && (${Height} < 100.0)", "color('#0OFFFF')"],
["(${Height} >= 100.0)", "color('#00OOFF')"]

10.0)", "color('#FF@OFF')"],
30.0)", "color('#FFo000')"],
50.0)", "color('#FFFFOQ')"],

A N AN A

A

]
}
Since conditions are evaluated in order, the above can be written more concisely as the
following:
"color" : {
"conditions" : [

["(${Height} >= 100.0)", "color('#000OFF')"],
["(${Height} >= 70.0)", "color('#@OFFFF')"],
["(${Height} >= 50.0)", "color('#@OFF00')"],
["(${Height} >= 30.0)", "color('#FFFF@Q')"],
["(${Height} >= 10.0)", "color('#FF0000')"],
["(${Height} >= 1.0)", "color('#FFOOFF')"]

}
11.2.3 Defining variables

Commonly used expressions may be stored in a defines object with a variable name as a
key. If a variable references the name of a defined expression, it is replaced with the result of
the referenced evaluated expression:

{
"defines" : {
"NewHeight" : "clamp((${Height} - ©.5) / 2.0, 1.0, 255.0)",
"HeightColor" : "rgb(${Height}, ${Height}, ${Height})"
3
"color" : {
"conditions™ : [
["(${NewHeight} >= 100.0)", "color('#0000FF') * ${HeightColor}"],
["(${NewHeight} >= 50.0)", "color('#00FF00') * ${HeightColor}"],
["(${NewHeight} >= 1.0)", "color('#FF0000') * ${HeightColor}"]
]
3
"show" : "${NewHeight} < 200.0"
¥

A define expression may not reference other defines; however, it may reference feature
properties with the same name. In the style below a feature of height 150 gets the color red:

111

"defines" : {

"Height" : "${Height}/2.0}",
s
"color" : {

"conditions™ : [

["(${Height} >= 100.0)", "color('#000OFF')"],
["(${Height} >= 1.8)", "color('#FF0000"')"]

}
11.2.4 Meta property

Non-visual properties of a feature can be defined using the meta property. For example, the
following sets a description meta property to a string containing the feature name:

{

"meta" : {
"description” : "'Hello, ${featureName}.'"
}
}
A meta property expression can evaluate to any type. For example:
{
"meta" : {
"featureColor" : "rgb(${red}, ${green}, ${blue})",
"featureVolume" : "${height} * ${width} * ${depth}"
}
}

11.3 Expressions

The language for expressions is a small subset of JavaScript (EMCAScript 5), plus native
vector and regular expression types and access to tileset feature properties in the form of
readonly variables.

Implementation Note: Cesium uses the jsep JavaScript expression parser library to parse style expressions into
an abstract syntax tree (AST).

11.3.1 Semantics

Dot notation is used to access properties by name, e.g., building.name.

112

Bracket notation ([]) is also used to access properties, e.g., building['name’], or arrays, e.g.,
temperatures[1].

Functions are called with parenthesis (()) and comma-separated arguments, e.g.,
(isNaN(@.9), color('cyan', 0.5)).

11.3.2 Operators
The following operators are supported with the same semantics and precedence as JavaScript.

Unary: +, -, !

Not supported: ~

Binary: ||, &&, ===, !==,¢, >, <=, >=,+, -, *, /, %, =~, I~
Not supported: |, *, &, <<, >>, and >>>

Ternary: ?

(‘and) are also supported for grouping expressions for clarity and precedence.

Logical | | and && implement short-circuiting; true || expression does not evaluate the
right expression, and false & expression does not evaluate the right expression.

Similarly, true ? leftExpression : rightExpression only executes the left expression,
and false ? leftExpression : rightExpression only executes the right expression.

11.3.3 Types
The following types are supported:

Boolean
Null
Undefined
Number
String
Array
vec2

vec3

vec4d
RegExp

All of the types except vec2, vec3, vec4, and RegExp have the same syntax and runtime
behavior as JavaScript. vec2, vec3, and vec4 are derived from GLSL vectors and behave

113

similarly to JavaScript Object (see the Vector section). Colors derive from CSS3 Colors and
are implemented as vec4. RegExp is derived from JavaScript and described in the RegExp
section.

Example expressions for different types include the following:

true, false

null

undefined

1.0, NaN, Infinity
"Cesium’, "Cesium"
[0, 1, 2]

vec2(1l.9, 2.0)
vec3(1.0, 2.0, 3.0)
vec4(1.0, 2.0, 3.0, 4.0)
color("#0OFFFF')
regExp('~Chest'))

11.3.3.1 Number

As in JavaScript, numbers can be NaN or Infinity. The following test functions are
supported:

isNaN(testValue : Number) : Boolean
isFinite(testValue : Number) : Boolean

11.3.3.2 Vector

The styling language includes 2, 3, and 4 component floating-point vector types: vec2, vec3,
and vec4. Vector constructors share the same rules as GLSL:

11.3.3.2.1 vec?
vec2(xy : Number) - initialize each component with the number
vec2(x : Number, y : Number) - initialize with two numbers
vec2(xy : vec2) - initialize with another vec2
vec2(xyz : vec3) - drops the third component of a vec3
vec2(xyzw : vec4) - drops the third and fourth component of a vec4

11.3.3.2.2 vec3

vec3(xyz : Number) - initialize each component with the number
114

vec3(x : Number, y : Number, z : Number) - initialize with three numbers
vec3(xyz : vec3) - initialize with another vec3

vec3(xyzw : vec4) - drops the fourth component of a vec4

vec3(xy : vec2, z : Number) - initialize with a vec2 and number

vec3(x : Number, yz : vec2) - initialize with a vec2 and number

11.3.3.2.3 vec4
vec4(xyzw : Number) - initialize each component with the number
vec4(x : Number, y : Number, z : Number, w : Number) - initialize with four
numbers
vec4(xyzw : vec4) - initialize with another vec4
vec4(xy : vec2, z : Number, w : Number) - initialize with a vec2 and two numbers
vec4(x : Number, yz : vec2, w : Number) - initialize with a vec2 and two numbers
vec4(x : Number, y : Number, zw : vec2) - initialize with a vec2 and two numbers
vec4(xyz : vec3, w : Number) - initialize with a vec3 and number

vec4(x : Number, yzw : vec3) - initialize with a vec3 and number

11.3.3.2.4 Vector usage

vec2 components may be accessed with

X, LY
.r,.g
[el], [1]

vec3 components may be accessed with

X, WY, . Z
.r,.g, .b
[e], [1], [2]

vec4 components may be accessed with

Xy WY, 0 Z, oW
.r,.g, .b, .a
[e], [1], [2], [3]

Unlike GLSL, the styling language does not support swizzling. For example, vec3(1.0).xy is
not supported.

115

Vectors support the following unary operators: -, +.

Vectors support the following binary operators by performing component-wise operations:
===, l==,+, -, %, /, and %. For example vec4(1.0) === vec4(1.0) is true since the x, y, z,
and w components are equal. Operators are essentially overloaded for vec2, vec3, and vec4.

vec2, vec3, and vec4 have a toString function for explicit (and implicit) conversion to
strings in the format ' (x, y)', "(x, y, z)',and "(x, y, z, w)'.

toString() : String
vec2, vec3, and vec4 do not expose any other functions or a prototype object.
11.3.3.3 Color
Colors are implemented as vec4 and are created with one of the following functions:

color()

color(keyword : String, [alpha : Number])

color(6-digit-hex : String, [alpha : Number])

color(3-digit-hex : String, [alpha : Number])

rgb(red : Number, green : Number, blue : Number)

rgba(red : Number, green : Number, blue : Number, alpha : Number)
hsl(hue : Number, saturation : Number, lightness : Number)

hsla(hue : Number, saturation : Number, lightness : Number, alpha :
Number)

Calling color() with no arguments is the same as calling color('#FFFFFF").

Colors defined by a case-insensitive keyword (e.g., 'cyan"') or hex rgb are passed as strings to
the color function. For example

color('cyan')
color("#0OFFFF")
color("#OFF")

These color functions have an optional second argument that is an alpha component to
define opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

color('cyan', 0.5)

116

Colors defined with decimal RGB or HSL are created with rgb and hs1 functions,
respectively, just as in CSS (but with percentage ranges from 0.0 to 1.0 for 8% to 100%,
respectively). For example:

rgb(100, 255, 190)
hsl(1.0, 0.6, 0.7)

The range for rgb components is @ to 255, inclusive. For hs1, the range for hue, saturation,
and lightness is 0.0 to 1.0, inclusive.

Colors defined with rgba or hsla have a fourth argument that is an alpha component to
define opacity, where 0.0 is fully transparent and 1.0 is fully opaque. For example:

rgba(100, 255, 190, 0.25)
hsla(1.8, 0.6, 0.7, 0.75)

Colors are equivalent to the vec4 type and share the same functions, operators, and
component accessors. Color components are stored in the range 0.0 to 1.0.

For example:

color('red').x, color('red').r,and color('red')[@] all evaluate to 1..
color('red').toString() evaluatesto (1.0, 0.0, 0.0, 1.0)
color('red') * vec4(0.5) is equivalent to vec4(0.5, 0.0, 0.0, 0.5)

11.3.3.4 RegExp

Regular expressions are created with the following functions, which behave like the
JavaScript RegExp constructor:

regExp()
regExp(pattern : String, [flags : String])

Calling regExp () with no arguments is the same as calling regExp('(?:)").
If specified, flags can have any combination of the following values:

g - global match
i - ignore case
m - multiline

u - unicode

y- sticky

117

Regular expressions support these functions:

test(string : String) : Boolean - Tests the specified string for a match.

exec(string : String) : String - Executes a search for a match in the specified
string. If the search succeeds, it returns the first instance of a captured String. If the
search fails, it returns null.

For example:

{

}

r‘egEXp('a') .test('abc’) === true
regExp('a(.)', 'i').exec('Abc') === 'b’
regExp('Building\s(\d)').exec(${Name}) === '1'

"Name" : "Building 1"

Regular expressions have a toString function for explicit (and implicit) conversion to strings
in the format 'pattern’:

toString() : String
Regular expressions do not expose any other functions or a prototype object.

The operators =~ and !~ are overloaded for regular expressions. The =~ operator matches the
behavior of the test function, and tests the specified string for a match. It returns true if
one is found, and false if not found. The !~ operator is the inverse of the =~ operator. It
returns true if no matches are found, and false if a match is found. Both operators are
commutative.

For example, the following expressions all evaluate to true:
regExp('a') =~ 'abc'

'abc' =~ regExp('a')

regExp('a') !~ 'bcd'

'bcd' !~ regExp('a')

11.3.4 Operator rules

Unary operators + and - operate only on number and vector expressions.
Unary operator ! operates only on boolean expressions.
Binary operators <, <=, >, and >= operate only on number expressions.

Binary operators | | and && operate only on boolean expressions.

118

+ Binary operator + operates on the following expressions:
— Number expressions
— Vector expressions of the same type

— Ifatleast one expressions is a string, the other expression is converted to a string
following String Conversions, and the operation returns a concatenated string,
e.g. "name" + 10 evaluates to "name10"

+ Binary operator - operates on the following expressions:
— Number expressions
— Vector expressions of the same type

+ Binary operator * operates on the following expressions:
— Number expressions
— Vector expressions of the same type

— Mix of number expression and vector expression, e.g. 3 * vec3(1.0) and
vec2(1.9) * 3

+ Binary operator / operates on the following expressions:

— Number expressions

— Vector expressions of the same type

— Vector expression followed by number expression, e.g.vec3(1.0) / 3
+ Binary operator % operates on the following expressions:

— Number expressions

— Vector expressions of the same type

+ Binary equality operators === and !== operate on any expressions. The operation returns
false if the expression types do not match.

+ Binary regExp operators =~ and !~ require one argument to be a string expression and
the other to be a RegExp expression.

+ Ternary operator ? : conditional argument must be a boolean expression.
11.3.5 Type conversions

Explicit conversions between primitive types are handled with Boolean, Number, and String
functions.

. Boolean(value : Any) : Boolean
. Number(value : Any) : Number
. String(value : Any) : String

For example:

119

Boolean(1l) === true
Number('1') === 1
String(1) === '1'

Boolean and Number follow JavaScript conventions. String follows String Conversions.
These are essentially casts, not constructor functions.

The styling language does not allow for implicit type conversions, unless stated above.
Expressions like vec3(1.0) === vec4(1.0) and "5" < 6 are not valid.

11.3.6 String conversions

vec2, vec3, vec4, and RegExp expressions are converted to strings using their toString
methods. All other types follow JavaScript conventions.

true - "true"
false - "false"

null - "null"

undefined - "undefined"
5.0-"5"

NaN - "NaN"

Infinity - "Infinity"

"name" - "name"

[0, 1, 2]-"[0, 1, 2]"

vec2(1, 2)-"(1, 2)"

vec3(1, 2, 3)-"(1, 2, 3)"
vec4(1, 2, 3, 4)-"(1, 2, 3, 4)"
RegExp('a') - "/a/"

11.3.7 Constants
The following constants are supported by the styling language:
11.3.7.1 PI

The mathematical constant PI, which represents a circle's circumference divided by its
diameter, approximately 3.14159.

{
}

"show" : "cos(${Angle} + Math.PI) < @"

120

11.3.72 E

Euler's constant and the base of the natural logarithm, approximately 2.71828.

{

}
11.3.8 Variables

"color" : "color() * pow(Math.E / 2.0, ${Temperature})"

Variables are used to retrieve the property values of individual features in a tileset. Variables
are identified using the ES 6 (ECMAScript 2015) template literal syntax, i.e.,
${feature.identifier} or ${feature['identifier']}, where the identifier is the case-
sensitive property name. feature is implicit and can be omitted in most cases.

Variables can be used anywhere a valid expression is accepted, except inside other variable
identifiers. For example, the following is not allowed:

${foo[${bar}]}

If a feature does not have a property with the specified name, the variable evaluates to
undefined. Note that the property may also be null if null was explicitly stored for a

property.

Variables may be any of the supported native JavaScript types:

Boolean
Null
Undefined
Number
String
Array

For example:

{
"enabled" : true,
"description” : null,
"order" : 1,
"name" : "Feature name"
}
${enabled} === true
${description} === null

121

${order} === 1
${name} === 'Feature name'

Additionally, variables originating from vector properties stored in the Batch Table binary
are treated as vector types:

componentType variable type

"VEC2" vec2
"VEC3" vec3
"VEC4" vec4

Variables can be used to construct colors or vectors. For example:

rgba(${red}, ${green}, ${blue}, ${alpha})
vec4(${temperature})

Dot or bracket notation is used to access feature subproperties. For example:

{

"address" : {
"street" : "Example street”,
"city" : "Example city"
}
}
${address.street} === "Example street’
${address['street']} === "Example street’
${address.city} === “Example city"
${address['city']} === "Example city’

Bracket notation supports only string literals.

Top-level properties can be accessed with bracket notation by explicitly using the feature
keyword. For example:

{

"address.street" : "Maple Street",
"address" : {

"street" : "Oak Street”
}

}

${address.street} === "0Oak Street’
${feature.address.street} === “0Oak Street’

122

= “0Oak Street”
“"Maple Street”

${feature['address'].street
${feature['address.street']

} ==
} ==

To access a feature named feature, use the variable ${feature}. This is equivalent to
accessing ${feature.feature}

{
"feature" : "building"
}
${feature} === “building’
${feature.feature} === "building’

Variables can also be substituted inside strings defined with backticks, for example:

"order" : 1,
"name" : "Feature name"

}

“Name is ${name}, order is ${order}"

Bracket notation is used to access feature subproperties or arrays. For example:

{

"temperatures" : {
"scale" : "fahrenheit",
"values" : [70, 80, 90]

}

${temperatures[‘'scale']} === 'f
${temperatures.values[@]} === 7
${temperatures['values'][0]} ==
temperatures.values[0]

hrenheit’

a
(%]
= 70 // Same as (temperatures[values])[@] and

11.3.9 Built-in functions

The following built-in functions are supported by the styling language. Many of the built-in
functions take either scalars or vectors as arguments. For vector arguments the function is
applied component-wise and the resulting vector is returned.

11.3.9.1 abs

abs(x : Number) : Number
abs(x : vec2) : vec2
abs(x : vec3) : vec3
abs(x : vec4) : vec4d

123

Returns the absolute value of x.

{
"show" "abs(${temperature}) > 20.0"
}
11.3.9.2 sqrt
sqrt(x : Number) : Number
sqrt(x : vec2) : vec2
sqrt(x : vec3) : vec3
sqrt(x : vec4) : vecd

Returns the square root of x when x >= 0. Returns NaN when x < @.

{
"color" : {

"conditions™ : [
["${temperature} >= 0.5",
["${temperature} >= 0.0",

]

}
}
11.3.9.3 cos
cos(angle : Number) : Number
cos(angle : vec2) : vec2
cos(angle : vec3) : vec3
cos(angle : vecd4) : vecd

Returns the cosine of angle in radians.

{

"show" "cos(${Angle}) > 0.0"
}
11.3.9.4 sin
sin(angle : Number) : Number
sin(angle : vec2) : vec2
sin(angle : vec3) : vec3
sin(angle : vec4) : vec4

Returns the sine of angle in radians.

{
}

"show" "sin(${Angle}) > 0.0"

"color('#@OFFFF')"],
"color('#FFOOFF')"]

124

11.3.95 tan

tan(angle :

tan(angle
tan(angle
tan(angle

Number) : Number
: vec2) : vec2
: vec3) : vec3
: vecd) : vec4d

Returns the tangent of angle in radians.

{

}
11.3.9.6 acos

"show"

acos(angle :

acos(angle
acos(angle
acos(angle

"tan(${Angle}) > 0.0"

Number) : Number
: vec2) : vec2
: vec3) : vec3
: vecd) : vec4d

Returns the arccosine of angle in radians.

{

}
11.3.9.7 asin

"show"

asin(angle :

asin(angle
asin(angle
asin(angle

"acos(${Angle}) > 0.0"

Number) : Number
: vec2) : vec2
: vec3) : vec3
: vecd) : vec4d

Returns the arcsine of angle in radians.

{
}

"show"

11.3.9.8 atan
atan(angle :

atan(angle
atan(angle
atan(angle

"asin(${Angle}) > 0.0"

Number) : Number
: vec2) : vec2
: vec3) : vec3
: vecd) : vec4d

Returns the arctangent of angle in radians.

{
}

"show"

"atan(${Angle}) > 0.0"

11.3.9.9 atan2

atan2(y : Number, x : Number) : Number
atan2(y : vec2, x : vec2) : vec2
atan2(y : vec3, x : vec3) : vec3
atan2(y : vec4, x : vecd) : vec4d

Returns the arctangent of the quotient of y and x.

{

}

11.3.9.10 radians

radians(angle : Number) : Number
radians(angle : vec2) : vec2
radians(angle : vec3) : vec3
radians(angle : vec4) : vec4

"show" : "atan2(${GridY}, ${GridX}) > @.0"

Converts angle from degrees to radians.

{

}

11.3.9.11 degrees

degrees(angle : Number) : Number
degrees(angle : vec2) : vec2
degrees(angle : vec3) : vec3
degrees(angle : vec4) : vecd

"show" : "radians(${Angle}) > 0.5"

Converts angle from radians to degrees.

{

}

11.3.9.12 sign

sign(x : Number) : Number
sign(x : vec2) : vec2
sign(x : vec3) : vec3
sign(x : vec4) : vecd

"show" : "degrees(${Angle}) > 45.0"

Returns 1.0 when x is positive, 0.0 when x is zero, and -1.0 when x is negative.

{
}

"show" : "sign(${Temperature}) * sign(${Velocity}) === 1.0"

126

11.3.9.13 floor

floor(x : Number) : Number
floor(x : vec2) : vec2
floor(x : vec3) : vec3
floor(x : vec4) : vec4d

Returns the nearest integer less than or equal to x.

{

"show" : "floor(${Position}) === 0"
}
11.3.9.14 ceil

ceil(x : Number) : Number
ceil(x : vec2) : vec2
ceil(x : vec3) : vec3
ceil(x : vecd4) : vecd

Returns the nearest integer greater than or equal to x.

{

}

11.3.9.15round

round(x : Number) : Number
round(x : vec2) : vec2
round(x : vec3) : vec3
round(x : vecd) : vecd

ushowu . Cell(${POSltlon} === 1n

Returns the nearest integer to x. A number with a fraction of 0.5 will round in an
implementation-defined direction.

{

"show" : "round(${Position}) === 1"
}
11.3.9.16 exp

exp(x : Number) : Number
exp(x : vec2) : vec2
exp(x : vec3) : vec3
exp(x : vec4) : vec4d

Returns e to the power of x, where e is Euler's constant, approximately 2.71828.

127

{

}

11.3.9.17log

log(x : Number) : Number
log(x : vec2) : vec2
log(x : vec3) : vec3
log(x : vec4) : vec4d

"show" : "exp(${Density}) > 1.0"

Returns the natural logarithm (base e) of x.

{

"show" : "log(${Density}) > 1.0"
}
11.3.9.18 exp2

exp2(x : Number) : Number
exp2(x : vec2) : vec2
exp2(x : vec3) : vec3
exp2(x : vec4) : vec4d

Returns 2 to the power of x.

{

}

11.3.9.1910g2

log2(x : Number) : Number
log2(x : vec2) : vec2
log2(x : vec3) : vec3
log2(x : vecd4) : vecd

"show" : "exp2(${Density}) > 1.0"

Returns the base 2 logarithm of x.

{

"show" : "log2(${Density}) > 1.0"
}
11.3.9.20 fract

fract(x : Number) : Number
fract(x : vec2) : vec2
fract(x : vec3) : vec3
fract(x : vec4) : vec4d

Returns the fractional part of x. Equivalent to x - floor(x).

128

{

}

11.3.9.21 pow

pow(base : Number, exponent : Number) : Number
pow(base : vec2, exponent : vec2) : vec2
pow(base : vec3, exponent : vec3) : vec3
pow(base : vec4, exponent : vecd) : vecd

"color" : "color() * fract(${Density})"

Returns base raised to the power of exponent.

{

"show" : "pow(${Density}, ${Temperature}) > 1.0"
}
11.3.9.22 min

min(x : Number, y : Number) : Number
min(x : vec2, y : vec2) : vec2
min(x : vec3, y : vec3) : vec3
min(x : vecd, y : vecd4) : vecd

min(x : Number, y : Number) : Number
min(x : vec2, y : Number) : vec2
min(x : vec3, y : Number) : vec3
min(x : vec4, y : Number) : vecd

Returns the smaller of x and y.

{

"show" : "min(${Width}, ${Height}) > 10.0"
}
11.3.9.23 max

max(x : Number, y : Number) : Number
max(x : vec2, y : vec2) : vec2
max(x : vec3, y : vec3) : vec3
max(x : vecd, y : vecd) : vecd

max(x : Number, y : Number) : Number
max(x : vec2, y : Number) : vec2
max(x : vec3, y : Number) : vec3
max(x : vec4, y : Number) : vecd

Returns the larger of x and y.

129

{

"show" "max(${Width}, ${Height}) > 10.0"
}
11.3.9.24 clamp
clamp(x : Number, min : Number, max : Number) : Number
clamp(x : vec2, min : vec2, max : vec2) : vec2
clamp(x : vec3, min : vec3, max : vec3) : vec3
clamp(x : vec4, min : vec4, max : vec4d) : vec4d
clamp(x : Number, min : Number, max : Number) : Number
clamp(x : vec2, min : Number, max : Number) : vec2
clamp(x : vec3, min : Number, max : Number) : vec3
clamp(x : vec4, min : Number, max : Number) : vec4d

Constrains x to lie between min and max.

{

"color"
}
11.3.9.25 mix
mix(x : Number, y : Number,
mix(x : vec2, y : vec2, a
mix(x : vec3, y : vec3, a
mix(x : vecd4, y : vec4d, a
mix(x : Number, 'y : Number,
mix(x : vec2, y : vec2, a :
mix(x : vec3, y : vec3, a :
mix(x : vecd4, vy : vecd, a :

1 vec2)
: vec3)
1 vecd)

"color() * clamp(${temperature}, 0.1, 0.2)"

a : Number) : Number
. vec2
: vec3

. vecd

a : Number) : Number
Number) : vec2
Number) : vec3
Number) : vec4

Computes the linear interpolation of x and y.

{

"show"
}
11.3.9.26length
length(x : Number) : Number
length(x : vec2) : vec2
length(x : vec3) : vec3
length(x : vec4) : vec4d

Computes the length of vector x, i.e., the square root of the sum of the squared components.

If x is a number, length returns x.

"mix(20.0, ${Angle}, ©.5) > 25.0"

130

{

}

11.3.9.27 distance

distance(x : Number, y : Number) : Number
distance(x : vec2, y : vec2) : vec2
distance(x : vec3, y : vec3) : vec3
distance(x : vec4, y : vec4) : vec4d

"show" : "length(${Dimensions}) > 10.0"

Computes the distance between two points x and y, i.e., length(x - y).

{

}

11.3.9.28 normalize

normalize(x : Number) : Number
normalize(x : vec2) : vec2
normalize(x : vec3) : vec3
normalize(x : vec4d) : vecd

"show" : "distance(${BottomRight}, ${UpperLeft}) > 50.0"

Returns a vector with length 1.0 that is parallel to x. When x is a number, normalize returns
1.0.

{

"show" : "normalize(${RightVector}, ${UpVector}) > ©.5"
}
11.3.9.29 dot

dot(x : Number, y : Number) : Number
dot(x : vec2, y : vec2) : vec2
dot(x : vec3, y : vec3) : vec3
dot(x : vec4, y : vecd) : vecd

Computes the dot product of x and y.

{

}

11.3.9.30 cross
cross(x : vec3, y : vec3) : vec3

"show" : "dot(${RightVector}, ${UpVector}) > 0.5"

Computes the cross product of x and y. This function only accepts vec3 arguments.

131

{

}
11.3.10 Notes

"color" : "vec4(cross(${RightVector}, ${UpvVector}), 1.0)"

Comments are not supported.

11.4 Point Cloud

A Point Cloud is a collection of points that may be styled like other features. In addition to
evaluating a point's color and show properties, a Point Cloud style may evaluate pointSize,
or the size of each point in pixels. The default pointSizeis1.0.

{

"color" : "color('red')",
"pointSize" : "${Temperature} * ©.5"

}

Implementations may clamp the evaluated pointSize to the system's supported point size
range. For example, WebGL renderers may query ALIASED_POINT_SIZE_RANGE to get the
system limits when rendering with POINTS. A pointSize of 1.0 must be supported.

Point Cloud styles may also reference semantics from the Feature Table including position,
color, and normal to allow for more flexible styling of the source data.

${POSITION} is a vec3 storing the xyz Cartesian coordinates of the point before the
RTC_CENTER and tile transform are applied. When the positions are quantized,
${POSITION} refers to the position after the QUANTIZED_VOLUME_SCALE is applied, but
before QUANTIZED_VOLUME_OFFSET is applied.

${POSITION_ABSOLUTE} is a vec3 storing the xyz Cartesian coordinates of the point after
the RTC_CENTER and tile transform are applied. When the positions are quantized,
${POSITION_ABSOLUTE} refers to the position after the QUANTIZED_VOLUME_SCALE,
QUANTIZED_VOLUME_OFFSET, and tile transform are applied.

${COLOR} evaluates to a Color storing the rgba color of the point. When the Feature
Table's color semantic is RGB or RGB565, ${COLOR}.alphais 1.0. If no color semantic is
defined, ${COLOR} evaluates to the application-specific default color.

${NORMAL} is a vec3 storing the normal, in Cartesian coordinates, of the point before the
tile transform is applied. When normals are oct-encoded, ${NORMAL} refers to the
decoded normal. If no normal semantic is defined in the Feature Table, ${NORMAL }
evaluates to undefined.

132

For example:

{
"color" : "${COLOR} * color('red')'",
"show" : "${POSITION}.x > ©.5",
"pointSize" "${NORMAL}.x > @ ? 2 : 1"
}

Implementation Note: Point cloud styling engines may often use a shader (GLSL) implementation, however
some features of the expression language are not possible in pure a GLSL implementation. Some of these

features include:

Evaluation of isNan and isFinite (GLSL 2.0+ supports isnan and isinf for these functions

respectively)

The types null and undefined

Strings, including accessing object properties (Color()['r']) and batch table values

Regular expressions

Arrays of lengths other than 2, 3, or 4

Mismatched type comparisons (e.g. 1.0 === false)

Array index out of bounds

11.5 File extension and MIME type

Tileset styles use the . json extension and the application/json mime type.

11.6 Property reference

11.6.1 style
A 3D Tiles style.
Properties
Type Description Required
defines object A dictionary object of expression strings No

mapped to a variable name key that may be
referenced throughout the style. If an
expression references a defined variable, it is
replaced with the evaluated result of the
corresponding expression.

133

show boolean, A boolean expression or conditions property No, default: true

string, which determines if a feature should be shown.
object

color string, A color expression or conditions property No, default:
object which determines the color blended with the color("#FFFFFF")
feature's intrinsic color.

meta object A meta object which determines the values of ~ No
non-visual properties of the feature.

Additional properties are not allowed.
11.6.1.1 style.defines

A dictionary object of expression strings mapped to a variable name key that may be
referenced throughout the style. If an expression references a defined variable, it is replaced
with the evaluated result of the corresponding expression.

Type: object
Required: No
Type of each property: string

11.6.1.2 style.show
A boolean expression or conditions property which determines if a feature should be shown.

Type: boolean, string, object
Required: No, default: true

11.6.1.3 style.color

A color expression or conditions property which determines the color blended with the
feature's intrinsic color.

Type: string, object
Required: No, default: color('#FFFFFF')

11.6.1.4 style.meta
A meta object which determines the values of non-visual properties of the feature.

Type: object
Required: No

134

+ Type of each property: string
11.6.2 boolean expression

A boolean or string with a 3D Tiles style expression that evaluates to a boolean. See
Expressions.

11.6.3 color expression
3D Tiles style expression that evaluates to a Color. See Expressions.
11.6.4 conditions

A series of conditions evaluated in order, like a series of if...else statements that result in an
expression being evaluated.

Properties

Type Description Required

conditions 2array A series of boolean conditions evaluated in order. For = No
[] the first one that evaluates to true, its value, the
'result' (which is also an expression), is evaluated and
returned. Result expressions must all be the same
type. If no condition evaluates to true, the result is
undefined. When conditions is undefined, null, or
an empty object, the result is undefined.

Additional properties are not allowed.
11.6.4.1 conditions.conditions

A series of boolean conditions evaluated in order. For the first one that evaluates to true, its
value, the 'result' (which is also an expression), is evaluated and returned. Result expressions
must all be the same type. If no condition evaluates to true, the result is undefined. When
conditions is undefined, null, or an empty object, the result is undefined.

. Type: array []
* Required: No

135

11.6.5 condition

An expression evaluated as the result of a condition being true. An array of two expressions.
If the first expression is evaluated and the result is true, then the second expression is

evaluated and returned as the result of the condition.

11.6.6 expression

A valid 3D Tiles style expression. See Expressions

11.6.7 meta

A series of property names and the expression to evaluate for the value of that property.

Additional properties are allowed.

Type of each property: expression

11.6.8 number expression

3D Tiles style expression that evaluates to a number. See Expressions.

11.6.9 Point Cloud Style

A 3D Tiles style with additional properties for Point Clouds.

Properties

Type

Description

Required

defines object

show boolean,
string,
object

color string,
object

A dictionary object of expression strings
mapped to a variable name key that may be
referenced throughout the style. If an
expression references a defined variable, it is
replaced with the evaluated result of the
corresponding expression.

A boolean expression or conditions property
which determines if a feature should be
shown.

A color expression or conditions property
which determines the color blended with the
feature's intrinsic color.

136

No

No, default: true

No, default:
color("#FFFFFF')

meta object A meta object which determines the values of No
non-visual properties of the feature.

pointSize number, A number expression or conditions property = No, default: 1
string, which determines the size of the points in
object pixels.

Additional properties are not allowed.
11.6.9.1 PointCloudStyle.defines

A dictionary object of expression strings mapped to a variable name key that may be
referenced throughout the style. If an expression references a defined variable, it is replaced
with the evaluated result of the corresponding expression.

Type: object
Required: No
Type of each property: string

11.6.9.2 PointCloudStyle.show
A boolean expression or conditions property which determines if a feature should be shown.

Type: boolean, string, object
Required: No, default: true

11.6.9.3 PointCloudStyle.color

A color expression or conditions property which determines the color blended with the
feature's intrinsic color.

Type: string, object
Required: No, default: color('#FFFFFF')

11.6.9.4 PointCloudStyle.meta
A meta object which determines the values of non-visual properties of the feature.

Type: object
Required: No
Type of each property: string

137

11.6.9.5 PointCloudStyle.pointSize

A number expression or conditions property which determines the size of the points in

pixels.

Type: number, string, object
Required: No, default: 1

12 Annex A: Conformance Class Abstract Test Suite (Normative)

An Abstract Test Suite is not required for a Community Standard

13 Annex B: Contributor Acknowledgements (Non-normative)

Matt Amato Frederic Houbie
Erik Andersson Christopher Mitchell, Ph.D.
Dan Bagnell Claus Nagel
Ray Bentley Jean-Philippe Pons
Jannes Bolling Carl Reed
Dylan Brown Kevin Ring
Sarah Chow Scott Simmons
Paul Connelly Stan Tillman
Volker Coors Piero Toffanin
Tom Fili Pano Voudouris
Leesa Fini Dave Wesloh
Ralf Gutbell
14 Annex C: Revision History
Date Release Author Description
2018-06-04 1.0 Gabby Getz Put 3D Tiles specification document into

OGC document template

138

2018-08-03

2018-11-16

1.0r1

1.0r2

Gabby Getz

Gabby Getz

139

Respond to public comments

Updated conformance section to
include schema references

Update preface to address updates
to WKT for CRS (OGC12-053r5)

Revise Introduction section to
clarify conceptual concepts,
including tile, tile content, tile
formats, features, properties, styles,
and the Batch Table and Features
Table and how gITF is used in 3D
Tiles

Updated “tile” and “HLOD”
definitions, added “tile content”,
“tile format”, “geometric error”,
“screen space error”, and “spatial
coherence” definitions

Add reference to EPSG in CRS

section

Remove gITF transforms from CRS
section. Add only to relevant
sections after being introduced.

Remove references to “generation
tool”

Fix phrasing describing Tileset
JSON

Revise Tile Formats intro

Revise embedded gITF wording.

e Fix “required” property errors in
the properties reference as
generated from the schema

e Remove 3d_tileset time 3D Tiles
Style variable

e Add clarification for styling tilesets
without features

e Update normative references to
include:

o EPSG 4979

o IETF RFC3986

o IETF RFC2397

o UTF-8

o W3C CSS3 Color

e Change gITF specification from
non-normative to normative

reference
2019-01-21 TODO TODO e Revise internal link formatting
e TODO

! https://en.wikipedia.org/wiki/Bounding volume
2 https://en.wikipedia.org/wiki/Level_of detail

140

