

1

Open Geospatial Consortium

Submission Date: 2017-02-24

Approval Date: 2017-08-08

Publication Date: 2017-09-05

External identifier of this OGC® document: http://www.opengis.net/doc/CS/i3s/1.0

Internal reference number of this OGC® document: 17-014r5

Version: 1.0

Category: OGC® Community Standard

Editor: Carl Reed, Tamrat Belayneh

OGC Indexed 3d Scene Layer (I3S) and Scene Layer
Package Format Specification

Copyright notice

Copyright © 2017 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member endorsed international Community standard. This
Community standard was developed outside of the OGC and the originating party may
continue to update their work; however, this document is fixed in content. This document
is available on a royalty free, non-discriminatory basis. Recipients of this document are
invited to submit, with their comments, notification of any relevant patent rights of which
they are aware and to provide supporting documentation.

Document type: OGC® Community Standard
Document subtype:
Document stage: Approved
Document language: English

http://www.opengis.net/doc/CS/i3s/1.0
http://www.opengeospatial.org/legal/

2

Esri (Environmental Systems Research Institute, Inc.)

The companies listed above have granted the Open Geospatial Consortium (OGC) a
nonexclusive, royalty-free, paid up, worldwide license to copy and distribute this
document and to modify this document and distribute copies of the modified version
under a Creative Commons ShareAlike (CC BY-SA) license (see below).

License Agreement

The standard is licensed under the Creative Commons Attribution-ShareAlike 4.0
International (CC BY-SA 4.0)1. You can implement this standard in services, clients or
processing tools without restrictions.

You are directed to the License for specific details..

This is a human-readable summary of (and not a substitute for) the license.

You are free to:

• Share — copy and redistribute the material in any medium or format
• Adapt — remix, transform, and build upon the material for any purpose, even

commercially.

The licensor cannot revoke these freedoms as long as you follow the license terms.

Under the following terms:

• Attribution — You must give appropriate credit, provide a link to the license,
and indicate if changes were made. You may do so in any reasonable manner, but
not in any way that suggests the licensor endorses you or your use.

• ShareAlike — If you remix, transform, or build upon the material, you must
distribute your contributions under the same license as the original.

• No additional restrictions — You may not apply legal terms or technological measures
that legally restrict others from doing anything the license permits.

Notices:

• You do not have to comply with the license for elements of the material in the
public domain or where your use is permitted by an applicable exception or
limitation.

• No warranties are given. The license may not give you all of the permissions
necessary for your intended use. For example, other rights such as publicity,
privacy, or moral rights may limit how you use the material.

1 https://creativecommons.org/licenses/by-sa/4.0/

https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/
https://creativecommons.org/licenses/by-sa/4.0/

3

<Skip	Directly	to	Standard!>	

Contents	
1.	 Introduction .. 10	
2.	 Conformance .. 10	
3.	 References .. 10	
4.	 Terms and Definitions .. 11	
5.	 Conventions ... 14	
6.	 Introduction to I3S and SLPK .. 14	

6.1	 I3S Design Principles ... 14	
6.2	 I3S – Overview .. 15	

7.	 I3S Specification .. 16	
7.1	 Coordinate Reference Systems (CRS) ... 16	

7.1.1	 A note on OGC Standards for CRS and Well Known Text 16	
7.1.2	 CRS use and requirements in I3S ... 17	

7.2	 Height Models .. 18	
7.3	 Indexed Scene Layers - Organization and Structure .. 20	

7.3.1	 I3S - Indexing Model and Tree Structure ... 20	
7.3.2	 Geometry Model and Storage ... 25	
7.3.3	 Textures ... 26	
7.3.4	 Attribute Model and Storage ... 26	

7.4	 Level of Detail Concept ... 27	
7.4.1	 Discrete LoDs ... 27	
7.4.2	 Representation of input data that already has explicitly authored multiple
representations .. 28	
7.4.3	 LoD Switching Modes .. 29	
7.4.4	 Levels of Detail – Generation ... 29	
7.4.5	 LoD Selection Metrics .. 30	

7.5	 JSON Resources Schema and Documentation .. 30	
7.5.1	 Basic Value Types .. 31	
7.5.2	 Pointers ... 31	
7.5.3	 SceneServiceInfo .. 32	
7.5.4	 3dSceneLayerInfo ... 33	
7.5.5	 3dNodeIndexDocument .. 43	
7.5.6	 FeatureData ... 47	

7.6	 Shared Resources ... 51	
7.6.1	 Class SharedResource ... 52	
7.6.2	 Class Material ... 52	
7.6.3	 Class Texture .. 53	
7.6.4	 Class Image ... 54	
7.6.5	 Class ShaderDefinition ... 54	
7.6.6	 Class Symbol .. 54	

8.	 I3S File Formats ... 54	
8.1	 Textures.bin ... 54	

8.1.1	 Texture Recommendations and Requirements ... 54	

4

8.1.2	 Image Formats .. 55	
8.1.3	 Texture Sets .. 55	
8.1.4	 Atlas usage and Regions ... 55	
8.1.5	 Texture coordinates ... 56	
8.1.6	 Generating Image IDs ... 56	

8.2	 Geometry.bin ... 56	
8.3	 Attribute Data ... 58	

8.3.1	 The content of this binary attribute resource is made up of: 59	
8.3.2	 REST API for Accessing Attribute Resources directly from a scene service
layer 62	
8.3.3	 A typical pattern of usage of the attributes REST API includes 62	
8.3.4	 Attribute Resources: Details ... 65	

8.4	 Accessing the Legend of a 3D Object Layer ... 67	
9.	 Additional Informative Information .. 67	

9.1	 Flexibility ... 67	
9.2	 Summary of I3S Defining Characteristics ... 68	

10.	 Persistence .. 69	
10.1	 Scene Layer Packages .. 69	

10.1.1	 Metadata .. 71	
10.2	 Key Value Stores ... 71	
Annex A: Abstract Test Suite ... 74	
Annex B: Example JSON encoding for a 3dSceneLayer mesh pyramid 75	
Annex C: Contributor Acknowledgements ... 79	
Annex D: Revision history .. 79	
Annex E - Scene Service Access to REST Resources. Informative 80	
Annex F: I3S profile: Points ... 83	
Annex G: I3S profile - Mesh-pyramids (MP) ... 87	

FIGURES
Figure 1: A Sample Index Tree with Treekeys ... 21	
Figure 2: Nodes and their attached resources ... 23	
Figure 3: This diagram illustrates the content of an I3S node as stored in its node index
document ... 24	
Figure 4: Example Nodes in a Mesh Pyramid .. 25	
Figure 5: Logical Schema of the 3dSceneServiceInfo document 32	
Figure 6: Logical schema of the 3dSceneLayerInfo document .. 33	
Figure 7: Logical schema of the 3dNodeIndexDocument .. 43	
Figure 8: Logical schema of the FeatureData document .. 47	
Figure 9: Logical schema of the SharedResources document .. 52	
Figure 10: Geometry Buffer Layout with headers .. 57	
Figure 11: Example of the fields array resource ... 59	
Figure 12: A node resource document .. 61	
Figure 13: An expanded view of a scene layer resource .. 65	
Figure 14: A typical attribute (table) info of a feature class ... 66	
Figure 15: Example of a SLPK with BASIC folder layout .. 70	

5

TABLES
Table 1: 3D Layer Types Supported in I3S .. 16	
Table 2: 3D Layer Types and models of LoD generation they can employ 30	
Table 3: Attributes of Class SceneServiceInfo within SceneServiceInfo document 33	
Table 4: Attributes of the Class 3dSceneLayerInfo within the 3dSceneLayerInfo
document ... 35	
Table 5: Attributes of the Class Store within the 3dSceneLayerInfo document 37	
Table 6: Attributes of the Class GeometrySchema within the 3dSceneLayerInfo
document ... 38	
Table 7: Attributes of the Class HeaderAttribute within the 3dSceneLayerInfo document
... 38	
Table 8: Attributes of the Class Field within the 3dSceneLayerInfo document 39	
Table 9: Attributes of the Class attributeStorageInfo within the 3dSceneLayerInfo
document ... 39	
Table 10: Attributes of the Class IndexScheme within the 3dSceneLayerInfo document 40	
Table 11 Attributes of the Class CachedDrawingInfo within the 3dSceneLayerInfo
document ... 40	
Table 12: Attributes of the Class Renderer within the 3dSceneLayerInfo document 40	
Table 13: Attributes of the Class Symbol within the 3dSceneLayerInfo document 41	
Table 14: Attributes of the Class SymbolLayers within the 3dSceneLayerInfo document 41	
Table 15: Attributes of the Class Material within the 3dSceneLayerInfo document 41	
Table 16: Attributes of the Class Material within the 3dSceneLayerInfo document 42	
Table 17: Attributes of the Class Color within the 3dSceneLayerInfo document 42	
Table 18: Attributes of the Class CachedDrawingInfo within the 3dSceneLayerInfo
document ... 42	
Table 19: Attributes of the Class Node within the NodeIndexDocument 44	
Table 20: Attributes of the Class NodeReference within the NodeIndexDocument 45	
Table 21: Attributes of the Class Resource within the NodeIndexDocument 45	
Table 22: Attributes of the Class Feature within the NodeIndexDocument 46	
Table 23: Attributes of the Class LodSelection within the NodeIndexDocument 46	
Table 24: Attributes of the Class Feature within the FeatureData document 48	
Table 25: Attributes of the Class FeatureAttribute within the FeatureData document 48	
Table 26: Attributes of the Class Geometry within the FeatureData document 49	
Table 27: Attributes of the Class GeometryReferenceParams within the FeatureData
document ... 49	
Table 28: Attributes of the Class VestedGeometryParams within the FeatureData
document ... 50	
Table 29: Attributes of the Class SingleComponentParams within the FeatureData
document ... 50	
Table 30: Attributes of the Class Component within the FeatureData document 50	
Table 31: Attributes of the Class GeometryAttribute within the FeatureData document . 51	
Table 32: Attributes of the Class Material within the SharedResources document 53	
Table 33: Attributes of the Class Texture within the SharedResources document 53	
Table 34: Attributes of the Class Image within the SharedResources document 54	
Table 35: Attribute data types supported by a scene service layer. 66	

6

Table 36: example showing the layout of a SceneService .. 73	

7

i. Abstract
A single I3S data set, referred to as a Scene Layer, is a container for arbitrarily large
amounts of heterogeneously distributed 3D geographic data. Scene Layers are designed to
be used in mobile, desktop, and server-based workflows and can be accessed over the web or as
local files.

The delivery format and persistence model for Scene Layers, referred to as Indexed 3d
Scene Layer (I3S) and Scene Layer Package (SLPK) respectively, are specified in detail
in this OGC Community Standard. Both formats are encoded using JSON and binary
ArrayBuffers (ECMAScript 2015). I3S is designed to be cloud, web and mobile friendly.
I3S is based on JSON, REST and modern web standards and is easy to handle, efficiently
parse and render by Web and Mobile Clients. I3S is designed to stream large 3d datasets
and is designed for performance and scalability. I3S is designed to support 3D geospatial
content and supports the requisite coordinate reference systems and height models in
conjunction with a rich set of layer types.

The open community GitHub version of this standard is here: https://github.com/Esri/i3s-
spec2 .

ii. Source of the content for this OGC document
The majority of the content in this OGC document is a direct copy of the content
contained at https://github.com/Esri/i3s-spec . No normative changes have been made to
the content. This OGC document does contain content not contained at
https://github.com/Esri/i3s-spec. Specifically, while derived from content on the
https://github.com/Esri/i3s-spec repository, the Abstract, Keywords, Preface, Submitting
Organizations, Endorsers, Terms and Definitions, and References sections in this
document are not found on the https://github.com/Esri/i3s-spec website. However, there

2 This OGC Community Standard is based on I3S version 1.6 of the Esri openly available specification.
Specifically, navigate to https://github.com/Esri/i3s-spec/blob/master/README.md

https://github.com/Esri/i3s-spec
https://github.com/Esri/i3s-spec
https://github.com/Esri/i3s-spec
https://github.com/Esri/i3s-spec
https://github.com/Esri/i3s-spec
https://github.com/Esri/i3s-spec

8

is a plan to incorporate the Terms and Definitions and References sections into the
community GitHub repository.

Note: Some elements (Lines, Polygons, and PointClouds) contained in
https://github.com/Esri/i3s-spec have been removed from the OGC document because
they are currently in Beta and not broadly implemented outside the Esri community.
These elements are identified as future work in this OGC document.

iii. Validity of content
The Submission Team has reviewed and certified that the “snapshot” content in this
Community Standard is true and accurate.

iv. Keywords
The following are keywords to be used by search engines and document catalogues.
ogcdoc, OGC document, i3s, 3d, visualization, scene, scene layer, slpk

v. Preface
I3S originated from investigations into technologies for rapidly streaming and
distributing large volumes of 3D content across enterprise systems that may consist of
server components, cloud hosted components, and a variety of client software from
desktop to web and mobile applications.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

vi. Submitting organizations
The following organizations submitted this Document to the Open Geospatial
Consortium (OGC):

Esri, Inc.

vii. Supporting Organizations
All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation
Keith Ryden Esri

https://github.com/Esri/i3s-spec

9

Allan W. Shearer UT Austin

Volker Coors Hochschule für Technik
Stuttgart

David Graham CAE

Andreas Wytzisk 52North
Carl Reed Carl Reed & Associates

Gordon Plunkett Esri Canada
Vijay Kumar Esri India Technologies
Clemens Portele interactive instruments

GmbH

Brian Nicholls AAM Pty Ltd

Bomi Lee Korea Land & Geospatial
InformatiX Corporation

Isaac Zaworski Vricon, Inc

Thorsten Rietz Wetransform GmbH
Dale Lutz Safe Software

viii. Future Work
The I3S community anticipates that revisions to this Community Standard will be
required to prescribe content appropriate to meet new use cases. These use cases may
arise from either (or both) the external user and developer community or from OGC
review and comments. Further, future revisions will be driven by any submitted change
requests that document community uses cases and requirements.

Currently, the following layer types are planned for future inclusion in the I3S standard
(future work):

• Line Features (e.g. from a GIS data repository)
• Polygon Features (e.g. from a GIS data repository)
• Point Clouds (e.g. from LiDAR)

10

1. Introduction

A single I3S data set, referred to as a Scene Layer, is a container for arbitrarily large
amounts of heterogeneously distributed 3D geographic data. A Scene Layer is
characterized by a combination of layer type and profile to fully describe the behavior of
the layer and the manner in which it is realized within the standard.

The I3S format is declarative and extendable and can be used to represent different types
of 3D data. The following layer types have been specified and the standard validated via
implementation and production deployments:

• 3D Objects (e.g. Building Exteriors from geospatial data and 3D models)
• Integrated Meshes (e.g. a mesh surface with high resolution imagery textures

representing the skin of the Earth, typically created from satellite, aerial or drone
imagery)

• Point Features (such as geolocated Hospitals or Schools, trees, street furniture,
and signs)

The Indexed 3d Scene Layer (I3S) and Scene Layer Package (*.slpk) are open formats
and not dependent on any vendor specific solution, technology, or products3. The
specification for accessing I3S resources as Scene Service REST (Annex E) endpoints is
also described in this standard as open formats.

2. Conformance
Not Applicable.

3. References

Normative

OGC SF [99-036/ISO 19125]: Geographic information - Simple feature access - Part 1:
Common architecture. 2005. http://portal.opengeospatial.org/files/?artifact_id=13227.
May17, 2017.

OGC WKT CRS [12-063r5/ISO 19162:2015]: Geographic information — Well known
text representation of coordinate reference systems. 2015
http://portal.opengeospatial.org/files/?artifact_id=4700 (May 15, 2017)

3 The specification for accessing I3S resources as Scene Service REST endpoints are
described in Annex E (informative).

http://portal.opengeospatial.org/files/?artifact_id=13227
http://portal.opengeospatial.org/files/?artifact_id=4700

11

Informative

"Octree". https://en.wikipedia.org/wiki/Octree. Not Published (N.P.), 2016. Web. 20 Oct.
2016.
“Quadtree”. https://en.wikipedia.org/wiki/Quadtree. N.P. 2017. Web. 20 Jan. 2017
“R-Trees”. https://en.wikipedia.org/wiki/R-tree. N.P. 2017. Web. 20 Jan. 2017

4. Terms and Definitions
For the purposes of this document, the following additional terms and definitions apply.

4.1 3D Model4
Three-dimensional (3D) models represent a physical body using a collection of points in
3D space, connected by various geometric entities such as triangles, lines, curved
surfaces, etc.

4.2 Array Buffers
In JavaScript, the ArrayBuffer object is used to represent a generic, fixed-length raw
binary data buffer.

4.3 Face
In solid geometry, a face is a flat (planar) surface that forms part of the boundary of a
solid object; a three-dimensional solid bounded exclusively by flat faces is a polyhedron.

4.4 faceRanges
Indicates the range of triangles associated with a particular object (feature).

4.5 Gravity-related height
Height dependent on the Earth’s gravity field. NOTE: This refers to in particular
orthometric height or normal height, which are both approximations of the distance of a
point above the mean sea level. (ISO 19111)

4.6 Height
Distance of a point from a chosen reference surface measured upward along a line
perpendicular to that surface. NOTE: A height below the reference surface will have a
negative value.

4.7 Integrated Mesh
An Integrated Mesh is a type of I3S layer that belongs to the mesh-pyramids profile.
An Integrated Mesh layer type is typically used to represent and visualize geographic
data captured as ‘3D Image’ representing the landscape in a seamless, highly scalable,
textured mesh. Such ‘3D Image’ can integrate within its content a multitude of landscape
elements including terrain surface, ground imagery, vegetation, man-made objects and

4 https://en.wikipedia.org/wiki/3D_modeling (February 7, 2017)

https://en.wikipedia.org/wiki/Quadtree
https://en.wikipedia.org/wiki/R-tree

12

structures, and water surfaces. This type of data is typically produced by automated
extraction solutions operating on input data from satellite, aerial and/or drone imagery.

4.8 Level of Detail (LoD)
Using different LoDs involves decreasing the complexity of a 3D model representation as
it moves away from the viewer or according to other metrics such as object importance,
viewpoint-relative speed or position. There are numerous approaches to defining LoDs.
In GIS, LoDs typically refer to maps defined at given scales and resolutions. Typically
higher levels of detail provide greater fidelity. A number of OGC standards define
approaches to LoD.

4.9 Minimum Bounding Sphere5 (MBS, mbs)
In mathematics, given a non-empty set of objects of finite extension in n-dimensional
space, for example a set of points, a bounding sphere, enclosing sphere or enclosing ball
for that set is an n-dimensional solid sphere containing all of these objects.

4.10 Normal or Normals6
The normal vector, often simply called the "normal," to a surface is a vector which is
perpendicular to the surface at a given point. When normals are considered on closed
surfaces, the inward-pointing normal (pointing towards the interior of the surface) and
outward-pointing normal are usually distinguished.

4.11 Oriented Bounding Box (OBB)7
In geometry, the minimum or smallest bounding or enclosing box for a point set (S) in N
dimensions is the box with the smallest measure (area, volume, or hyper-volume in
higher dimensions) within which all the points lie. In many applications the bounding box
is aligned with the axes of the coordinate reference system and is known as an axis-
aligned bounding box (AABB). To distinguish the general case from an AABB, an
arbitrary bounding box is called an oriented bounding box (OBB) when an object's local
coordinate reference system is used.

4.12 Profile
In I3S, specific implementation instances for specific layer definitions (point, mesh, etc)

5 https://en.wikipedia.org/wiki/Bounding_sphere (February 12, 2017)
6 http://mathworld.wolfram.com/NormalVector.html (March 3, 2017)
7An Exact Algorithm for Finding Minimum Oriented Bounding Boxes.
http://clb.demon.fi/minobb/minobb.html (June 1, 2015)

https://en.wikipedia.org/wiki/Solid_sphere
http://mathworld.wolfram.com/Vector.html
http://mathworld.wolfram.com/Perpendicular.html

13

4.13 S3TC8
S3TC is a technique for compressing images for use as textures. Standard image
compression techniques like JPEG and PNG can achieve greater compression ratios than
S3TC. However, S3TC is designed to be implemented in high-performance hardware.
JPEG and PNG decompress images all-at-once, while S3TC allows specific sections of
the image to be decompressed independently.

4.14 Shader
A small program or set of algorithms that determines how 3-D surface properties of
objects are rendered, and how light interacts with the object within a 3-D computer
program.

4.15 Texture
In 3D graphics, the digital representation of the surface of an object. In addition to two-
dimensional qualities, such as color and brightness, a texture is also encoded with three-
dimensional properties, such as how transparent and reflective the object is. Once a
texture has been defined, it can be wrapped around any 3-dimensional object. This is
called texture mapping.

4.16 Texture Atlas9
A large image containing a collection, or "atlas", of sub-images, each of which is a
texture map for some part of a 2D or 3D model.

4.17 Texture Mapping10
Texture mapping is a method for defining high frequency detail, surface texture, or color
information on a computer-generated graphic or 3D model.

4.18 Texture Maps
A texture map is an image applied (mapped) to the surface of a shape or polygon. This
may be a bitmap image or a procedural texture. They may be stored in common image
file formats, referenced by 3d model formats or material definitions, and assembled into
resource bundles.

8 https://www.khronos.org/opengl/wiki/S3_Texture_Compression (February 7, 2017). Please note that
S3TC is patented technology and is usage is subject to license restrictions. The patent expires October 7,
2017.
9 https://en.wikipedia.org/wiki/Texture_atlas (February 19, 2017)
10 https://en.wikipedia.org/wiki/Texture_mapping (February 19, 2017)

14

4.19 UV Coordinate11
UV coordinates are 2D coordinates that are mapped onto a 3D model. UV coordinates are
a texture's x and y coordinates and always range from 0 to 1. Let's take for example a
800×600 image. When we use a UV coordinate with u=0.5 and v=0.5 then the pixel at
x=400 and y=300 is targeted.

4.20 UV Mapping12 (aka UV Unwrapping)
UV mapping is the 3D modeling process of projecting a 2D image to a 3D model's
surface for texture mapping.

4.21 Vertex13
In computer graphics, a vertex is not only associated with three spatial coordinates but
also with other graphical information necessary to render the object correctly, such as
colors, reflectance properties, textures, and surface normals. These properties are used in
rendering by a vertex shader, part of the vertex pipeline.

5. Conventions
No conventions are specified in this document.

6. Introduction to I3S and SLPK
This section provides background information on the design principals and background
for I3S

6.1 I3S Design Principles
The Indexed 3d Scene layer (I3S) format and the corresponding Scene Layer Package
format (*.slpk) are specified to fulfill this set of design principles:

1. User Experience first: Support a positive user experience - high interactivity,
fast display, support rendering of visually relevant features first;

2. Scalability: Support very large scene layers, with global extent and large amounts
of features - as well as the ability to handle highly detailed features;

3. Reusability: Be usable both as a service delivery format as well as a
storage/exchange format;

4. Level of Detail: Have intrinsic support for representing level of detail;
5. Distribution: Allow efficient distribution of very large data sets;
6. User-controllable symbology: Support client-side symbology/styling and its

efficient rendering;
7. Extensibility: Be extensible to support new layer and geometry types as well as

new platforms;

11 http://www.rozengain.com/blog/2007/08/26/uv-coordinate-basics/ (February 19, 2017)
12 https://en.wikipedia.org/wiki/UV_mapping (February 9, 2017)
13 https://en.wikipedia.org/wiki/Vertex_(geometry)#Vertices_in_computer_graphics (February 9, 2017)

15

8. Web Friendliness: Easy to handle and parse by web clients by using JSON and
current web standards;

9. Compatibility: Have a single structure that is usable across a modern platform
spanning web, mobile and desktop clients and cloud and on-premises servers;

10. Declarative: limit how much specific knowledge is needed by clients for format
support;

11. Follow REST/JSON API best practices: "Hypertext as the Engine of
Application State" - make all resources navigable using hrefs from relevant other
resources.

6.2 I3S – Overview
I3S originated from investigations into technologies for rapidly streaming and
distributing large volumes of 3D content across enterprise systems that may consist of
server components, cloud hosted components, and a variety of client software from
desktop to web and mobile applications. A single I3S data set, referred to as a Scene
Layer, is a container for arbitrarily large amounts of heterogeneously distributed 3D
geographic data. I3S Scene Layers are designed to provide clients access to data. Clients
have the ability to then visualize the data for the layer independently according to their
needs. Data here refers to vertex geometry, texture as well as any associated attributes.
An I3S Layer is characterized by a combination of layer type and profile that fully
describes the behavior of the layer and the manner in which it is realized within the
specification.

The requirements specified below apply to the following layer types defined in this
standard:

• 3D Objects (e.g., Building Exteriors from geospatial data and 3D models)
• Integrated Mesh (e.g., an integrated surface representing the skin of the earth

including vegetation, buildings and roads from satellite, aerial or drone imagery
via dense matching photogrammetry)

• Points (e.g. hospitals or Schools, trees, street furniture, signs, etc. from GIS data)

Layers are described using two properties: type and profile. The type of a layer describes
the type of geospatial data stored within it drawing from terms including 3D Objects and
Points. The profile for a layer includes additional detail on the specific I3S
implementation for the layer that is exposed to clients. Each layer has a canonical profile,
but in certain cases multiple layers that represent semantically different types of
information can make use of the same underlying profile. In other cases the same layer
type can support multiple profiles optimized for different use cases.

The following table shows the layer types and profiles. For each row the table indicates if
the layer type represents features (geographic entities) with identity (as opposed to a
geospatial field described by a mesh or cloud of geometry elements) and if the specific
profile for the layer supports storage of attributes (either feature attributes or attributes of
individual geometry elements, depending on the type of the layer).

16

Layer Type
(example) Profile Annex Features with

Identity Attributes

3D Object mesh-
pyramids

Annex G Yes Yes

Integrated
Mesh

mesh-
pyramids

Annex G No Triangle Attributes
(planned)

Point points Annex F14 Yes Yes
Table 1: 3D Layer Types Supported in I3S

7. I3S Specification
This section contains the normative clauses and requirements for implementing I3S.

7.1 Coordinate Reference Systems (CRS)15

7.1.1 A note on OGC Standards for CRS and Well Known Text
This document refers to two OGC standards for describing a CRS as Well Known Text.
The two standards are referred to as WKT1 and WKT2

• WKT1: Refers to Well Known Text (WKT) for expressing a CRS as originally
defined in clause 6.4 in OGC Simple Features [99-036/ISO 19125]16. This
original definition was extended in OGC Coordinate Transformation Service [01-
009];

• WKT2: Refers to WKT as defined in OGC WKT CRS/ISO 19162:2015
Geographic information -- Well-known text representation of coordinate reference
systems [12-063r5]17. From the document, “This Standard provides an updated
version of WKT representation of coordinate reference systems that follows the
provisions of ISO 19111:2007 and ISO 19111-2:2009. It extends the earlier WKT
to allow for the description of coordinate operations.”

OGC 12-063r518 makes several references to backward compatibility. “Backward
compatibility means that an implementation of the text strings in this International
Standard would be able to read CRS WKT strings conforming to the old (ISO 19125-
1:2004) syntax. It does not mean that a parser of a string compliant to ISO 19125-1:2004

14 NOTE: The JSON/HTML examples for these profiles are posted in the OGC
repository: http://schemas.opengis.net/i3s/1.0/

15 This document refers to two OGC standards for describing a CRS as Well Known Text: 1.) WKT1:
WKT as defined in OGC Coordinate Transformation Service [01-009], 2.) WKT2: WKT as defined in
OGC Geographic Information – Well known text representation of coordinate reference systems [12-063r5]

16 http://portal.opengeospatial.org/files/?artifact_id=13227
17 http://docs.opengeospatial.org/is/12-063r5/12-063r5.html
18 The text in this paragraph is extracted verbatim from 12-063r5.

17

could read WKT strings written in conformance with this International Standard. It also
does not require an implementation of the text strings in this International Standard to be
able to output an object according to the old syntax. Annex B.8 gives guidance on
determining the version of a CRS WKT string. A mapping of older syntaxes to this
International Standard is given in Annex C.”

Please note that in an I3S implementation the CRS MAY be represented using either
WKT1 or WKT2. While WKT1 has been in use for many years, WKT1 has been
superseded by WKT2. Although implementations of OGC standards using WKT2 are not
yet widely available the guidance from the OGC/ISO community is to implement WKT2.
Important Note: WKT1 does not support explicit definition of axis order.

Therefore, I3S implementers need to note for their implementations if they support
WKT1 only or both (as WKT2 requires continued support of WKT1).

7.1.2 CRS use and requirements in I3S

Indexed 3D Scene Layers have to fulfill a number of requirements when it comes to the
selection of Coordinate Reference Systems (CRS) to use:

• Minimize the need for re-projection on the client side
• Support data sets with global extent
• Render easily in coordinate reference systems for projected19 CRSs as well as

coordinate reference systems for geographic20 CRSs
• Support local data with very high positional accuracy
• Support global data sets with high positional accuracy

These use cases lead to the following implementation requirements.

1. The location of all index-related data structures such as node bounding spheres
SHALL be specified using a single, global geographic WGS 84 CRS. Coordinate
bounds for such structures SHALL be in the range (-180.0000, -90.0000,
180.0000, 90.0000). Height and node minimum bounding sphere (MBS) radius
SHALL be specified in meters. Allowed CRS specified using an EPSG code
include: EPSG:432621

2. All vertex positions SHALL be specified using a geodetic CRS (including
Cartesian coordinate reference systems), where x,y,z axes are all in same unit, and

19 A Projected CRS is defined on a flat, two-dimensional surface. Unlike a Geographic CRS, a Projected
CRS has constant lengths, angles, and areas across the two dimensions. A Projected CRS is always based
on a Geographic CRS that is based on an ellipse.
20 These CRSs are based on a Geodetic datum. The EPSG dataset contains three subtypes of Geodetic CRS:
Geocentric, Geographic 3D, Geographic 2D. ISO 19111 Compliance Note: In ISO19111, geog2D, geog3D
and geocentric are all considered to be "geodetic CRSs".
21 WGS 84 2d as specified here: http://www.epsg-
registry.org/report.htm?type=selection&entity=urn:ogc:def:crs:EPSG::4326&reportDetail=long&style=urn:
uuid:report-style:default-with-code&style_name=OGP%20Default%20With%20Code&title=

18

with a per-node offset (from the center point of the node's minimum bounding
sphere) for all vertex positions.

3. Axis Order: Axis order explicitly defined by the CRS SHALL be used when
present. When the axis order is not defined by the CRS, Easting, Northing, Height
axis order SHALL be used. The Height axis SHALL always point upwards towards
the sky (away from the center of the earth).

All I3S layers indicate the coordinate reference system via the spatialReference
property in the 3dSceneLayerInfo resource. This property is normative.

7.2 Height Models
The I3S standard accommodates declaration of a vertical coordinate reference system that
may either be ellipsoidal (height defined with respect to a reference ellipsoid) or gravity-
related height (height defined with respect to a reference geoid/gravity surface). This
allows the I3S approach to be applied across a diverse range of fields and applications
where the particular definition of height is of importance.

The Well-known Text (WKT) string representation of the CRS now includes the vertical
coordinate reference system utilized by the layer. The spatialReference property also
includes a Well-known Id (wkid) and a Vertical Coordinate Reference System Well-
known ID (vcsWkid) representations, which could alternatively be utilized by a client
application consuming the layer instead of the WKT. In addition to the detailed
spatialReference property that describes the layers horizontal and vertical CRSs, the
3dSceneLayerInfo resource also includes a coarse metadata property called
heightModelInfo, which can be used by a client application to quickly identify if the
layers' height model is either gravity-related or ellipsoidal.

WKT1 description of WGS 84, EPSG 4326

"spatialReference": // the horizontal and vertical coordinate reference
system of the layer
 {
 "wkid": 4326,
 "latestWkid": 4326,
 "vcsWkid": 3855,
 "latestVcsWkid": 3855,
 "wkt":
"GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",637
8137,298.257223563]],PRIMEM[\"Greenwich\",0],UNIT[\"Degree\",0.01745329
2519943295]],

VERTCS[\"EGM2008_Geoid\",VDATUM[\"EGM2008_Geoid\"],PARAMETER[\"Vertical
_Shift\",0.0],PARAMETER[\"Direction\",1.0],UNIT[\"Meter\",1.0]]}"
 }

WKT2 description of a compound WGS 84, EPSG 4326 and EPSG
3855

19

COMPOUNDCRS ["I3S Compund CRS",
GEODCRS["WGS 84",
 DATUM["World Geodetic System 1984",
 ELLIPSOID["WGS 84",6378137,298.257223563,LENGTHUNIT["metre",1.0]]],
 CS[ellipsoidal,2],
 AXIS["latitude",north,ORDER[1]],
 AXIS["longitude",east,ORDER[2]],
 ANGLEUNIT["degree",0.01745329252],
 ID["EPSG",4326]]
VERTCRS["EGM2008 height",
 VDATUM["EGM2008 geoid"],
 CS[vertical,1],
 AXIS["gravity-related height (H)",up],
 LENGTHUNIT["metre",1.0],
 ID["EPSG",3855]]]

20

HeightModelInfo

 "heightModelInfo": // a coarse metadata indicating the layers
height Model
 {
 "heightModel": "gravity_related_height", //one of {*"
gravity_related_height"*, "ellipsoidal"};
 "ellipsoid": "wgs84 (G1674)/", //datum realization
 "heightUnit": "meter" //units
 }

The above examples illustrate the coordinate reference system and height model of a
layer in an I3S payload. The spatialReference object includes a Well-known Text (WKT)
string representation of the CRS for both horizontal and vertical coordinate reference
systems. The examples provided above show both WKT1 and WKT2 WKT encodings as
defined in OGC 12-063r5 - either may be encoded in the spatialReference object.The
heightModelInfo object is coarse metadata that could be used by client application to
quickly determine if the layers' horizontal and vertical coordinate reference systems align
with that of any base map data used by the application.

See Class 3dSceneLayerInfo (Clause 7.5.4) for more information.

7.3 Indexed Scene Layers - Organization and Structure
I3S organizes information using a hierarchical, node-based spatial index structure in
which each node’s payload may contain features with associated geometry, textures and
attributes. The following sections define this structure.

7.3.1 I3S - Indexing Model and Tree Structure

The purpose of any index is to allow fast access to blocks of relevant data. In an Indexed
3D Scene layer, the spatial extent of the data is split into regions, called nodes, with
roughly equal amounts of data, and organized into a hierarchical and navigable data
structure - the index - that allows the client to quickly discover which data it actually
needs and the server to quickly locate the data requested by any client. Node creation is
capacity driven - the smaller the node capacity is, typically the smaller the spatial extent
of each node will be.

I3S is agnostic with respect to the model used to index objects/features in 3D space. Both
regular partitions of space (e.g. Quadtrees22 and Octrees23) as well as density dependent
partitioning of space (e.g. R-Trees24) are supported. The specific partitioning scheme is
hidden from clients who navigate the nodes in the tree exposed as web resources. The
partitioning results in a hierarchical subdivision of 3D space into regions represented by
nodes, organized in a bounding volume tree hierarchy (BVH). Each node has an address
and nodes may be thought of as equivalent to tiles.

22 https://en.wikipedia.org/wiki/Quadtree
23 https://en.wikipedia.org/wiki/Octree
24 https://en.wikipedia.org/wiki/R-tree

21

All Nodes have an ID that is unique within a layer. There are two types of Node ID
formats supported by I3S: As string based treekeys or as integers based on a fixed
linearization of the nodes.

In the treekey format, which is loosely modeled on binary search trees, the key value is
used to indicate both the level and sibling association of a given node, the key directly
indicates the position of the node in the tree, allowing sorting of all resources on a single
dimension. Treekeys are strings in which levels are separated by dashes: "3-1-0" has 3
numeric elements, hence the node is on level 4 ("root" node is at level 1) and the node "3-
1" is its parent. The root node always gets ID "root". An example of this numbering
pattern is shown in Figure 1 below.

Figure 1: A Sample Index Tree with Treekeys

The information for a node is stored in multiple individually accessible resources. The
node index document is a lightweight resource that captures the BVH tree topology for
the node, in addition to the node’s bounding volume and meta-data used for [LoD
Switching] (LoD Switching Models) metrics. This resource allows for tree traversal
without the need to access the more voluminous content associated with a node
(geometry, texture data, attributes). The decision to render the node is based on node’s
bounding-volume visibility in the current 3D view and a visual quality determination
made by the client using the information included in the node index document. The

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-01.png

22

node’s quality is estimated as a function of current view parameters, node’s bounding
volume and LoD selection metric value of the node.

The standard supports both minimum bounding spheres (MBS) and oriented bounding
boxes (OBB) as a node’s bounding volume.

Each interior node logically contains or covers the set of information covered by the
nodes below it and participates in a path to the leaf nodes below it. Interior nodes may
contain generalized or reduced representation of the information contained in descendant
nodes.

The I3S format models node information using a set of resources - Node Index
Documents, Feature Data, Geometry, Attributes, Textures and Shared Descriptors, all of
which together represent the set of features or data elements for a given node. These
resources are always attached to a node.

• The Node Index Document is a lightweight resource representing a node, its
topology within the tree and includes references to other sub-resources.

• The Feature Data sub-resource for a node is a text resource that contains the
identifiers for the set of features within a node. It can store the geometry and
attributes for all of the features in the node either by value or as references into
the geometry and attribute sub-resources for the node.

• The Geometry, Attribute and Texture sub-resources describe the geometry,
attribute and texture for the node. Geometry and attribute sub-resources represent
the geometries and attributes of all of the features within the node and include the
identifiers of the owning features within the node as well as the mapping between
individual feature identifiers and their geometry segments. Vertices within the
geometry contain the appropriate texture coordinates.

An I3S profile can choose between a single text-based feature-data sub-resource that
contains all geometry and attribute information (e.g. Point profile), or separate, binary
and self-contained geometry and attribute sub-resources (e.g. mesh-pyramids profile).
Applications accessing the latter do not need to first fetch the feature-data resource in
order to interpret them.

23

Figure 2: Nodes and their attached resources

Per node, there is exactly one Node Index Document and one Shared Descriptors
resource document. FeatureData, Geometry, Texture and Attribute resources can be split
into bundles for optimal network transfer and client-side reactivity. This allows balancing
between index size, feature splitting (with a relatively large node capacity between 1MB
and 10MB) and optimal network usage (with a smaller bundle size, usually in the range
of 64kB to 512kB).

There are always an equal number n of FeatureData and Geometry resources, and each
set contains the corresponding data elements to be able to render a complete feature.
Optimal access to all required properties of the geometry data, including the feature to
geometry mapping, is available directly from the binary geometry data resource, avoiding
unnecessary dependency on the FeatureData document. All vertexAttributes (including
position, normal, texture coordinates and color), vertex and feature counts, and mesh
segmentation information (faceRanges) are also readily accessible from the geometry
resource.

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-02.png

24

Figure 3: This diagram illustrates the content of an I3S node as stored in its node

index document

Figure 4 below shows the node tree of an Indexed Scene Layer whose layer type is 3D
Object and whose profile is mesh-pyramids. In the figure:

• Nodes are in green, where the hyphenated numbers within the blue boxes
represent the identifier or address for each node.

• The orange boxes indicate the features explicitly represented within the node,
where the numbers within the box represent feature identifiers.

• Each node has associated geometry, texture and attribute resources that compactly
store the geometries, attributes and textures of all of the features explicitly
represented by the node, as typed arrays and texture atlases.

• The turquoise boxes show the geometry resource associated with each node. Each
geometry resource is an array of geometries. The same resource also stores the
mesh-segmentation information, where each individual feature's range of triangles
is stored along with the feature identifier (the values in the orange boxes) in a
compact form similar to a run length encoding25.

• Though both attribute and texture resources are omitted from the figure for
clarity, it is worth noting that the attribute of all features of a given node are also
stored as attribute resource of the node, following a similar storage model.

25 Run-length encoding (RLE) is a very simple form of lossless data compression in which runs of data
(that is, sequences in which the same data value occurs in many consecutive data elements) are stored as a
single data value and count, rather than as the original run.

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-03.png

25

• Each node contains explicit references (the green lines) to the child nodes below it
in the bounding volume hierarchy. Each node logically covers all of the features
covered by the nodes in its sub-tree, though only some of them may be explicitly
represented within the node. Applications make the decision (based on the nodes
LoD Selection Metrics) on using the representation within the node versus
descending to more detailed nodes.

• The figure also illustrates the case where feature "6" has been generalized away at
the lower level of detail node (node "3") and is intentionally no longer explicitly
represented within its payload.

Figure 4: Example Nodes in a Mesh Pyramid

Figure detail: Orange boxes represent features stored explicitly within the node, the
numbers represent feature identifiers. Turquoise boxes represent the geometry instances
associated with each node – each geometry instance is an aggregate geometry (a
geometry collection) that covers all the features in the node. Blue boxes represent the
node ids, the hyphenated numbers represent node ids as string based treekeys.

7.3.2 Geometry Model and Storage

All Scene Layer types make use of the same fundamental set of geometry types:

• points
• lines
• triangles

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-04.png

26

Geometries use binary storage and consumption representation, controlled by Array
Buffer View26 geometry property declarations. I3s provides full control over those
properties, such as per-vertex layout of components (e.g. position, normal and texture
coordinates), in order to ensure the same pattern for face and vertex elements across the
Scene Layer.

I3S supports storage of triangle meshes via triangles geometry type.

Both 3D Object as well as Integrated Mesh layer type model geometries as triangle
meshes using the mesh-pyramids profile. The mesh-pyramids profile uses the triangles
geometry type to store triangle meshes with reduced level of detail representations of the
mesh, segmented by features, available in the interior nodes as described above.

See Geometry section for more discussion on the geometry format and storage models.

7.3.3 Textures

Textures are stored as a binary resource associated with a node. The texture resource for a
node contains the images that are used as textures for the features stored in the node. The
mesh-pyramids profile supports either a single texture or a texture atlas per node.

By default, the mesh-pyramids profile allows/supports encoding the same texture
resource in multiple formats, catering for bandwidth, memory consumption and optimal
performance consideration on different platforms. As a result, the I3S standard supports
most commonly used image formats such as JPEG/PNG as well as rendering optimized
compressed texture formats such as S3TC27. In all cases, the standard provides flexibility
by allowing authoring applications to provide additional texture formats via the
textureEncoding declarations that use MIME types. For example, most existing I3S
services provide “image/vnd-ms.dds” (for S3TC compressed texture) in addition to the
default “image/jpeg” encoding.

See Textures section for more on texture format, texture coordinate, texture atlas usage
and regions discussion.

7.3.4 Attribute Model and Storage

I3S supports the following two patterns of accessing the attribute data:

1. From optional paired services that expose query-able and updatable RESTful
endpoints that enable direct access to dynamic source data, including attributes.
The query in this case uses the unique feature-ID key – which is always

26 JavaScript: ArrayBufferView is an abstract type that is the base for the following types: DataView,
Float32Array, Float64Array, Int8Array, Int16Array, Int32Array, Uint8Array,
Uint8ClampedArray, Uint16Array, Uint32Array.
27 https://en.wikipedia.org/wiki/S3_Texture_Compression

27

maintained within each node and is also available as part of the descriptor for any
segmented geometry.

2. From fully cached attribute information, in binary form, within I3S store. I3S
clients can still choose to use both of these modes even if the attributes are fully
cached within I3S store.

Cached Attributes use a binary storage representation based on Array Buffers which
provide significant performance benefits relative to method 1. The attribute values are
stored as a geometry aligned, per field (column), key-value pair arrays.

See Attribute Data section for more on texture format, texture coordinate, texture atlas
usage and regions discussion.

7.4 Level of Detail Concept

The concept of Level of Detail (LoD) is intrinsic to the I3S standard. Scene Layers may
include levels of detail that apply to the layer as whole and serve to generalize or
summarize information for the layer, similar to image pyramids and also similar to raster
and vector tiling schemes. A node in the I3S scene layer tree could be considered the
analog of a tile in a raster or vector tiling scheme. Scene layers support levels of detail in
a manner that preserves the identity of the individual features that are retained within any
level of detail.

The I3S Level of Detail model covers several use cases, including, splitting up very
heavy features such as detailed building or very large features (coastlines, rivers,
infrastructure), thinning/clustering for optimized visualization as well as support for
representing externally authored multiple LoDs.

Note that the I3S Level of Detail concept is orthogonal to the concept of consolidated
storage for a set of geometries within a level of detail, based on for example, the
concatenation of geometries/meshes into larger geometry collections/meshes to assist in
optimal rendering. In all such cases the consolidated storage makes use of Geometry
Array Buffers that provide access to individual geometries when needed, and include the
preservation of feature to geometry element mapping within the consolidated geometries.

7.4.1 Discrete LoDs

I3S supports a Discrete LoD approach, where different Level of Details are bound to the
different levels of the index tree. Typically, leaf nodes of such LoD schema contain the
original (feature/object) representation with the highest detail. The closer nodes are to the
root, the lower the level of detail will be. For each next lower level, the amount of data is
typically reduced by employing methods such as texture down-sampling, feature
reduction/generalization, mesh reduction/generalization, clustering or thinning, so that all
inner nodes also have a balanced weight. Generalization applies to the Scene Layer as a
whole and the number of discrete levels of detail for the layer corresponds to the number
of levels in the index tree for the scene layer. Here, the level of detail concept is

28

analogous to the level of detail concepts for image pyramids as well as for standard raster
and vector tiling schemes.

During navigation and traversal of the I3S tree nodes, clients must decide to either:

1. Discontinue traversal to node’s children if the node is not visible in the current 3D
view; or

2. Use/render the data within a node if its quality is appropriate to the current 3D
view and discontinue further traversal to children nodes; or to

3. Continue traversal until children nodes with better quality are found.

These decisions are made using the advertised values for LoD selection metrics that are
part of the information payload of the node. The I3S standard describes multiple LoD
Selection Metrics and permits different LoD Switching Models. An example LoD
selection metric is the maximum screen size that the node may occupy before it must be
replaced with data from more detailed nodes. This model of discrete LoD rendering (LoD
Switching Model) is referred to in I3S as node-switching.

I3S Scene Layers also include additional optional metadata on the LoD generation
process (e.g. thinning, clustering and generalization) as non-actionable (to clients)
information that is of interest to some service consumers.

7.4.2 Representation of input data that already has explicitly authored multiple
representations

I3S Layers can be used to represent input 3D geographic data that already have multiple,
semantically authored, levels of detail.

The most common method for doing so is to represent each semantically authored input
level of detail as its own I3S Layer with visibility thresholds on the layer that capture the
range of distances (from the 3D location of the camera) at which the layer should be
used. At further or closer distances applications switch to using a different I3S layer
representing a different input semantically authored level of detail. The set of such I3S
Layers representing a single modeled, real world phenomena (such as buildings for a
city) can be grouped within the same I3S service. For each I3S Layer within the set, the
features in the leaf nodes of the index tree represent the modeled features at the level of
detail presented in the input. Additional automatically generated levels of detail can
optionally be generated extending the viewing range of each semantically input level of
detail if so desired.

Tools can also be developed that load all of the input level of detail information for the
modeled entities in the input into a single I3S layer. In this case the height of the I3S
index tree is fixed to the number of levels of detail present in the input and both the
feature identities and geometries in each node are set based upon the input data.

29

The specific approach taken is influenced by the extent of the data, the number of levels
of detail actually present in the input and the need for further additional automatically
generated levels of detail.

7.4.3 LoD Switching Modes
Depending on the properties of a 3D layer, a good user experience will necessitate
switching out the content for a node with the content of more detailed nodes.

7.4.3.1 Node Switching

Node switching means that the content (features, geometry, attributes, textures) from
child nodes is loaded to replace the content of an existing node as the user needs to be
presented with more detailed information

As shown in Figure 4 above, each interior node in the I3S tree has a set of features that
represent the reduced LoD representation of all of the features covered by that interior
node. Not all features may be present in reduced LoD nodes. Omission of a feature at a
reduced LoD node indicates that the entire feature has been intentionally generalized
away at this level of detail.

The correspondence between a reduced LoD feature in an interior node and the same
feature in descendant (children) nodes is based on by feature IDs which are a key part of
the storage model. Applications accessing the I3S tree can display all of the features in an
internal node and stop there or instead descend further and use the features found in its
child nodes, based on desired quality.

The main advantage of this mechanism is that clients can focus on the display criterion
associated with nodes as a whole in making the decision to switch representations. node-
switching is the default LoD Switching model for layer types that implement the Mesh-
pyramids profile.

7.4.4 Levels of Detail – Generation

Integrated Mesh layer types typically come with pre-authored Levels of Detail. For input
data that does not come with pre-authored LoDs, different LoD generation models can be
employed. For example, 3D Object layers based on the Mesh-pyramids profile may
choose to create an LoD pyramid for all features based on generalizing, reducing and
fusing the geometries (meshes) for individual features while preserving feature identity.
The same approach can also be used with Integrated Mesh layers based on the mesh-
pyramid profile - in this case there are no features and each node contains a generalized
version of the mesh covered by its descendants.

The first step in the automatic LoD generation process is to build the I3S bounding
volume tree hierarchy based on the spatial distribution of the 3D features. Once this has
been completed generation of the reduced LoD content for interior nodes can proceed.

30

As shown in Table 2 below, different models of LoD generation are applicable to
different 3D layers.

 3D Object Points
Mesh-pyramids yes
Thinning yes yes
Clustering yes yes
Generalization yes

Table 2: 3D Layer Types and models of LoD generation they can employ

7.4.5 LoD Selection Metrics

A client needs information to determine whether a node's contents are "good enough" to
render in the current 3D view under constraints such as resolution, screen size, bandwidth
and available memory and target minimum quality goals. Multiple LoD selection metrics
can be included, as in the following example:

"lodSelection": [
 {
 "metricType": "maxScreenThreshold",
 "maxError": 486.00
 },
 {
 "metricType": "screenSpaceRelative",
 "maxError": 0.0034
 },
 {
 "metricType": "distanceRangeFromDefaultCamera",
 "maxError": 750.00
 }
]

These metrics are used by clients to determine the optimal resource access patterns. Each
I3S profile definition provides additional details on LoD Selection.

maxScreenThreshold, the default lodSelection metric used for meshpyramids profile, is
a per-node value for the maximum pixel size as measured in screen pixels. This value
indicates the upper limit for the screen size of the diameter of the node's minimum
bounding sphere (MBS). In other words, the content referenced by this node will qualify
to be rendered only when the screen size is below the maximum screen threshold value.

7.5 JSON Resources Schema and Documentation
This section provides a detailed, logical-level specification for each of the resource types.

31

7.5.1 Basic Value Types
Value schemas are used to ensure that the content of a JSON property follows a fixed
pattern. The set of schemas that currently need to be supported iare

• String: An utf8 String.
• Float: A Float64 number with an optional fractional component, such as "1.02" or

"1.0".
• Integer: An Int32 number without a fractional component, such as "234".
• UUID: A canonical hexadecimal UUID, such as "550e8400-e29b-41d4-a716-

446655440000".
• Date: An ISO 8601 timestamp YYYY-MM-DDThh:mm:ss.sTZD, with a fixed

"Z" timezone, such as "2009-01-01T12:00:00.000Z".
• URL: Any resolvable, relative or absolute, URL, such as

"../Node/51/sharedResource".
• Pointer: Any resolvable reference to an object in a JSON document, consisting of

a relative or absolute URL and a document path, such as
[../Node/51/sharedResource]/materialDefinitions/Mat01 .

• NodeID: A treekey string such as “3-0-34-234-2” that is zero-based (first child is
"0", root node is "root").

7.5.2 Pointers

I3S uses the following Pointer syntax whenever a specific property in the current or
another document is to be referenced. The Pointer consists of two elements:

1. mandatory in-document reference: Relative to the currently evaluated property,
or document absolute, reference to a property. References are always slash-
separated paths through a document tree and can contain wildcards (*) to indicate
that a set or list of properties is to be matched instead of a single property.

o Absolute references start with a slash (/). Absolute references may only
contain upstream path elements, i.e. they may only point to properties of
objects enclosing the property that is being evaluated and indicated by a
name.

§ Example: /materialDefinitions/*/type
o Relative references start with a property key (e.g. type). Relative

properties may only contain downstream path elements and are evaluated
from the value being tested. They may not contain wildcards, as
appropriate context is already given through the current element being
evaluated. In the case of a property that has containerType set to Array or
Object, the reference point for a relative path is the individual value
element in the container.

§ Example: params/ambient/0
2. optional URL: The pointer may be prefixed with a URL to a different document.

This URL may be relative to the document that is being evaluated or absolute. To
identify the URL element of a pointer, it is given in square brackets. Examples:

32

• relative URL + absolute reference: From FeatureData to 3dSceneLayer.name:
[../../]/name

• absolute URL + absolute reference:
[http://<my_server>/<my_service>/rest/services/Buildings_Portl
and/SceneServer/layers/0/nodes/68](http://>my_server>/tiles/P3
ePLMYs2RVChkJx/<my_service>/rest/services/Buildings_Portland/S
ceneServer/layers/0/nodes/68)

7.5.3 SceneServiceInfo
The SceneServiceInfo file is a JSON file that describes the capability and data sets
offered by an instance of a Scene Service. A Scene Service is a web service that provides
access to 3D available in some data store in which 3D content has been authored and is
ready for publication (visualization). The SceneServiceInfo has the following structure:

Figure 5: Logical Schema of the 3dSceneServiceInfo document

This file is automatically generated by a Scene Server for each service instance and is not
part of a scene layer package file. It is included here only for reference.

7.5.3.1 Class SceneServiceInfo
SceneServiceInfo is the major object in the 3dSceneServiceInfo document. There
SHALL always be exactly one SceneServiceInfo object in the document, which describes
a running SceneService instance.
Name Type Description

serviceName String The type of the service; always
SceneService.

serviceVersion String The version of the service protocol/REST
endpoint.

supportedBindings String[1..*]
the list of bindings, should we ever need to
add new bindings in addition to the REST
binding initially supported

supportedOperations String[1..3] Supported profiles of the service from the

33

choice {Base, Dynamic, Editing}.
layers 3dSceneLayerInfo[1..*] The full 3dSceneLayerInfo information.

Table 3: Attributes of Class SceneServiceInfo within SceneServiceInfo document

7.5.4 3dSceneLayerInfo
The Class 3dSceneLayerInfo describes the properties of a single layer in a store,
including the default symbology to use. It shares the definition of this default symbology
with the drawingInfo object, an object which contains styling information for a feature
layer, and is specified as part of a web scene specification. For more information on web
scene objects, including the drawingInfo object see Clause 7.5.4.8. The Class
3dSceneLayerInfo has the following structure:

Figure 6: Logical schema of the 3dSceneLayerInfo document

7.5.4.1 Class 3dSceneLayerInfo

The 3dSceneLayerInfo is a major object in the 3dSceneLayerInfo document. A
SceneServiceInfo document can contain 1...* 3dSceneLayerInfo documents. Each
3dSceneLayerInfo object describes a Layer.

34

Name Type Description
id Integer Unique numeric ID of the Layer.

href URL
The relative URL to the
3dSceneLayerResource. Only present as part of
the SceneServiceInfo resource.

layerType String The user-visible type of this layer, one of
{Point, *3DObject*, IntegratedMesh}

spatialReference spatialReference

The spatialReference of the layer including the
vertical coordinate reference system. wkt is
included to support custom spatial references.
{wkid, latestWkid, vcsWkid,
latestVcsWkid, wkt}

heightModelInfo heightModelInfo

Enables consuming clients to perform quick
test to determine whether this layer is
compatible (with respect to its horizontal and
vertical CRS) with existing
content.{heightModel, geoid, heightUnit}

version String
The ID of the last update session in which any
resource belonging to this layer has been
updated.

name String The name of this layer.
alias String[0..1] The display alias to be used for this layer.
description String[0..1] Description string for this layer.

copyrightText String[0..1] Copyright and usage information for the data in
this layer.

capabilities String[1..3] Capabilities from the Set {View, Query,
Edit} that are possible on this layer.

cachedDrawingInfo cachedDrawingInfo

Indicates if any stylization information
represented as drawingInfo is additionally
captured as part of the binary mesh
representation for optimal client side access.
Currently color component of the
drawingInfo is supported.

drawingInfo drawingInfo Represents the stylization information of the
layer.

fields fields

A collection of objects that describe each
attribute field regarding its field name, datatype
and a user friendly name {name,type,alias}.
It includes all fields that are included as part of
the I3S layer as derived from a source input
feature layer.

attributeStorageInfo attributeStorageInfo Provides the schema and layout used for storing

35

attribute content in binary format in I3S.

Table 4: Attributes of the Class 3dSceneLayerInfo within the 3dSceneLayerInfo document

7.5.4.2 Class Store

The Class Store object describes the exact physical storage of a Layer and enables the
client to detect when multiple Layers are served from the same Store. Storing multiple
layers in a single store - and thus having them share resources - enables efficient serving
of many layers of the same content type, but with different attribute schemas or different
symbology applied.

Name Type Description

id UUID
A Store ID, unique across a SceneServer.
Enables the client to discover which
layers a part of a common store, if any.

profile String

Indicates which profile this scene store
fulfills. One of {meshes, points,
analytics, meshpyramids,
symbols}.

resourcePattern String [1..5]

Indicates the resources needed for
rendering and the required order in which
the client should load them. Each value is
one of {3dNodeIndexDocument,
SharedResource, FeatureData,
Geometry, Texture}.

rootNode URL Relative URL to root node resource.

version String
Format version of this resource; used here
again if this store hasn't been served by a
3D Scene Server.

extent Float[4]
The 2D spatial extent (xmin, ymin, xmax,
ymax) of this store, in the horizontal
indexCRS

indexCRS URL
The horizontal CRS used for all minimum
bounding spheres (mbs) in this store,
identified by an OGC URL.

vertexCRS URL
The horizontal CRS used for all "vertex
positions" in this store, identified by an
OGC URL.

normalReferenceFrame
 String

Describes the coordinate reference frame
used for storing normals. One of {east-
north-up, *earth-centered*,
vertex-reference-frame}.
A value of *east-north-up* indicates that
normals are stored in a node local

36

reference frame defined by the easting,
northing and up directions at the MBS
center, and is only valid for geographic
(WGS84) vertexCRS. A value of *earth-
centered* indicates that normals are
stored in a global earth-centered, earth-
fixed (ECEF) reference frame where the
x-axis points towards Prime meridian (lon
= 0°) and Equator (lat = 0°), the y-axis
points East towards lon = +90 and lat = 0
and the z-axis points North. It is only
valid for geographic vertexCRS. A value
of *vertex-reference-frame* indicates that
normals are stored in the same reference
frame as vertices and is only valid for
projected vertexCRS.

nidEncoding MIMEType

MIME type for the encoding used for the
Node Index Documents; format:
application/vnd.ogc.I3S.json
+gzip; version=1.6

featureEncoding MIMEType

MIME type for the encoding used for the
Feature Data Resources; format:
application/vnd.ogc.I3S.json
+gzip; version=1.6

geometryEncoding MIMEType

MIME type for the encoding used for the
Geometry Resources; format:
application/octet-stream;
version=1.6

textureEncoding MIMEType[1..*] MIME type(s) for the encoding used for
the Texture Resources

lodType String

optional field to indicate which LoD
Generation Scheme is used in this store.
One of {*MeshPyramid*,
Thinning, Clustering,
Generalizing}.

lodModel String
optional field to indicate which LoD
Switching mode clients have to use. One
of {*node-switching*, none}.

indexingScheme IndexScheme Information on the Indexing Scheme
(QuadTree, R-Tree, Octree, ...) used.

defaultGeometrySchema GeometrySchema[0..1]

A common, global ArrayBufferView
definition that can be used if the schema
of vertex attributes and face attributes is
consistent in an entire cache; this is a
requirement for meshpyramids caches.

defaultTextureDefinition TextureDefinition[0..1] A common, global TextureDefinition (see

37

SharedResources) to be used for all
textures in this store. The default texture
definition uses a reduced profile of the
full TextureDefinition, with the following
attributes being mandatory: encoding,
uvSet, wrap and channels.

defaultMaterialDefinition MaterialDefinition[0..1]

If a store uses only one material, it can be
defined here entirely as a
MaterialDefinition (see
SharedResources).

Table 5: Attributes of the Class Store within the 3dSceneLayerInfo document

7.5.4.3 Class GeometryStore

This class is used in stores where all ArrayBufferView geometry declarations use the
same pattern for face and vertex elements. This effectively reduces redundancies of
ArrayBufferView geometry declarations in a store. Reuses the GeometryAttribute type
from FeatureData. However, valueType and valuesPerElement are mandatory and
SHALL be implemented.

Name Type Description

geometryType String

Low-level default
geometry type, one of
{triangles, lines,

points}; if defined, all
geometries in the store are
expected to have this type.

topology String[0..1]

one of
{*PerAttributeArray*,

Indexed}. When
"Indexed", the indices must
also be declared in the
geometry schema ("faces")
and precede the
vertexAttribute data.

header HeaderAttribute[0..*]

Defines header fields in the
Geometry resources of this
store that precede the
vertex (and index) data

ordering String[1..*]

Provides the order of the
keys in vertexAttributes
and faceAttributes, if
present.

38

vertexAttributes FeatureData::GeometryAttribute[1..*]

Declaration of the
attributes per vertex in the
geometry, such as position,
normals or texture
coordinates

faces FeatureData::GeometryAttribute[0..*]

Declaration of the indices
into vertex attributes that
define faces in the
geometry, such as position,
normals or texture
coordinates

featureAttributeOrder String[1..*]
Provides the order of the
keys in featureAttributes, if
present.

featureAttributes FeatureData::GeometryAttribute[0..*]

Declaration of the
attributes per feature in the
geometry, such as feature
ID or face range

Table 6: Attributes of the Class GeometrySchema within the 3dSceneLayerInfo document

7.5.4.4 Class HeaderAttribute

Headers to Geometry resources SHALL be uniform across a cache and may only contain
fixed-width, single element fields. The HeaderDefinition provides the name of each field
for later access and the valueType of that header field.

Name Type Description
property String The name of the property in the header

type String The element type of the header property, from {UInt8, UInt16,
UInt32, UInt64, Int16, Int32, Int64 or Float32, Float64}

Table 7: Attributes of the Class HeaderAttribute within the 3dSceneLayerInfo document

7.5.4.5 Class Field

The Field class is used to provide schema information for this 3dSceneLayer.

Name Type Description
name String The name of the field.

type String

The type of the field, from this enum: {FieldTypeBlob,
FieldTypeGeometry, FieldTypeDate, FieldTypeFloat,
FieldTypeDouble, FieldTypeGeometry, FieldTypeGlobalID,
FieldTypeGUID, FieldTypeInteger, FieldTypeOID,
FieldTypeSmallInteger, FieldTypeString, FieldTypeGroup}

alias String[0..1] The display alias to be used for this field.

39

Table 8: Attributes of the Class Field within the 3dSceneLayerInfo document

7.5.4.6 Class attributeStorageInfo

The attributeStorageInfo is another major object in the 3dSceneLayerInfo document. This
is an object that describes the structure of the binary attributeData resource of a node.

Name Type Description
key string The unique field identifier key.
name string The name of the field.

header String[1..*]

Declares the headers of the binary attribute data. One of
{count, attributeValuesByteCount}. count, should
always be present and indicates the count of features in
the attribute storage. attributeValuesByteCount will
only be present for strings data type and indicates the
total byte count of the string data for all features in the
binary attribute buffer.

ordering String[1..*\]

Declares the ordering indicating the order in which the
array of attribute byte counts and the array of attribute
values are stored in the binary attribute data. One of
{attributeByteCounts, attributeValues}.
attributeValues, should always be present.
attributeByteCounts should only be present when
working with string data types.

attributeByteCounts String The element type of the attributeByteCounts property,
from {UInt32}.

attributeValues String
The element type of the attributeValues property, from
{UInt8, UInt16, UInt32, UInt64, Int16,
Int32, Int64 or Float32, Float64}

Table 9: Attributes of the Class attributeStorageInfo within the 3dSceneLayerInfo document

7.5.4.7 Class IndexScheme

The IndexScheme class declaratively describes computational and structural properties of
the index used within an I3S store. This information can be used by clients to better
understand how to work with the index.

Name Type Description

name String Name of the scheme, selected from {RTree, QuadTree,
AGOLTilingScheme}.

inclusive Boolean true indicates that the extent and mbs of all children
nodes is fully within their parent nodes' extent/mbs

dimensionality Integer The number of dimensions in which this index

40

differentiates.
childrenCardinality Integer[2] min/max number of children per node.
neighborCardinality Integer[2] min/max number of neighbors per node.

Table 10: Attributes of the Class IndexScheme within the 3dSceneLayerInfo document

7.5.4.8 Class DrawingInfo
DrawingInfo and the associated classes contain the default symbology (drawing
information) of an Indexed 3D Scene Layer. When the DrawingInfo object is present in
the 3dSceneLayerInfo Class, a client application may symbolize an I3S layer by
utilizing the *Renderer* information. Indexed 3d Scene Layers also supports capturing
the DrawingInfo object as part of the binary I3S representation This is to support
applications that may not be able to dynamically symbolize/override a given I3S layer
based on its drawing information. Such a behavior, when present, is indicated by the
CachedDrawingInfo Class, indicating the component of the DrawingInfo object that's
captured as part of the binary I3S representation. The Class DrawingInfo has the
following structure:

Name Type Description

renderer DrawingInfo::Renderer The renderer object encapsulates the drawing
information of the layer.

Table 11 Attributes of the Class CachedDrawingInfo within the 3dSceneLayerInfo
document

7.5.4.8.1 Class Renderer

The Renderer class contains properties that define the drawing symbology of an Indexed
3D Scene Layer, including its type, symbol and any label or descriptions associated with
it.

The Class Renderer has the following structure:

Name Type Description

type String
The renderer type. One of {*Simple*, UniqueValue,
ClassBreaks}. The default, simple renderer is a renderer
that uses one symbol only.

symbol Renderer::Symbol An object that represents how all features of this I3S layer
will be drawn.

label String The text string that may be used to label a symbol when
displayed in a table of content of an application.

description String The text string that does not appear in the table of contents
but may appear in the legend.

Table 12: Attributes of the Class Renderer within the 3dSceneLayerInfo document

41

7.5.4.8.2 Class Symbol

The Class Symbol represents the render primitive used to symbolize an Indexed 3D
Scene Layer. MeshSymbol3D is the only supported type of Symbol.

The Class Symbol has the following structure:
Name Type Description

type String Specifies the type of symbol used. Value of this
property must be {*MeshSymbol3D*}.

symbolLayers Renderer::SymbolLayers An object that represents how all features of this
I3S layer will be drawn.

Table 13: Attributes of the Class Symbol within the 3dSceneLayerInfo document

7.5.4.8.3 Class SymbolLayers

A Collection of symbol objects used to visualize the feature.

The Class SymbolLayers has the following structure:

Name Type Description

type String Specifies the type of symbol used. Value of this
property must be {*Fill*}.

material SymbolLayers::Material The material used to shade the geometry.
outline SymbolLayers::Outline The outline of the mesh fill symbol.

Table 14: Attributes of the Class SymbolLayers within the 3dSceneLayerInfo document

7.5.4.8.4 Class Material

The material used to shade the geometry.

The Class Material has the following structure:

Name Type Description
color Material::Color Color is represented as a three-element array (RGB).

transparency Integer
Indicates the transparency value associated with the
symbol. The value has to lie between 100 (full
transparency) and 0 (full opacity).

Table 15: Attributes of the Class Material within the 3dSceneLayerInfo document

7.5.4.8.5 Class Outline

The Class Outline defines the outline of the mesh fill symbol. It has properties such as
color, size and transparency.

42

The Class Outline has the following structure:

Name Type Description

color Material::Color
Color is represented as a three-element array. The three
elements represent values for red, green and blue in that
order.

size Integer Outline size in points, positive only.

transparency Integer
Indicates the transparency value associated with the outline
of the symbol. The value has to lie between 100 (full
transparency) and 0 (full opacity).

Table 16: Attributes of the Class Material within the 3dSceneLayerInfo document

7.5.4.8.6 Class Color

The Color class defines the color of a symbol or the outline. Color is represented as a
three-element array. The three elements represent values for red, green and blue in that
order. Values range from 0 through 255. If color is undefined for a symbol or an outline,
the color value is null.

The Class Color has the following structure:

Name Type Description

color String
The renderer type. One of {*Simple*,
UniqueValue, ClassBreaks}. The default, simple
renderer is a renderer that uses one symbol only.

symbolLayers Renderer::Symbol An object that represents how all features of this I3S
layer will be drawn.

Table 17: Attributes of the Class Color within the 3dSceneLayerInfo document

7.5.4.8.7 Class CachedDrawingInfo

The Class CachedDrawingInfo is used to indicate if the DrawingInfo object is captured as
part of the binary I3S representation.

The Class CachedDrawingInfo has the following structure:

Name Type Description

color Boolean Indicates if the color component of the drawingInfo object is captured
as part of the binary I3S representation.

Table 18: Attributes of the Class CachedDrawingInfo within the 3dSceneLayerInfo document

43

7.5.5 3dNodeIndexDocument

The 3dNodeIndexDocument JSON file describes a single index node within a store, with
links to other nodes (children, sibling, and parent), links to feature data, geometry data
and texture data resources, metadata such as metrics used for LoD selection, and its
spatial extent.

Depending on the geometry and lodModel used, a node document can be tuned towards
being light-weight or more heavy-weight. This is the means by which clients have to
further decide which data to retrieve. The bounding volume information provided for the
node, its parent, any neighbors and children present, already provides sufficient data for
simple visualization by rendering the centroids as point features for example.

The 3dNodeIndexDocument has the following structure:

Figure 7: Logical schema of the 3dNodeIndexDocument

7.5.5.1 Class Node

The Node is the root object in the 3dNodeIndexDocument. There SHALL always be
exactly one Node object in a 3dNodeIndexDocument.

Name Type Description

id String (TreeKey)

Tree Key ID, unique within the store. The root
node is always "root", all others follow the pattern
"2-4-0-15-2". At each level in a subtree,
numbering starts at 0.

44

level Integer Explicit level of this node within the index tree.
The lowest level is 1.

version UUID The version (store update session ID) of this node.

mbs Float[4]
An array of four doubles, corresponding to x, y, z
and radius of the minimum bounding sphere of a
node.

created Date[0..1]

Creation date of this node in UTC, presented as a
string in the format YYYY-MM-
DDThh:mm:ss.sTZD, with a fixed "Z" timezone
(see http://www.w3.org/TR/NOTE-datetime).

expires Date[0..1]

Expiration date of this node in UTC, presented as a
string in the format YYYY-MM-
DDThh:mm:ss.sTZD, with a fixed "Z" timezone
(see http://www.w3.org/TR/NOTE-datetime).

transform Float[16] Optional, 3D (4x4) transformation matrix
expressed as a linear array of 16 values.

parentNode NodeReference[0..1] Reference to the parent Node of a Node.
children NodeReference[0..*] Reference to the child Nodes of a Node.

neighbors NodeReference[0..*] Reference to the neighbor (same level, spatial
proximity) Nodes of a Node.

sharedResource Resource[0..1] Resource reference describing a shared resource
document.

featureData Resource[0..*] Resource reference describing a FeatureData
document.

geometryData Resource[0..*] Resource reference describing a geometry
resource.

textureData Resource[0..*] Resource reference describing a texture resource.

lodSelection LodSelection[0..*] Metrics for LoD Selection, to be evaluated by the
client.

features Feature[1..*]
A list of summary information on the features
present in this Node, used for pre-visualisation and
LoD switching in featureTree LoD stores.

Table 19: Attributes of the Class Node within the NodeIndexDocument

7.5.5.2 Class NodeReference

A NodeReference is a pointer to another node - the parent, a child or a neighbor.
NodeReferences contain a relative URL pointing to the referenced NID, as well as a set
of meta information that can be used by the client to determine whether to load that node
or not, as well as maintaining store consistency.

Name Type Description

http://www.w3.org/TR/NOTE-datetime
http://www.w3.org/TR/NOTE-datetime

45

id String Tree Key ID (e.g. "1-3-0-5") of the referenced node.

mbs Float[4] An array of four doubles, corresponding to x, y, z and radius of the
minimum bounding sphere of the referenced node.

href URL The relative URL to the referenced node resource.
version UUID Version (store update session ID) of the referenced node.

featureCount Integer Number of features in the referenced node and its descendants,
down to the leaf nodes.

Table 20: Attributes of the Class NodeReference within the NodeIndexDocument

7.5.5.3 Class Resource

Resource objects are pointers to different types of resources related to a node, such as the
feature data, the geometry attributes and indices, textures and shared resources.

Name Type Description
href String The relative URL to the referenced resource.

layerContent String[1..*]
The list of layer names that indicates which layer
features in the bundle belongs to. The client can use
this information to selectively download bundles.

featureRange Integer[2]

Only applicable for featureData resources. Provides
inclusive indices of the features list in this node that
indicate which features of the node are located in this
bundle.

multiTextureBundle Boolean
Only applicable for textureData resources. true if the
bundle contains multiple textures. If false or not set,
clients can interpret the entire bundle as a single image.

vertexElements Integer[0..1]

Only applicable for geometryData resources.
Represents the Count of elements in vertexAttributes;
multiply by the sum of bytes required for each element
as defined in the defaultGeometrySchema.

faceElements Integer[0..1]

Only applicable for geometryData resources.
Represents the Count of elements in faceAttributes;
multiply by the sum of bytes required for each element
as defined in the defaultGeometrySchema.

Table 21: Attributes of the Class Resource within the NodeIndexDocument

7.5.5.4 Class Feature

Features are representations of the geographic objects stored in a layer. In the
3dNodeIndexDocument, these objects define relationships, e.g. for linking feature
representations of multiple LoDs.

Name Type Description

46

id Integer

An ID of the Feature object, unique within the store
(important to note when using Features from multiple
stores!). The ID SHALL not be re-used e.g. for multiple
representation of an input feature that are present in
different nodes.

mbs Float[4]
An array of four doubles, corresponding to x, y, z and
radius of the minimum bounding sphere of the referenced
node.

lodChildFeatures Integer[0..*] IDs of features in a higher LoD level which together make
up this feature.

lodChildNodes String[0..*] Tree Key IDs of the nodes in which the lodChildFeatures
are found

rank Integer[0..1]
The LoD level of this feature. Only required for features
that participate in a LoD tree. The lowest rank SHALL be
1.

rootFeature String

The Tree Key ID of the root node of a feature LoD tree
that this feature participates in. Only required if the
feature participates in a LoD tree and if it is not the
rootFeature itself.

Table 22: Attributes of the Class Feature within the NodeIndexDocument

7.5.5.5 Class LodSelection

A LodSelection object provides information on a given metric determined during the
cooking process of an I3S store. This metric can be used by the client to determine
whether a representation is of the right quality level for rendering or whether a different
representation is needed.

Publishers (aka “cookers”) can add as many LodSelection objects as desired but must
provide one as soon as the layer's lodType is not null. Of the three min/avg/max values,
typically only one or two are used.

Name Type Description

metricType String The name of the error metric, one of {maxScreenThreshold,
screenSpaceRelative, ...}

maxValue Float[0..1] Maximum metric value, expressed in the CRS of the vertex
coordinates or in reference to other constants such as screen size

avgValue Float[0..1] Average metric value, expressed in the CRS of the vertex
coordinates or in reference to other constants such as screen size

minValue Float[0..1] Minimum metric value, expressed in the CRS of the vertex
coordinates or in reference to other constants such as screen size

Table 23: Attributes of the Class LodSelection within the NodeIndexDocument

47

7.5.6 FeatureData

The FeatureData JSON file(s) contain geographical features with a set of attributes,
accessors to geometry attributes and other references to styling or materials. Features
have the following structure:

Figure 8: Logical schema of the FeatureData document

7.5.6.1 Class Feature

A Feature is a single object within a geospatial data set, usually representative of a
feature present in the real, geographic world.

Name Type Description

48

id Integer Feature ID, unique within the Node. If lodType is
FeatureTree, the ID SHALL be unique in the store.

position Float[2..3]
An array of two or three doubles, giving the x,y(,z)
(easting/northing/height) position of this feature's
minimum bounding sphere center, in the vertexCRS.

pivotOffset Float[3]
An array of three doubles, providing an optional,
"semantic" pivot offset that can be used to, for
example, correctly drape tree symbols.

mbb Float[6]

An array of six doubles, corresponding to xmin, ymin,
zmin, xmax, ymax and zmax of the minimum bounding box
of the feature, expressed in the vertexCRS, without
offset. The mbb can be used with the Feature’s
Transform to provide a LOD0 representation without
loading the GeometryAttributes.

layer String The name of the Feature Class this feature belongs to.
attributes FeatureAttribute[0..*] The list of attributes for this feature.

geometries Geometry[1..*] The list of geometries the feature has. A feature
always SHALL have at least one Geometry.

Table 24: Attributes of the Class Feature within the FeatureData document

7.5.6.2 Class FeatureAttribute

A FeatureAttribute is a field carrying a value. This value may also be a list of complete
attributes, to be used with reports or metadata.

Name Type Description
name String The name of the attribute.

value String
The value of the attribute. If group is set and the type of this
attribute is set to FieldTypeGroup, the value may be used as
a label.

group FeatureAttribute[0..*] A list of FeatureAttributes belonging to an attribute value
group.

Table 25: Attributes of the Class FeatureAttribute within the FeatureData document

7.5.6.3 Class Geometry

This is the common container class for all types of I3S geometry definitions.

Name Type Description

id Integer Reference-able, unique ID of the Geometry in this
store.

type String The type denotes whether the following geometry is

49

defined by using array buffer views
(ArrayBufferView), as an internal reference
(GeometryReference), as a reference to a shared
Resource (SharedResourceReference) or embedded
(Embedded).

transformation Float[16] 3D (4x4) transformation matrix expressed as a linear
array of 16 values.

params GeometryParams

The parameters for a geometry, as an Embedded
GeometryParams object, an ArrayBufferView, a
GeometryReference object, or a
SharedResourceReference object.

Table 26: Attributes of the Class Geometry within the FeatureData document

7.5.6.4 Class GeometryParams
This is the abstract parent class for all GeometryParams classes
(GeometryReferenceParams, VestedGeometryParamas, SingleComponentParams). It
does not have properties of its own.

7.5.6.5 Class GeometryReferenceParams

Instead of owning a Geometry exclusively, a Feature can also reference a (or part of a)
Geometry defined for the node. This allows to pre-aggregate Geometries for many
features. In this case, a GeometryReferenceParams has to be used.

Name Type Description

$ref Pointer
In-document absolute reference to full geometry definition
(Embedded or ArrayBufferView) using the I3S json pointer
syntax.

faceRange Integer[2] Inclusive range of faces in this geometry that belongs to this
feature.

lodGeometry Boolean True if this geometry participates in a LoD tree. This value
SHALL always be true for the mesh-pyramids profile.

Table 27: Attributes of the Class GeometryReferenceParams within the FeatureData
document

7.5.6.6 Class VestedGeometryParams

This Class extends GeometryParams and is the abstract parent class for all concrete
("vested") GeometryParams classes that directly contain a Geometry definition, either as
an ArrayBufferView or as an Embedded Geometry.

Name Type Description

type String The primitive type of the geometry defined
through a VestedGeometryParams object. One of

50

{*triangles*, lines, points}

topology TopologyType

Declares the typology of embedded geometry
attributes or those in a geometry resources. One of
{"PerAttributeArray", "InterleavedArray",
"Indexed"}. When "Indexed", the indices (faces)
SHALL be declared.

vertexAttributes VertexAttribute[1..*]

A list of Vertex Attributes, such as Position,
Normals, UV coordinates, and their definitions.
While there are standard keywords such as
position, uv0..uv9, normal and color, this is
an open, extendable list.

faces FaceAttribute[0..*]

A list of Face Attributes, such as indices to build
faces, and their definitions. While there are
standard keywords such as position, uv0..uv9,
normal and color, this is an open, extendable list.

Table 28: Attributes of the Class VestedGeometryParams within the FeatureData document

7.5.6.7 Class SingleComponentParams

Objects of this type extend VestedGeometryParams and use one texture and one material.
They can be used with aggregated LoD geometries.

Name Type Description

material URI I3S Pointer reference to the material definition in this node's shared
resource, from its root element. If present, used for the entire geometry.

texture URI I3S Pointer reference to the material definition in this node's shared
resource, from its root element. If present, used for the entire geometry.

Table 29: Attributes of the Class SingleComponentParams within the FeatureData
document

Component objects provide information on parts of the geometry they belong to,
specifically with which material and texture to render them.

Name Type Description
id Integer The ID of the component, only unique within the Geometry

materialID UUID ID of the material, as defined in the shared resources bundle, to
use for rendering this component

textureID Long[0..1] Optional ID of the texture, as defined in shared resources, to use
with the material to render this component

regionID Long[0..1] Optional ID of a texture atlas region which to use with the texture
to render this component

Table 30: Attributes of the Class Component within the FeatureData document

51

7.5.6.8 Class GeometryAttribute

Each GeometryAttribute object is an accessor, (a view) into an arraybuffer. There are two
types of GeometryAttributes - VertexAttributes and FaceAttributes. While the first
describes properties that are valid for a single vertex, the second is used to describe faces
and other structures by providing a set of indices. As an example, the faces.position
index attribute is used to define which vertex positions make up a face.

Name Type Description

byteOffset Integer
The starting byte position where the required bytes
begin. Only used with the Geometry "type":
"ArrayBufferView".

count Integer

The number of elements. Multiply by number of bytes
used for valueType to know how many bytes need to be
read. Only used with the Geometry "type":
"ArrayBufferView".

valueType String The element type, from {UInt8, UInt16, Int16,
Int32, Int64 or Float32, Float64}

valuesPerElement short The number of values need to make a valid element
(such as 3 for a xyz position)

values Float[*] The actual values. Only used with the Geometry
"type": "Embedded"

componentIndices Integer[0...*]

An optional array that indicates how many of the
elements in this view belong to the first, second and
consecutive components of the geometry. The number
of entries in this array, when present, has to be equal to
the number of entries in the components List of the
enclosing Geometry object. The entire field is optional
when no components have been declared for this
Geometry.

Table 31: Attributes of the Class GeometryAttribute within the FeatureData document

7.6 Shared Resources

Shared resources are models or textures that can be shared among features within the
same layer. They are stored entirely as a JSON file. Each node has a shared resource
which contains materials and symbols used by more than a single feature in that node or
in features which are stored in the subtree of the current node. This approach ensures an
optimal distribution of shared resources across nodes, while maintaining the node-based
updating process.

52

Figure 9: Logical schema of the SharedResources document

7.6.1 Class SharedResource
The SharedResource class collects Material definitions, Texture definitions, Shader
definitions and geometry symbols that need to be instanced.

7.6.2 Class Material

Materials describe how a Feature or a set of Features is to be rendered. This includes
which shading and which colors to use. The following table provides the set of attributes
and params for the "type": "standard" material.

Name Type Description

name String A name for the material as assigned in the
creating application.

type String
Indicates the material type, chosen from the
supported values {standard, water,
billboard, leafcard, reference}

$ref JSONPointer
The href that resolves to the shared resource
bundle in which the material definition is
contained.

params.vertexRegions Boolean[0..1] Indicates whether this Material uses per-
vertex regions. Defaults to false.

params.vertexColors Boolean[0..1] Indicates whether this Material use Vertex

53

Colors. Defaults to false.

params.useVertexColorAlpha Boolean[0..1]
Indicates whether Vertex Colors also
contain a transparency channel. Defaults to
false.

params.transparency Float Indicates whether the transparency of this
material; 0 = opaque, 1 = fully transparent.

params.reflectivity Float Indicates reflectivity of this Material.
params.shininess Float Indicates shininess of this Material.
params.ambient Float[3] Ambient color of this Material.
params.diffuse Float[3] Diffuse color of this Material.
params.specular Float[3] Specular color of this Material.

params.renderMode String Rendering mode, any one of {textured,
solid, untextured, wireframe}

params.castShadows Boolean true if features with this material should
cast shadows

params.receiveShadows Boolean true if features with this material should
receive shadows

params.cullFace String Indicates the material culling options {back,
front, *none*}. Default being none.

Table 32: Attributes of the Class Material within the SharedResources document

7.6.3 Class Texture

A Texture is a set of images, with some parameters specific to the texture/uv mapping28
to geometries.

Name Type Description

encoding MIMEtype[1..*] The encoding/content type that is used by all images in this
map

wrap String[2] UV wrapping modes, from {none, repeat, mirror}
atlas Boolean true if the Map represents a texture atlas.
uvSet String The name of the UV set to be used as texture coordinates.

channels String[1..*]
indicates which channels are stored in which channel of this
map. Possible values: h=brightness, r=red, g=green, b=blue,
a=alpha, n=bump, d=displacement, ...

Table 33: Attributes of the Class Texture within the SharedResources document

28 https://en.wikipedia.org/wiki/UV_mapping for more information.

54

7.6.4 Class Image

An image is a binary resource, containing a single raster that can be used to texture a
feature or symbol. It represents one specific texture LoD. For details on texture
organization, please refer to the section on Texture resources.

Name Type Description

id String A unique ID for each image. Generated using the
BuildID function.

size Integer x size of this image.

pixelInWorldUnits Float maximum size of a single pixel in world units (used by
the renderer to pick the image to load/map)

href URL[1..*] The href to the image(s), one per encoding, in the same
order as the encodings.

byteOffset Integer[0..*]
The byte offset of this image's encodings (one per
encoding, in the same order as the encodings.) in the
block in which this texture image resides.

length Integer[0..*] The length in bytes of this image's encodings (one per
encoding, in the same order as the encodings).

Table 34: Attributes of the Class Image within the SharedResources document

7.6.5 Class ShaderDefinition
ShaderDefinitions are, in this version of the I3S standard, an optional feature to provide
API-dependent shader programs with a layer.

7.6.6 Class Symbol
For Symbols, the same model is used as in the FeatureData Geometry.

8. I3S File Formats

8.1 Textures.bin

The Textures file is a binary resource that contains one or multiple images that are used
as textures of features in the store. A single Texture.bin file contains 1...n textures for a
single specific texture LoD. It can contain a single texture atlas or multiple individual
textures; the decision how this is bundled is left to the authoring application so that
specific aspects of the materials and textures used can be taken into account, such as
tiling.

8.1.1 Texture Recommendations and Requirements

Especially for Web and Mobile clients, the number of textures and their volume is the
limiting factor in how much data can be displayed at any given time, Thus, this standard

55

provides several recommendations and requirements on texture resources that are
delivered as part of an Indexed 3D Scene.

8.1.2 Image Formats
I3S supports multiple texture formats which are suitable for different scenarios. For
example, a client application might prefer consuming the more compact JPEG (and/or
PNG) formats over low bandwidth conditions since they are very efficient to transmit and
have a widespread adoption. However, client applications that might be constrained for
memory or computing resource might prefer to directly consume compressed textures
such as S3TC for scalability and performance reasons. As a result, the I3S standard
supports most commonly used image formats such as JPEG/PNG as well as rendering
optimized compressed texture formats such as S3TC. The only requirement is the
authoring application needs to provide the appropriate textureEncoding declaration by
using MIME types such as, “image/jpeg” (for Jpeg) and “image/vnd-ms.dds” (for S3TC).
With more wide-spread client support for next-generation texture compression formats
such as Adaptive Scalable Texture Compression (ASTC), Ericsson Texture Compression
v2 (ETC2), and PVRTC29, I3S will include support for more compressed texture formats
in the future to enable specific platforms.

8.1.3 Texture Sets

While this standard allows the combination of multiple textures into a single resource by
using array buffer views, we generally recommend using large atlases (e.g.
2048x2048px) and then to use exactly one texture per bundle.

8.1.4 Atlas usage and Regions

Individual textures should be aggregated into texture atlases, where they become
subtextures. Just as all texture resources, the atlas has to be 2n-sized on both dimensions,
with n being in the range [3,12]. Width and height dimensions do not have to be equal,
e.g. 512px x 256px. Subtextures contained within an atlas also need to be 2n-sized, with n
being in the range [3,12]. Otherwise if their width or height dimension is not 2n, border
artifacts are likely to appear when filtering or MIP-mapping. If source subtexture
dimensions do not match this requirement, they need to be padded (with
nearest/interpolated pixels) or scaled to the nearest lower 2n size. An image that is 140px
x 90px would thus be rescaled to 128px x 64px before being inserted into the atlas or
padded to 256px x 128px.

The pixels belonging to a subtexture are identified by the subimageRegion: [umin,
vmin, umax, vmax] attribute. Region information is passed on to the shader using a
separate vertex attribute so that every vertex UV coordinate becomes a UVR coordinate,
with the R encoding the [umin, vmin, umax, vmax] of the region in 4 UInt16 values.

29 https://en.wikipedia.org/wiki/PVRTC

56

8.1.5 Texture coordinates

Texture coordinates do not directly take atlas regions into account. They always range
from 0...1 in U and V, except when using the "repeat" wrapping mode, where they may
range from 0...n (n being the number of repeats). The client is expected to use the
subimageRegion values and the texture coordinates to best handle repeating textures in
atlases. This approach has been selected since client capabilities in dealing with more
complex UV cases vary greatly.

8.1.6 Generating Image IDs

The Id of an image is generated using the following method:

UInt64 BuildID(LONG id, int w, int h , int l, int al)
{
 UInt64 l_al = ((UInt64)al)<<60;
 UInt64 l_l = ((UInt64)l)<<56;
 UInt64 l_w = ((UInt64)(w - 1))<<44;
 UInt64 l_h = ((UInt64)(h - 1))<<32;
 UInt64 id64 = l_al + l_l + l_w + l_h + (UInt64)id;
 return id64;
}

Usage syntax:
UInt64 image_id = BuildID(id, w, h, l, al);

8.1.6.1 Function Parameters

id Index of the texture in the store, start from 1
w Width of the texture
h Height of the texture

l Index of the level that the texture belong to, start
from 0

al Level count of the texture

8.2 Geometry.bin

The binary geometry attribute file follows the Khronos30 Typed Array specification31 in
the ECMAScript® 2015 Language Specification. Citing the overview of that
specification:

30 Khronos is a not for profit, member-funded consortium dedicated to the creation of royalty-free open
standards for graphics, parallel computing, vision processing, and dynamic media on a wide variety of
platforms from the desktop to embedded and safety critical devices.

http://www.khronos.org/registry/typedarray/specs/latest/

57

“This specification defines an ArrayBuffer type, representing a generic fixed-length
binary buffer. The contents of an ArrayBuffer cannot be directly manipulated. Instead, a
group of types are used to create views of the ArrayBuffer. For example, to access the
buffer as an array of 32-bit signed integers, an Int32Array would be created that refers to
the ArrayBuffer.

Multiple typed array views can refer to the same ArrayBuffer, of different types, lengths,
and offsets. This allows for complex data structures to be built up in the ArrayBuffer. As
an example, given the following code:

// create an 8-byte ArrayBuffer
var b = new ArrayBuffer(8);

// create a view v1 referring to b, of type Int32, starting at
// the default byte index (0) and extending until the end of the buffer
var v1 = new Int32Array(b);

// create a view v2 referring to b, of type Uint8, starting at
// byte index 2 and extending until the end of the buffer
var v2 = new Uint8Array(b, 2);

// create a view v3 referring to b, of type Int16, starting at
// byte index 2 and having a length of 2
var v3 = new Int16Array(b, 2, 2);

This defines an 8-byte buffer b, and three views of that buffer, v1, v2, and v3. Each of the
views refers to the same buffer -- so v1[0] refers to bytes 0..3 as a signed 32-bit integer,
v2[0] refers to byte 2 as a unsigned 8-bit integer, and v3[0] refers to bytes 2..3 as a signed
16-bit integer. Any modification to one view is immediately visible in the other: for
example, after v2[0] = 0xff; v2[1] = 0xff; then v3[0] == -1 (where -1 is represented as
0xffff)."

Figure 10: Geometry Buffer Layout with headers

Note: The expected triangle/face winding order in all geometry resources is
counterclockwise (CCW).

31 http://www.ecma-international.org/ecma-262/6.0/#sec-typedarray-objects and http://www.ecma-
international.org/ecma-262/6.0/#sec-arraybuffer-objects

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-10.png

58

Note: If normal vectors are present in a geometry, they need to be calculated based on
uniform axis units. They are always given as if x, y and z axes all had metric units, as a
unit vector. This means that if WGS84 is used as a horizontal CRS, the normal
calculation cannot directly use the face's WGS84 coordinates, but needs to convert them
to a local Cartesian CRS first.

8.3 Attribute Data

This section describes the format for storing attribute data within I3S layers as part of the
scene service cache along with geometry, texture and material resources, in an optimized
renderer friendly format.

By attribute data we mean the tabular information stored as an attribute of a feature class,
which is the primary input source of scene services.

Attribute data for all features in a node is stored and made available as discrete, per field
resource called attribute. The number of attribute resources corresponds to the number of
fields the service publisher opted to include in the scene cache.

A key concept of this storage model is that the order in which attribute values are stored
within any attribute resource SHALL be the same as the order in which the feature
geometries are stored within the geometry resource of that node. This allows clients who
fetch these resources to render each node efficiently - using direct array access to retrieve
feature attribute(s) without the need for object-id based attribute lookups.

For cases where object-id based access to attributes is needed, the attribute resource
representing the object-id field stores the object-id values of each feature within the node
and SHALL use the same storage order as the geometry resource. This facilitates object-
id based access. Clients can also build an object-id to array-index dictionary for cases
where large numbers of object-id based attribute or geometry look ups within a node are
needed. (Note: the following ways of referring to the ObjectId of a feature are equivalent
in these and previous versions of the I3S specification: ObjectId, object-id, OID, FID).

When the same feature is included in multiple nodes at different levels of detail, the
corresponding attributes for the feature are also included as attribute resource/s of each
node it is present in. This redundancy in attribute storage allows each node to be rendered
independently of any other node.

Metadata on each attribute resource is made available to clients via the scene service
layer. When attributes are present within the scene cache, the resourcePattern array in
the layers store (layers[id].store.resourcePattern) will include a value called Attributes,
indicating attributes are a required resource, utilized for attribute driven symbolization
and rendering. In addition to the resourcePattern, additional metadata present in the
fields array (layers[id].fields[id]) and attributeStorageInfo array
(layers[id].attributeStorageInfo[id]), further describe each attribute resource.

59

These metadata allow clients to initialize and allocate any required client side resources
prior to accessing any attributes of interest.

fields: [
 - {
 name: "OID",
 type: "FieldTypeOID",
 alias: "OBJCTID"
 },
 - {
 name: "NEAR_FID",
 type: "FieldTypeInteger",
 alias: "NearestFeature"
 },
 - {
 name: "NEAR_DIST",
 type: "FieldDoubleType",
 alias: "NearestFeatureDistance"
 },
 - {
 name: "NAME",
 type: "FieldTypeString",
 alias: "Name"
 },
 - {
 name: "Building_ID",
 type: "FieldTypeInteger",
 alias: "BuildingID"
 }
],

Figure 11: Example of the fields array resource

Detail: The above is an example of the fields array (layers[id].fields[id]) resource of a
scene service layer illustrating different supported types of feature attribute fields. The
fields array describes an attribute field with respect to its name, type and alias.

Once a client application makes a decision regarding the field it is interested in accessing,
it can use the key property (layers[id].attributeStorageInfo[].key) of the
attributeStorageInfo metadata to uniquely identify and request the attribute resource thru
an API, called attributes. The attributeStorageInfo metadata in addition contains all the
information that a client application requires to decode the retrieved attribute binary
content.t

8.3.1 The content of this binary attribute resource is made up of:

• A header section of 4 bytes which indicates the count of features. The count value
SHALL be present in all attribute resources. For an attribute resource of a string
data type, the header has an additional 4 bytes indicating the total byte count of
the string attribute values.

• For all numerical field types, the header section SHALL be followed by the
attribute values array record. The attribute values SHALL always begin at an

60

offset that is divisible by the byte length of a single value. If the header does not
end at such an offset, the necessary amount of padding SHALL be inserted
between the header and the attribute values.

• For string field types, the header section SHALL be followed by a fixed length
array whose values are the byte counts of each string data, inclusive of the null
termination character. This array SHALL then followed by an array of actual
string data. The strings SHALL be stored null terminated.

An example JSON encoding for a 3dSceneLayer mesh pyramid can be found at Annex B.
This is a scene layer resource illustrating the metadata information found in the fields
(layers[id].fields[id]) and attributeStorageInfo arrays
(layers[id].attributeStorageInfo[id]).

A client application will be able to find the URI of any attribute resource through its href
reference from the attributeData array of the Node Index Document (similar access
patterns exist for resources such as 'features', 'geometries', etc …). See Figure 12 below:

61

Figure 12: A node resource document

Detail: A node resource document illustrating attribute data content access URLs (href).

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-12.png

62

8.3.2 REST API for Accessing Attribute Resources directly from a scene service
layer

This section describes a REST API for accessing attribute resources. The attributes
REST API allows client apps to fetch the attribute records of a given field as identified by
its Key property. As a result, every scene node (with the exception of 'root' node), will
expose available attribute fields as discrete attribute resources. These resources are
accessible thru a relative URL to any Node Index Document.

The attributes REST api syntax is as follows:

URL: http://<sceneservrice-url>/attributes/<field_key>/<id>

• attributes - is the RESTful resource responsible for fetching the binary attribute
resource. A client application will be able to decode the content of this attribute
resource solely based on the metadata information found in the scene layer
attributeStorageInfo array (which adequately describes the content of the binary
data).

• field_key - is the field key value that will be used to request the desired feature
attribute content.

• id - is the bundle id of the attribute binary resource, corresponding to the
geometry bundle id. By default this value is 0 (same as the geometry bundle id). If
a node has more than 1 geometry resource, then the id of the attribute resource
SHALL match the geometry bundle id.

8.3.3 A typical pattern of usage of the attributes REST API includes

1. Prior to symbolizing a given node based on attribute information, a client
application should get attribute field metadata information by fetching the scene
server layers REST resource. The layers resource contain the fields
(layers[Id].Fields[id]) array, which lists all available attribute fields and types
and the attributeStorageInfo (layers[id].attributeStorageInfo[id]) array, which
describes the content of each binary attribute resource.

The fields array object contains a collection of objects that describe each attribute
field regarding its field name ('name'), datatype ('type') and a user friendly name
('alias'). The fields array includes all fields that are present in the source feature
layer of the scene service layer.

The attributeStorageInfo array contains a collection of objects that describes all
attribute binary resources. It includes only fields the publisher/author chose to
include as part of the scene cache during publishing time. The
attributeStorageInfo, which is metadata information about the binary attribute
resources, is made up of:

63

i. name (attributeStorageInfo[id].name) and key
(attributeStorageInfo[id].key) properties that identify each resource.

ii. A header (attributeStorageInfo[id].header) object, consisting of a
count and valueType properties indicating the count of the
attributeValue objects. In case of string atttibute values the header
consists an additional object, attributeByteCounts property, which
indicates the total byte count of the string values.

iii. An ordering (attributeStorageInfo[id].ordering) object that indicates
the object storage layout.

iv. For string attribute values, an attributeByteCounts object describing
each of the string attribute values byte count.

v. The attributeValues object describing the attribute value array, which
contains member properties such as valueType and
valuesPerElement. For string attribute values in addition to its
valueType ('String'), there is an additional property encoding ('UTF-
8') that indicates the unicode enconding type. A String-Array is
capable of supporting null attribute values (a 0 byte count value
indicates a null string).

Note that the key property (with values such as f_0, f_1, etc...) is automatically computed
and that there shouldn't be any relationship assumed to the field index of the source
feature class (especially important when a user adds or deletes fields during the lifetime
of a layer).

64

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-13.png

65

Figure 13: An expanded view of a scene layer resource

More detail: The above is an expanded view of a scene layer resource showing
the content of an attributeStorageInfo resource. The example shows 5 objects
each corresponding to the 5 objects of the fields resource (as matched by the 'key'
and 'name' properties present in both arrays).The JSON representation of the
example is located in Annex B.

2. A client application equipped with the list of available fields and the
corresponding attribute-value-array metadata, can then fetch the attribute values
of interest just by supplying the desired field Key as part of the attributes REST
request. Furthermore, the client will also be capable of decoding the fetched
attribute resource based on the metadata as retrieved in step 1.

Note: The geometry buffer contains the objectIDs array as the last section of the
geometry layout (layers[id].store.defaultGeometrySchema.featureAttributes). A
client application that has a need to access the ObjectIDs array, should first check
in the geometry buffer before requesting it from the attributes REST resource.

The following example below shows the attributes REST request signature:

a. http://<myserver>/<my
product>/rest/services/Hosted/SanFran/SceneServer/layers/0/nodes/0-0-0-
0/attributes/0/f_1

b. http://<myserver>/<my
product>/rest/services/Hosted/SanFran/SceneServer/layers/0/nodes/0-0-0-
/attributes/0/f_2

In Example 1.a we are requesting the attributes of all features for a field named
'NEAR_FID', as identified by its field key (f_1) in Figure 11. This field resource
contains the attribute values of all features that are present in node 0-0-0-0.
Similarly, Example 1.b will fetch the attributes of all features associated with the
field called ('NEAR_DIST') using its key (f_2).

8.3.4 Attribute Resources: Details

An attribute resource consists of either a single one dimensional array in the case of
numeric fields (including the object-id field) or two one dimensional arrays that
sequentially follow each other in the case of variable length string fields.

The structure of each attribute resource is declared upfront in the scene layer resource
thru the attributeStorageInfo object. The client application (as stated above in the typical
usage pattern) is expected to read the attributeStorageInfo metadata to get the header
information, the ordering of the stored records (arrays) as well as their value types before
consuming the binary attribute resource.

66

Consider a sample scene service layer and its field types (see Figure 14). This layer has 6
fields named 'OID', 'Shape', 'NEAR_FID', 'NEAR_DIST', 'Name' and 'Building_ID'.

Figure 14: A typical attribute (table) info of a feature class

More detail: A typical attribute (table) info of a feature class. The fields array that’s
shown as an example in Figure 11 and the attributeStorageInfo array in Figure 13 is
derived from the attribute value of the above feature class.

As it could be inferred from Figure 11 and Figure 13, a scene service layer
exposes/includes only supported attribute field value types of a feature class. As a result,
the 'Shape' field (see Figure 14), which is of FieldTypeGeometry type, will not be
included in the attribute cache of a scene layer.

Table 35 below lists a feature layer's field data types (including its values and
description). The I3S valueTypes column indicates the value types of the fields that are
supported for attribute based mapping/symbology.

Feature Data Field Type Constants Value Description I3S ValueTypes
FieldTypeSmallInteger 0 Short Integer Int16
FieldTypeInteger 1 Long Integer Int32
FieldTypeSingle 2 Single Precision floating point number Float32
FieldTypeDouble 3 Double Precision floating point number Float64
FieldTypeString 4 Character String String*
FieldTypeDate 5 Date string
FieldTypeOID 6 Long Integer representing object ID UInt32
FieldTypeGUID 10 Globally Unique Identifier string
FieldTypeGlobalID 11 Global ID string
FieldTypeXML 12 XML Document string

Table 35: Attribute data types supported by a scene service layer.

* String – using UTF-8 Unicode character encoding scheme.

The following types of attribute value arrays are supported : Int32-Array, UInt32-Array,
UInt64-Array, Float64-Array, Float32-Array, String-Array

Using our example feature class shown in Figure 14 let's see how it maps to the different
types of attribute resources.

The 'OID' field, whose field type is 'FieldTypeOID' is by default represented as an
UInt32-Array. This is a simple 1-d array of UInt32 value type.

https://github.com/Esri/i3s-spec/blob/master/format/images/figure-14.png

67

The next attribute field type in the above example, 'NEAR-FID' which is of field type
'FieldTypeInteger' is represented as an Int32-Array. This again is also a simple 1-d array
of Int32 value type.

The 'NEAR_DIST' field is of field type 'FieldTypeDouble' field type and is represented
as a Double-Array, represented as 1-d array of Float64 value type.

The 'Name' field is of 'FieldTypeString' and is represented as a String-Array. A String-
Array supports storage of variable length strings and is stored as two arrays in sequence
where the first fixed length array has the byte counts of each string (null terminated) in
the second array and the second array stores the actual string values as UTF8 encoded
strings. The value type of the first array is (UInt32) whereas the value type of the second
array is String.

The attributes REST API of a scene layer gives access to all scene cache operations
supported feature attribute data as attribute value arrays that are stored in binary format.
As a result, the scene cache of the example feature class in Figure 14 will have 5 binary
resources, as identified by keys f_0_, f_1_, f_2_, f_3_ and f_4 and accessible by their
respective rest resource URLs (_.../nodes/<nodeID>/attributes/0/f_0,
.../nodes/<nodeID>/attributes/0/f_1, etc..).

8.4 Accessing the Legend of a 3D Object Layer

Legends are essential for proper display (complete communication of represented
information) of 3D Object Layer (also equally applicable for other layer types).

Clients are responsible for building legend information from the drawingInfo resource for
the scene layer. In this scene layers and scene services behave identically to feature layers
and feature services.

9. Additional Informative Information

9.1 Flexibility

I3S is flexible and allows for different implementation choices for different types of 3D
data or even for the same type of 3D data. The profile for a layer indicates the set of
choices made. Choices supported by I3S and made use of by different profiles are
described below. In each case the profile listed is the canonical profile for the
corresponding layer-type. Consider the following:

1. The Minimum Bounding Volume (MBV) property can be represented as:
a. Minimum Bounding Sphere (MBS)
b. Oriented Bounding Box (OBB)

2. Node structure
a. Expanded – in support of clients that want to gain more complete meta-

68

information about node’s position within BVH topology and its immediate
neighborhood

o Each index node provides pointers to its parent, all its children, and sibling
neighbors (including their MBVs)
Used by: mesh-pyramids and points profiles

b. fixed-size in support of paged access pattern

o A minimal structure – just the essentials: bounding volume; first-child
reference; child-count; LoD selection data; etc..

3. Embedded versus Binary geometry content format
a. Embedded geometry: as text (JSON) in-lined with other metadata within
featureData resource. This supports profiles where run-length encoding of feature-
IDs along the vertex data is suboptimal Used by: the canonical points profile.

b. Binary format: for voluminous, ready to render/use geometries and cached
attributes. Both typed array buffer views as well as fixed format binary buffers are
supported.

o The mesh-pyramids profile uses ‘array buffer views’ (ArrayBufferView
follows the Khronos Typed Array specification)

4. LoD Selection based on different metricTypes:

• maxScreenThreshold – LoD switching based on screen ‘size’ of the
node’s MBV. Used by: mesh-pyramids profile

• screenSpaceRelative – LoD switching based on screen ‘scale’ of the
node’s MBV. Used by: points profile

• distancRangeFromDefaultCamera – LoD switching based on
normalized distance of the node’s MBV from the camera. Used by:
points profile

9.2 Summary of I3S Defining Characteristics

In summary, here are other characteristics, including content data formats, which the
scene layer may include:

• Attributes may be included on individual entities, points, or on partial segments
of meshes
• Attribute-based stylization may be modified by client software
• Multiple, alternative textures may be provided to optimize for per-platform
performance and display
• JSON format for index and metadata, binary for more voluminous geometry,
texture and attribute data
• A Scene Layer Package format for distribution, or direct use, of the scene layer
as a single file (see SLPK section)
• Optional paired services that expose query-able and updatable RESTful

69

endpoints that enable direct access to dynamic source data
• Explicit control over bounding index shape and per-node switching behavior to
provide for optimized display and query
• BVH based on bounding spheres (MBS) as well as oriented bounding boxes
(OBB) (planned)
• Scene layers may be created in Cartesian 3D or in global 3D world coordinate
reference systems

10. Persistence

I3S scene layers can be delivered to web, mobile and desktop clients using a number of
different patterns. Most users will interact with scene layers using applications that access
cloud or server based information via RESTful interfaces/services. In these cases the
cache (the I3S nodes and their payloads) for the scene layer resides on the server and is
returned to clients via a RESTful interface that exposes the scene layer, its nodes and
their associated resources (geometries, attributes, textures) as web addressable resources.
The I3S standard contains a complete description of the web addressable resources and
their URL scheme. Some users will also interact with a scene layer delivered to them as a
single large Scene Layer Package – this is a single file that packages the complete node
tree and its resources into an archive that supports direct access to the individual nodes
and resources within it. Scene Layer Packages (SLPK files) are part of the current I3S
implementation with multiple generators and the ability by clients to consume packages
containing hundreds of Giga-Bytes of content.

All storage methods store the Indexed 3D Scene Layers in a simple key-value structure,
with the key representing the access URL and the value being the JSON document or
other resource type.

10.1 Scene Layer Packages

Scene Layer Packages (SLPK) serve two purposes: First, they allow a complete I3S
layer, with all resources, to be transported or exchanged as a single file. Second they
optionally also allow direct consumed by applications such as clients or services.

The format of the package itself is defined as follows:

• The Archive type is always Zip6432.
• On this Archive, an overall compression scheme may be applied. This

compression scheme SHALL be either STORE or DEFLATE64. Standard
DEFLATE is acceptable as a fallback if DEFLATE64 is not available, but will
only work with smaller SLPKs.

3232 https://en.wikipedia.org/wiki/Zip_(file_format)

70

• STORE is the preferred compression schema for an SLPK intended for direct
consumption by client application, especially if a resource compression is already
applied on the individual resources (as shown in the figure 15 below).

• Every resource except textures may also be individually compressed. Compressed
textures (such as S3TC) can additionally have GZIP33 compression applied to
them.

• For resource compression, only the GZIP scheme is supported, as DEFLATE
support is not universally available in all browsers.

The layout show in Figure 15 below is referred to as the BASIC folder pattern. The I3S
standard allows also for an EXTENDED folder pattern that uses subtree partitions to
avoid problems with very large packages.

Figure 15: Example of a SLPK with BASIC folder layout

The contents of the archive depicted in Figure 15 shows an SLPK with the BASIC folder
pattern. At the top level, it has a nodes subfolder containing all node resources, a
metadata.json file that describes the content of the SLPK and a 3dSceneLayer.json.gz file
that defines the Scene Layer. In the example, the nodes subfolder contains, nodes named
root, 1-4-2-0, etc. Drilling further into one of the nodes, 1-4-2-0, notice that all file

33 https://en.wikipedia.org/wiki/Gzip

71

resources are individually compressed with GZIP compression (indicated by the file
extension .gz), with the exception of the texture resource that is in JPEG format
(textures/0_0.bin). The resources under the sub folders geometries (geometries/0.bin.gz)
and attributes (attributes/f_0/bin.gz, attributes/f_1/bin.gz, ...), serialized as binary,
correspond to the geometryData, and attributeData resources of a scene layer,
respectively. Similarly, 3dNodeIndexDocument.json.gz, features/0.json.gz and
SharedResource.json.gz correspond to 3dNodeIndexDocument, featureData and
SharedResource documents of the Scene Layer, respectively, and are encoded in JSON
and are also stored with a GZIP compression.

For the above mentioned two use cases, an SLPK file is employed as follows:

1. SLPK as a transfer format:
1. ArchiveCompressionType: DEFLATE64
2. ResourceCompressionType: NONE

2. SLPK as a serving format:
1. ArchiveCompressionType: STORE
2. ResourceCompressionType: GZIP

10.1.1 Metadata

The following entries are permitted in the Metadata.json file that is part of every SLPK
archive:

Property Required Notes
folderPattern True One of {*BASIC*, EXTENDED}
ArchiveCompressionType True One of {*STORE*, DEFLATE64[,DEFLATE]}
ResourceCompressionType True One of {NONE, *GZIP*}
I3SVersion True One of {1.2, 1.3, 1.4, *1.6*}
nodeCount True Total number of nodes stored in this SLPK.

10.2 Key Value Stores

In this persistence schema, all scene layer resources are stored within either key value
based cloud blob stores such as Windows Azure Blob Storage or Amazon Simple Storage
(S3) or within more general key value stores. In the case of cloud blob stores, layer
resources are stored as either simple objects within containing buckets (S3) or blobs
within blob containers (Azure). In all cases each resource within a scene layer is
identified by a unique key.

I3S Resources Optional Notes

/SceneServer False The SceneServiceInfo JSON
that defines the service name

https://github.com/Esri/i3s-spec/blob/master/format/Indexed 3d Scene Layer Format Specification.md#_7_5

72

and list the layers offered by
this Scene Service {content
type: text/plain, content
encoding {NONE, *GZIP*}}

/SceneServer/layers/0 False

The 3dSceneLayer JSON
resource. The layer id (e.g. 0) is
used as the key of the document
{content type: text/plain,
content encoding {NONE,
GZIP}}

/SceneServer/layers/0/nodes/root False

The 3dNodeIndexDocument of
the layer as a JSON resource.
The node id (e.g. root) is used
as the key of the document
{content type: text/plain,
content encoding: {NONE,
GZIP}}

/SceneServer/layers/0/nodes/0 False

The 3dNodeIndexDocument of
the layer as a JSON resource.
The node id (e.g. 0) is used as
the key of the document
{content type: text/plain,
content encoding: {NONE,
GZIP}}

/SceneServer/layers/0/nodes/0/shared False

The SharedResource of the node
as a JSON resource. The
keyword shared is used as the
key of the document {content
type: text/plain, content
encoding {NONE, *GZIP*}}

/SceneServer/layers/0/nodes/0/features/0 True

The FeatureData document of
the node as a JSON resource.
The resource array id (e.g.0) is
used as the key of the document
{content type: text/plain,
content encoding: {NONE,
GZIP}}

/SceneServer/layers/0/nodes/0/geometries/0 False

The GeometryData of the node
as a binary resource. The
resource array id (e.g.0) is used
as the key of the resource
{content type: application/octet-
stream, content encoding
{NONE, *GZIP*}}

73

/SceneServer/layers/0/nodes/0/textures/0_0 True

The Texture of the node as a
binary resource. The resource id
(e.g.0_0) is used as the key of
the resource {content type:
image/jpeg, content encoding
{*NONE*}}

/SceneServer/layers/0/nodes/0/textures/0_0_1 True

The compressed texture of the
node as a binary resource. The
resource id (e.g.0_0_1) is used
as the key of the resource
{content type: image/vnd-
ms.dds, content encoding
{NONE, *GZIP*}}

/SceneServer/layers/0/nodes/0/attributes/f_0/0 True

The AttributeData as a binary
resource. The resource id (e.g.0)
is used as the key of the
resource {content type:
application/octet-stream,
content encoding: {NONE,
GZIP}}

/SceneServer/layers/0/nodes/0/attributes/f_1/0 True same as the attributeData
resource f_0/0 above

....

/SceneServer/layers/0/nodes/1-4-2-0 False same as node resource root and
0

Table 36: example showing the layout of a SceneService

Table 36 Detail: A typical example showing the layout of a SceneService in a key value
store environment. The example illustrates the structure of the service using a 3D Object
scene layer containing textured geometries as well as attribute data.

74

Annex A: Abstract Test Suite

An Abstract Test Suite is not required for a Community Standard

75

Annex B: Example JSON encoding for a 3dSceneLayer mesh pyramid

The below example code is also available online at:
http://schemas.opengis.net/i3s/1.0/profiles/meshpyramids/3dSceneLayer.js

/**
 Example I3S 1.6 3d Scene Layer Resource for the Meshpyramids profile.
*/
{
 "id": 0, // the ID of this layer, unique within a 3dSceneService.
 "layerType": "3DObject", // the type of this layer, one of {Point, Line, Polygon, *3DObject*, Pointcloud}
 "version": "ee4fbf04-e882-444e-854d-cd519b68594a", // the newest version (store update session ID) of this
layer.
 "ZFactor": 1.0, // Multiplier for z ordinate to arrive at meters.
 "name": "PublicBuildings", // the name of this layer.
 "spatialReference": // The spatialReference of the layer including the vertical coordinate system. wkt is
included to support custom spatial references
 {
 "wkid": 4326,
 "latestWkid": 4326,
 "vcsWkid": 3855,
 "latestVcsWkid": 3855,
 "wkt":
"GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137,298.257223563]],
PRIMEM[\"Greenwich\",0],UNIT[\"Degree\",0.017453292519943295]],VERTCS[\"EGM2008_Geoid\",VDATUM[\"
EGM2008_Geoid\"],PARAMETER[\"Vertical_Shift\",0.0],PARAMETER[\"Direction\",1.0],UNIT[\"Meter\",1.0]]}"
 },
 "heightModelInfo": { //enables consuming clients to perform quick test whether this layer is mashable or not
with exisitng content they have.
 "heightModel": "orthometric", //one of {*"orthometric"*, "ellipsoidal"};
 "ellipsoid": "wgs84 (G1674)/", //datum realization
 "heightUnit": "meter" //units
 },
 "alias": "Public Buildings", // the display alias to be used for this layer.
 "description" : "This layer contains textured Building features for the City of Zurich.\n", // Cache description
 "copyrightText" : "Vermessungsamt der Stadt Z�rich", // copyright/usage information
 "capabilities" : ["View","Query"], // capabilities possible on this layer.,
 "cachedDrawingInfo": {"color": //cachedDrawingInfo.color - a true value indicates that the drawingInfo
color is captured/cached as vertex colors. The drawingInfo used to generate the color cache is saved and present in
scene service layer cache.
 false}, //A false value (or abscene of the object) indicates that the scene cache for the layer does not include a
cached representation of the symbology for color.The client applies standard behavior where material/meshcolors are
interpreted and any drawinginfo present at the WebScene Layer or Map is rendered over it.
 "drawingInfo":
{"renderer":{"type":"simple","symbol":{"type":"MeshSymbol3D","symbolLayers":[{"type":"Fill","material":{"color":
[255,255,255],"transparency":0}}]},"label":"","description":""}} // the layer drawingInfo. Refrer to
https://developers.arcgis.com/web-map-specification/objects/renderer/
 "store": { // information on the store
 "id" : "9f62cd8f-0ab7-451e-917a-65ec8e10a432", // store ID - unique across a SceneServer.
Enables the client to discover which layers a part of a common store, if any.
 "profile": "meshpyramids", // Indicates which profile this scene store fulfills. One of {polygons,
points, lines, meshpyramids, pointclouds}.
 "resourcePattern": ["3dNodeIndexDocument", "Geometry", "Texture"], // The resources need for
rendering and the required order in which the client should load them.
 "rootNode": "./nodes/root", // relative URL to root node resource.
 "version": "1.6", // format version of this resource; used here again if this store hasn't been served
by a 3D Scene Server.
 "extent": [8.54, 47.385, 8.72, 47.455], // the spatial extent of this store, in the horizontal indexCRS
(xmin, ymin, xmax, ymax)

http://schemas.opengis.net/i3s/1.0/profiles/meshpyramids/3dSceneLayer.js

76

 "indexCRS": "http://www.opengis.net/def/crs/EPSG/0/4326", // the horizontal CRS used for all
minimum bounding spheres (mbs) in this cache, identified by a OGC URL.
 "vertexCRS": "http://www.opengis.net/def/crs/EPSG/0/4326", // the horizontal CRS used for all
"vertex positions" in this cache, identified by a OGC URL.
 "normalReferenceFrame": "earth-centered", // One of {east-north-up, *earth-centered*, vertex-
reference-frame}.*east-north-up* indicates normals are stored with easting, northing and up directions; *earth-
centered* indicates normals are stored in earth-centered, earth-fixed (ECEF) reference frame.
 //*vertex-reference-frame* indicates that normals are stored in the same reference frame as vertices
and is only valid for projected vertexCRS.
 "nidEncoding": "application/vnd.esri.i3s.json+gzip; version=1.6", // MIME type for the encoding
used for the Node Index Documents
 "featureEncoding": "application/vnd.esri.i3s.json+gzip; version=1.6", // MIME type for the
encoding used for the Feature Data Resources
 "geometryEncoding": "application/octet-stream+gzip; version=1.6", // MIME type for the encoding
used for the Geometry Resources
 "textureEncoding": ["image/jpeg", "image/vnd-ms.dds"], // MIME types for the encoding used for
the Texture Resources
 "lodType": "MeshPyramid", // optional field to indicate which LoD Generation Scheme is used in
this store. Selected from {*MeshPyramid*, FeatureTree, Thinning, Clustering, Generalizing}.
 "lodModel": "node-switching", // optional field to indicate which LoD Switching mode clients have
to use. One of {*node-switching*, feature-switching, none}.
 "defaultGeometrySchema": { // geometry resource layout for nodes that declare the use of
defaultGeometrySchema in the node index.
 "geometryType": "triangles", // Low-level default geometry type, one of {triangle_strip,
triangles, lines, points}; if defined, all geometries in the store are expected to have this type.
 "header": [// header fields that precede the vertex data
 {
 "property": "vertexCount", // vertex count
 "type": "UInt32" // the element type, from {UInt8, UInt16, UInt32,
UInt64, Int16, Int32, Int64, *Float32*, Float64}
 },
 {
 "property": "faceCount", // face count
 "type": "UInt32" // the element type, from {UInt8, UInt16, UInt32,
UInt64, Int16, Int32, Int64, *Float32*, Float64}
 },
 {
 "property": "featureCount", // feature count
 "type": "UInt32" // the element type, from {UInt8, UInt16, UInt32,
UInt64, Int16, Int32, Int64, *Float32*, Float64}
 }
],
 "topology": "PerAttributeArray", // one of ["PerAttributeArray", "Indexed"]. When
"Indexed", the indices must also be declared in the geometry schema ("faces") and precede the vertexAttribute data.
 "ordering": ["position", "normal", "uv0", "color", "region"], // provides the order of the
keys in vertexAttributes and faceAttributes, if present.
 "vertexAttributes": { // the vertex attributes must appear in the order that they are
declared here.
 "position": { // the name of the vertex attribute; here: vertex positions
 "valueType": "Float32", // the element type, from {UInt8, UInt16,
UInt32, UInt64, Int16, Int32, Int64, *Float32*, Float64}
 "valuesPerElement": 3 // number of (Float32) values need to make a
valid element (here a xyz position)
 },
 "normal": { // the name of the vertex attribute; here: vertex normals
 "valueType": "Float32", // the element type, from {UInt8, UInt16,
UInt32, UInt64, Int16, Int32, Int64, *Float32*, Float64}
 "valuesPerElement": 3 // number of (Float32) values need to make a
valid element (here a normal vector)
 },
 "uv0": { // the name of the vertex attribute; here: 1st texture coordinates, must
be present if a textureID is referenced

77

 "valueType": "Float32", // the element type, from {UInt8, UInt16,
UInt32, UInt64, Int16, Int32, Int64, *Float32*, Float64}
 "valuesPerElement": 2 // number of (Float32) values need to make a
valid element (here a texture coordinate that will be normalized)
 },
 "color": { // the name of the vertex attribute; here: color as RGBA
 "valueType": "UInt8", // the element type, always UInt8 for color
value
 "valuesPerElement": 4 //number of (UInt8) values need to make a
valid element (here a color in RGBA format)
 },
 "region": { // per-vertex region info. analogous to textureDefinitions.regions in
sharedResource. Values define uv-coordinates of region borders: [umin, vmin, umax, vmax]
 "valueType": "UInt16", // the element type, always UInt16 for region
info
 "valuesPerElement": 4 // number of (UInt16) values need to make a
valid element (here a region info)
 }
 },
 "featureAttributeOrder": ["id", "faceRange"], // provides the order of the keys in
featureAttributes object, if present.
 "featureAttributes": {
 "id": {
 "valueType": "UInt64", // the element type, from {UInt8, UInt16,
UInt32, UInt64, Int16, Int32, Int64, *Float32*, Float64}
 "valuesPerElement": 1 // number of (UInt64) values need to make a
valid element (here a feature ID)
 },
 "faceRange": {
 "valueType": "UInt32", // the element type, from {UInt8, UInt16,
UInt32, UInt64, Int16, Int32, Int64, *Float32*, Float64}
 "valuesPerElement": 2 // number of (UInt32) values need to make a
valid element (here a faceRange with minIndex/length)
 }
 }
 }
 }
 },
 "fields" : [// schema definition for this layer, as with 2D Layers.
 {
 "name" : "ObjectID",
 "type" : "esriFieldTypeOID",
 "alias" : "ObjectID"
 },
 {
 "name" : "type",
 "type" : "esriFieldTypeString",
 "alias" : "Building Type"
 },
 {
 "name" : "totalHeight",
 "type" : "esriFieldTypeFloat",
 "alias" : "Total Height"
 },
 {
 "name" : "eaveHeight",
 "type" : "esriFieldTypeDouble",
 "alias" : "Eave Height"
 }
],
 "attributeStorageInfo":[// see AttributeData section in spec
 {

78

 "key": "f_0",
 "name": "objectid",
 "header": [{
 "property": "count",
 "valueType": "UInt32"
 }],
 "ordering": ["ObjectIds"],
 "objectIds": {
 "valueType": "UInt32",
 "valuesPerElement": 1
 }
 },
 {
 "key": "f_1",
 "name": "type",
 "header": [{
 "property": "count",
 "valueType": "UInt32"
 }, {
 "property": "attributeValuesByteCount",
 "valueType": "UInt32"
 }],
 "ordering": ["attributeByteCounts", "attributeValues"],
 "attributeByteCounts": {
 "valueType": "UInt32",
 "valuesPerElement": 1
 },
 "attributeValues": {
 "valueType": "String",
 "encoding": "UTF-8",
 "valuesPerElement": 1
 }
 },
 {
 "key": "f_2",
 "name": "totalHeight",
 "header": [{
 "property": "count",
 "valueType": "UInt32"
 }],
 "ordering": ["attributeValues"],
 "attributeValues": {
 "valueType": "Float32",
 "valuesPerElement": 1
 }
 },
 {
 "key": "f_3",
 "name": "totalHeight",
 "header": [{
 "property": "count",
 "valueType": "UInt32"
 }],
 "ordering": ["attributeValues"],
 "attributeValues": {
 "valueType": "Float64",
 "valuesPerElement": 1
 }
 }
]
}

79

Annex C: Contributor Acknowledgements

Contributors: Tamrat Belayneh, Javier Gutierrez, Markus Lipp, Johannes Schmid, Simon
Reinhard, Thorsten Reitz, Chengliang Shan, Ben Tan, Moxie Zhang, Pascal Müller,
Dragan Petrovic, Sud Menon

Acknowledgements: Bart van Andel, Fabien Dachicourt, Carl Reed

Annex D: Revision history

Date Release Editor Paragraph modified Description
2/16/2017 1 Carl Reed Various Put I3S into the OGC document

template

2/27/2017 1 Carl Reed New clauses Added based on OAB concerns with
Community Standards

5/10/2017 1 Carl Reed Various More Terms and definitions, more
changes to CRS clauses. Finish
processing public comment
suggestions.

80

Annex E - Scene Service Access to REST Resources. Informative

This is the description of a REST API for a Scene Service. Please note that the examples
use the Esri ArcGIS REST implementation. Simply change the base URL pattern (see
below) for access to the I3S services available on your system.

There is a set of REST resources also defined in the I3S format specification that are
served out via different endpoints.

There is a base URL that needs to be defined and used in all I3S scene service access
REST resource instances. This base URL points to where your I3S host services and
content are located. In addition there are 6 mandatory resource instances and 2 optional
resource instances.

Mandatory:

• 3dSceneServiceInfo (JSON)
• 3dSceneLayerInfo (JSON)
• 3dNodeIndexDocument (JSON)
• SharedResources (JSON)
• TextureData (Binary)
• GeometryData (Binary)

Optional:

• FeatureData JSON (optional for Mesh-Pyramids profile)
• AttributeData (Binary)

This is the REST API for retrieval of these resources:

3dSceneServiceInfo

• URL Pattern: <base-url>/<server-name>/SceneServer
• Method: GET
• Example

Service:http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D
_Buildings/SceneServer

• Returns: Scene Service metadata and list of available layers.

3dSceneLayerInfo

• URL Pattern: <scene-server-url>/layers/<layer-id>
• Method: GET

http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer

81

• Example
Service:http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D
_Buildings/SceneServer/layers/0

• Returns: Detailed information about single layer, including symbology, field
schema, and profile/store metadata, with a link to the root 3dNodeIndexDocument

3dNodeIndexDocument

• URL Pattern: <layer-url>/nodes/<node-id>
• Method: GET
• Example

Service:http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D
_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0

• Returns: A file describing a single node in the spatial index, with links to all
associated resources such as FeatureData, textures, Geometry and
SharedResources

SharedResources

• URL Pattern: <node-url>/shared/
• Method: GET
• Example

Service:http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D
_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0

• Returns: A feature data resource (bundle)

FeatureData

• URL Pattern: <node-url>/features/<feature-data-bundle-id>
• Method: GET
• Example

Service:http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D
_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0

• Returns: A feature data resource (bundle). In case of Points layer type, the feature
data document contains positional information and could also include by value
any attribute information associated with each feature. For layer types belonging
to Mesh-Pyramids profile, this resource is optional as all required information to
identify feature to geometry mapping is compactly stored with the binary
geometry data. In addition, attribute data in Mesh-Pyramids profiles are stored as
AttributeData resource as described in the I3S format specification.

GeometryData

• URL Pattern: <node-url>/geometries/<geometry-data-bundle-id>
• Method: GET

http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/features/0

82

• Example Service:
http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D_Buildi
ngs/SceneServer/layers/0/nodes/5-1-0-0-0/geometries/0

• Returns: A geometry data resource (bundle)

TextureData

• URL Pattern: <node-url>/textures/<texture-data-bundle-id>
• Method: GET
• Example

Service:http://scene.arcgis.com/arcgis/rest/services/Hosted/Buildings_San_Franci
sco/SceneServer/layers/0/nodes/1-3-0-0-0-0-0-0-0/textures/0_0

• Returns: A texture data resource (bundle). Refer to the I3S format specification
for details on how different encodings and resolutions are encoded.

AttributeData

• URL Pattern: <node-url>/attributes/<attribute-data-bundle-id>
• Method: GET
• Example Service:

http://3dcities.maps.arcgis.com/arcgis/rest/services/New_York_LoD2_3D_Buildi
ngs/SceneServer/layers/0/nodes/5-1-0-0-0/attributes/f_0/0

• Returns: An attribute data resource (bundle). Refer to the I3S format specification
for details on how different types of attributes are encoded.

http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/geometries/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/geometries/0
http://scene.arcgis.com/arcgis/rest/services/Hosted/Buildings_San_Francisco/SceneServer/layers/0/nodes/1-3-0-0-0-0-0-0-0/textures/0_0
http://scene.arcgis.com/arcgis/rest/services/Hosted/Buildings_San_Francisco/SceneServer/layers/0/nodes/1-3-0-0-0-0-0-0-0/textures/0_0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/attributes/f_0/0
http://tiles.arcgis.com/tiles/z2tnIkrLQ2BRzr6P/arcgis/rest/services/New_York_LoD2_3D_Buildings/SceneServer/layers/0/nodes/5-1-0-0-0/attributes/f_0/0

83

Annex F: I3S profile: Points

Summary

What this profile is for: Support for points and multi-points with symbolization. This
profile does not use external ArrayBufferGeometries.

Access Pattern

The access pattern is identical to that of the mesh-pyramids profile. The profile utilizes
different LoD selection metrics (screenSpaceRelative,
distanceRangeFromDefaultCamera).

Schema

The points profile makes use of 5 main resource types and allows a restricted set of
properties.

SceneServiceInfo

No specific profile.

3dSceneLayer
Property Required Min. Max. Container Value Rules Conditions

id True None number/Integer
href None string/URL
layerType True None string/None
ZFactor None number/Float
version True None string/UUID
name True None string/None
alias None string/None
description None string/None
copyrightText None string/None
capabilities True 1 3 object/None
capabilities.* True undefined string/None
store True None object/None
store.id True None string/UUID
store.profile True None string/None
store.rootNode True None string/URL
store.version True None string/None
store.extent True 4 4 object/None
store.extent.* True undefined number/None
store.indexCRS True None string/URL

84

store.vertexCRS True None string/URL
store.nidEncoding None string/None
store.featureEncoding None string/None
store.geometryEncoding None string/None
store.textureEncoding True 1 3 object/None
store.textureEncoding.* None string/None
store.lodType True None string/None
store.lodModel True None string/None
store.featureOrdering 0 * object/None
store.featureOrdering.* undefined string/None
store.defaultGeometrySchema None object/NamedRuleset
store.indexingScheme None object/NamedRuleset
fields True 0 * object/None
fields.* True undefined object/NamedRuleset
drawingInfo None object/None

3dNodeIndexDocument

Property Required Min. Max. Container Value Rules Conditions
id True None string/NodeID /level NOT 1
id True None string/None /level IS 1
level True None number/Integer
version True None string/UUID
created None string/Date
expires None string/Date
mbs True 4 4 object/None
mbs.* True undefined number/None
lodSelection True 0 * object/None [../../]/store/lodType IS

FeatureTree
lodSelection.* True undefined object/None
lodSelection.*.metricType True None string/None
lodSelection.*.maxError None number/None
lodSelection.*.avgError None number/None
transform True 16 16 object/None
transform.* undefined number/None
sharedResource True None object/None
sharedResource.href True None string/URL
featureData True 0 * object/None
featureData.* True undefined object/None
featureData.*.href True undefined string/URL
featureData.*.featureRange 2 2 object/None
featureData.*.featureRange.* True undefined number/Integer
featureData.*.layerContent 1 * object/None
featureData.*.layerContent.* undefined string/None
geometryData True 0 1 object/None

85

geometryData.* True undefined object/None
geometryData.*.href True undefined string/URL
parentNode True None object/None /level NOT 1
parentNode.id True None string/NodeID
parentNode.version True None string/UUID
parentNode.href True None string/URL
parentNode.mbs True 4 4 object/None
parentNode.mbs.* True undefined number/None
parentNode.featureCount None number/Integer
children True 0 99 object/None
children.* True undefined object/None
children.*.id True None string/NodeID
children.*.version True None string/UUID
children.*.href True None string/URL
children.*.mbs True 4 4 object/None
children.*.mbs.* True undefined number/None
children.*.featureCount None number/Integer
neighbors True 0 * object/None /level NOT 1
neighbors.* True undefined object/None
neighbors.*.id True None string/NodeID
neighbors.*.version True None string/UUID
neighbors.*.href True None string/URL
neighbors.*.mbs True 4 4 object/None
neighbors.*.mbs.* True undefined number/None
neighbors.*.featureCount None number/Integer
features True 0 * object/None
features.* True undefined object/None
features.*.id True None number/Integer
features.*.mbs True 4 4 number/None
features.*.mbs.* True undefined number/None
features.*.lodChildFeatures True 0 * object/None [../../]/store/lodType IS

FeatureTree
features.*.lodChildFeatures.* True undefined number/Integer

features.*.lodChildNodes True 0 9 object/None

[../../]/store/lodType IS
FeatureTree
../lodChildFeatures
NOT null

features.*.lodChildNodes.* True undefined string/NodeID
features.*.rank True None number/Integer [../../]/store/lodType IS

FeatureTree

features.*.rootFeature True None number/Integer

[../../]/store/lodType IS
FeatureTree
/level NOT 1
../rank NOT 1

86

FeatureData

Property Required Min. Max. Container Value Rules Conditions
featureData True 1 * object/None
featureData.* True undefined object/None
featureData.*.id True None number/Integer
featureData.*.position True 2 3 object/None
featureData.*.position.* True undefined number/None
featureData.*.mbb 6 6 object/None
featureData.*.mbb.* True undefined number/None
featureData.*.layer True None string/None
featureData.*.geometries 1 * object/None
featureData.*.geometries.* True None object/NamedRuleset type IS Embedded
featureData.*.attributes True 0 * object/None
featureData.*.attributes.* undefined object/NamedRuleset

87

Annex G: I3S profile - Mesh-pyramids (MP)

Summary

What this profile is for: This profile is implemented by the 3D Object and Integrated
Mesh layer types.

Access Pattern

This section describes how a client is expected to load and handle resources from an
Indexed 3D Scene Layer using the Mesh-pyramids profile. The general pattern consists
of these phases:

1. Handshake & capabilities negotiation: The client ensures that the service has the
expected resources and that a client and a server have a common set of
capabilities. Within this phase, the client utilizes the following resources:

1. Retrieve SceneServiceInfo: General service information
2. Retrieve 3dSceneLayer: Information on available layers, including

symbology and encoding
2. Index exploration: The client retrieves Node Index Documents and decides –

based on lodSelection properties – whether it wants to download and render their
attached resources. Within this phase, the client utilizes the following resource:

1. NodeIndexDocument: Summary of the content of a single node of the
index, references children, parent and neighbor nodes, indicating what can
be found there

3. Rendering: When a client has decided that it wants to render the content of a
node, it retrieves the attached resources:

1. SharedData: Material definitions, shared geometries for instancing
2. GeometryData: Geometry attributes such as positions and indices
3. TextureData: Images used as texture maps
4. AttributeData: Attribute data of features used for attribute-based

symbolization (as indicated by the DrawingInfo object in the
3dSceneLayer resource)

4. Identify: Additional resources belonging to a node are accessed only if needed,
e.g. for an Identify operation.

1. AttributeData: If the AttributeData resources of the node have not already
been fetched (in step 3 above) client application can request the desired
attribute data.

A familiar access pattern based on a single tree data structure is proposed for view
frustum culling, level-of-detail selection, and rendering. The following pseudo code
illustrates the recommended pattern when navigating an index tree using Mesh Pyramids.

Node traversal starts at the root node and recursively calls TraverseNodeTree(node):

TraverseNodeTree(node)
{

88

 if (node’s mbs is not visible) // see 1)
 // do nothing
 else if (node has no children or ScreenSize(mbs) <
maxScreenThreshold) //see 2)
 // render the node // see 3)
 else
 for each child in children(node) // see 4)
 TraverseNodeTree(child);
}

Additional notes:

1. view frustum culling:
1. visibility test can include the ‘entirely inside the viewing frustum’ result

which can be used to optimize away all further frustum culling tests on the
children of the node

2. this step can also optionally incorporate a cutoff distance threshold test if
desired.

2. level-of-detail selection:
1. test used to decide how deep to recurse is based on mbs‘ projected size

(diameter) on the screen vs the per node provided ‘maxScreenThreshold’.
3. Rendering:

1. “render the node” potentially includes some, or all, of the following steps:
1. Requesting the corresponding geometry and texture data if not

already requested
2. (asynchronously) accessing the corresponding geometry and

texture data and loading it into GPU memory if not already loaded
3. Binding, if loaded, the geometry VBO
4. Binding, if loaded, the texture
5. Making a draw() call if, at least, the geometry is loaded

4. optimized user experience:
1. children should be sorted by the ascending distance from the observer…

Schema

The mesh pyramids profile makes use of all 7 main resource types and allows for a
restricted set of properties. Note that the FeatureData resource is optional for this profile.
Hence the 3dSceneLayer resource must contain a DefaultGeometrySchema.

SceneServiceInfo

No specific profile.

89

3dSceneLayer

Note that in this profile, the DefaultGeometrySchema is mandatory.

Property Required Min. Max. Container Value Rules Conditions
id True None number/Integer
href None string/URL
layerType True None string/None
ZFactor None number/Float
version True None string/UUID
name True None string/None
alias None string/None
description None string/None
copyrightText None string/None
capabilities True 1 3 object/None
capabilities.* True undefined string/None
store True None object/None
store.id True None string/UUID
store.profile True None string/None
store.resourcePattern True 1 5 object/None
store.resourcePattern.* True None string/None
store.rootNode True None string/URL
store.version True None string/None
store.extent True 4 4 object/None
store.extent.* True undefined number/None
store.indexCRS True None string/URL
store.vertexCRS True None string/URL
store.nidEncoding None string/None
store.featureEncoding None string/None
store.geometryEncoding None string/None
store.textureEncoding True 1 3 object/None
store.textureEncoding.* None string/None
store.lodType True None string/None
store.lodModel True None string/None
store.defaultGeometrySchema None object/NamedRuleset
store.indexingScheme None object/NamedRuleset
store.defaultTextureDefinition undefined object/NamedRuleset
store.defaultMaterialDefinition undefined object/NamedRuleset
fields True 0 * object/None
fields.* True undefined object/NamedRuleset
drawingInfo None object/None

90

3dNodeIndexDocument

There is always exactly 1 geometry and texture resource per node.

Property Required Min. Max. Container Value Rules Conditions
id True None string/NodeID /level NOT 1
id True None string/None /level IS 1
level True None number/Integer
version True None string/UUID
created None string/Date
expires None string/Date
mbs True 4 4 object/None
mbs.* True undefined number/None
lodSelection True 1 1 object/None
lodSelection.* True undefined object/None
lodSelection.*.metricType True None string/None
lodSelection.*.maxError None number/None
lodSelection.*.avgError None number/None
transform 16 16 object/None
transform.* True undefined number/None
sharedResource True None object/None
sharedResource.href True None string/URL
featureData True 0 1 object/None
featureData.* True undefined object/None
featureData.*.href True undefined string/URL
featureData.*.featureRange 2 2 object/None
featureData.*.featureRange.* True undefined number/Integer
featureData.*.layerContent 1 1 object/None
featureData.*.layerContent.* undefined string/None
geometryData True 0 1 object/None
geometryData.* True undefined object/None
geometryData.*.href True undefined string/URL
textureData True 0 * object/None
textureData.* True undefined object/None
textureData.*.href True undefined string/URL
textureData.*.multiTextureBundle undefined boolean/None
parentNode True None object/None /level NOT 1
parentNode.id True None string/NodeID /level NOT 2
parentNode.id True None string/None /level IS 2
parentNode.version None string/UUID
parentNode.href True None string/URL
parentNode.mbs True 4 4 object/None
parentNode.mbs.* True undefined number/None
parentNode.featureCount None number/Integer
children True 0 99 object/None

91

children.* True undefined object/None
children.*.id True None string/NodeID
children.*.version None string/UUID
children.*.href True None string/URL
children.*.mbs True 4 4 object/None
children.*.mbs.* True undefined number/None
children.*.featureCount None number/Integer
neighbors True 0 * object/None /level NOT 1
neighbors.* True undefined object/None
neighbors.*.id True None string/NodeID
neighbors.*.version True None string/UUID
neighbors.*.href True None string/URL
neighbors.*.mbs True 4 4 object/None
neighbors.*.mbs.* True undefined number/None
neighbors.*.featureCount None number/Integer

AttributeData

Attribute data for all features in a node is stored and made available as discrete, per field
resource called attribute. The number of attribute resources corresponds to the number of
feature data fields that are chosen to be included along with the 3d Scene Layer cache.

FeatureData

The FeatureData is optional with this profile.

Property Required Min. Max. Container Value Rules Conditions
featureData True 0 * object/None
featureData.* True undefined object/None
featureData.*.id True None number/Integer
featureData.*.position True 2 3 object/None
featureData.*.position.* True undefined number/None
featureData.*.pivotOffset 3 3 object/None
featureData.*.pivotOffset.* undefined number/None
featureData.*.mbb True 6 6 object/None
featureData.*.mbb.* True undefined number/None
featureData.*.layer True None string/None
featureData.*.geometries True 1 1 object/None
featureData.*.geometries.* True undefined object/NamedRuleset
featureData.*.attributes 0 * object/None
featureData.*.attributes.* undefined object/NamedRuleset
geometryData True 1 * object/None
geometryData.* True undefined object/NamedRuleset type IS

ArrayBufferView

92

SharedResources

Property Required Min. Max. Container Value Rules Conditions
materialDefinitions True 0 * object/None
materialDefinitions.* True undefined object/NamedRuleset
textureDefinitions True 0 * object/None
textureDefinitions.* True undefined object/NamedRuleset
shaderDefinitions None object/None

	AnnexB
	AnnexE
	AnnexF
	AnnexG

