
1
Copyright © 2017 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date: 2016-10-30

Approval Date: 2017-01-10

Publication Date: 2017-03-12

External identifier of this OGC® document: http://www.opengis.net/doc/is/movingfeatures-access/1.0

Internal reference number of this OGC® document: 16-120r3

Version: 1.0

Category: OGC® Implementation Standard

Editors: Hideki Hayashi, Akinori Asahara, Kyoung-Sook Kim, Ryosuke Shibasaki, Nobuhiro Ishimaru

OGC Moving Features Access

Copyright notice

Copyright © 2017 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member approved international standard, however, this
version is informative. The normative version can be found at:
http://docs.opengeospatial.org/is/16-120r3/16-120r3.html This document is available on
a royalty free, non-discriminatory basis. Recipients of this document are invited to
submit, with their comments, notification of any relevant patent rights of which they are
aware and to provide supporting documentation.

Document type: OGC® Standard
Document subtype: Encoding
Document stage: Approved
Document language: English

2
Copyright © 2017 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

3
Copyright © 2017 Open Geospatial Consortium

Contents	
1.	 Scope ... 7	

2.	 Conformance ... 9	

3.	 References ... 10	

4.	 Terms and Definitions ... 10	

5.	 Conventions .. 12	

5.1	 Symbols (and abbreviated terms) .. 12	

5.2	 UML Notation ... 12	

5.3	 XML Namespaces ... 13	

6.	 Overview ... 14	

6.1	 Operation classes .. 14	

6.2	 Trajectory data model ... 14	

7.	 Type A: Retrieval of feature attribute ... 16	

8.	 Type B: Operations between one trajectory object and one or more geometry objects
 20	

9.	 Type C: Operations between two trajectory objects ... 22	

10.	 Exception Guidance ... 25	

Annex A	 Conformance Class Abstract Test Suite (Normative) 27	

A.1	 Introduction ... 27	

A.2	 Test: Type A — Retrieval of feature attribute .. 27	

A.3	 Test: Type B — Operations between one trajectory object and one or more
geometry objects ... 27	

A.4	 Test: Type C — Operations between two trajectory objects 27	

Annex B	 The correspondence of concepts of the Moving Features Access with
concepts of existing ISO standards (Informative) .. 28	

B.1	 Introduction ... 28	

B.2	 Correspondence with ISO 19141:2008 ... 28	

4
Copyright © 2017 Open Geospatial Consortium

B.3	 Correspondence with ISO 19103:2015 ... 28	

B.4	 Correspondence with ISO 19107:2003 ... 28	

B.5	 Correspondence with ISO 19108:2002 ... 29	

B.6	 Correspondence with ISO 19133:2005 ... 29	

Annex C	 Implementation Examples (Informative) ... 30	

C.1	 Introduction ... 30	

C.2	 pointAtTime .. 31	

C.3	 timeAtPoint ... 31	

C.4	 velocityAtTime ... 32	

C.5	 subTrajectory .. 33	

C.6	 intersects ... 34	

C.7	 distanceWithin .. 34	

Annex D	 Revision history ... 35	

Annex E	 Bibliography .. 36	

5
Copyright © 2017 Open Geospatial Consortium

i. Abstract
This document defines Moving Features Access, i.e., access methods to moving feature
data for retrieving feature attributes, information on a relation between a trajectory object
and one or more geometry objects, and information on a relation between two trajectory
objects from a database storing trajectory data of moving features.

Abstract methods of accessing moving features data are defined in ISO 19141:2008
(Geographic information - Schema for moving features) [ISO 19141:2008]. However, the
methods are insufficient to access a database storing moving feature data from multiple
sources. If implementations for access to moving features data using various
programming languages or protocols (e.g., SQL, Java, and HTTP) are developed without
any standards, these implementations might be inconsistent with each other, resulting in
poor interoperability. Therefore, methods to access a database storing moving feature
data are necessary to improve interoperability.

Applications using moving feature data, typically representing vehicles or pedestrians,
are rapidly increasing. Innovative applications are expected to require the overlay and
integration of moving feature data from different sources to create greater social and
business value. Moreover, systems relying on single-source moving feature data are now
evolving into more integrated systems. Integration of moving feature data from different
sources is a key to developing more innovative and advanced applications.

Moving Features Access ensures better data exchange by handling and integrating
moving feature data to broaden the market for geo-spatial information such as Geospatial
Big Data Analysis. OGC 14-083r2 (OGC® Moving Features Encoding Part I: XML
Core) [OGC 14-083r2] and OGC 14-084r2 (OGC® Moving Features Encoding
Extension: Simple Comma Separated Values (CSV)) [OGC 14-084r2] are existing
implementation standards. Moving Features Access uses these standards to encode
moving features.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, moving features, access method

iii. Preface
This OGC® standard specifies access methods to be implemented for operating against
trajectory data of moving features. This specification provides a guideline for
implementing interfaces such as SQL functions, Java APIs, and Web APIs.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

6
Copyright © 2017 Open Geospatial Consortium

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

iv. Submitting organizations
The following organizations submitted this document to the Open Geospatial Consortium
(OGC):

• Central Research Laboratory, Hitachi, Ltd.

• Artificial Intelligence Research Center, National Institute of Advanced Industrial
Science and Technology

• Center for Spatial Information Science, The University of Tokyo

• Defense Systems Company, Hitachi, Ltd.

v. Submitters
All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation

Hideki Hayashi Central Research Laboratory, Hitachi, Ltd.

Akinori Asahara Central Research Laboratory, Hitachi, Ltd.

Kyoung-Sook Kim Artificial Intelligence Research Center, National
Institute of Advanced Industrial Science and
Technology

Ryosuke Shibasaki Center for Spatial Information Science, The
University of Tokyo

Nobuhiro Ishimaru Defense Systems Company, Hitachi, Ltd.

7
Copyright © 2017 Open Geospatial Consortium

1. Scope

This OGC® Standard specifies abstract methods to access a database storing trajectory
data of moving features.

Figure 1 illustrates the concepts of foliation, prism, trajectory, and leaf, which are defined
in ISO19141:2008 (Geographic information - Schema for moving features) [ISO
19141:2008]. In this illustration, a 2D rectangle moves and rotates. Each representation
of the rectangle at a given time is a leaf. The path traced by each corner point of the
rectangle is a trajectory. The set of points contained in all of the leaves, and in all of the
trajectories, forms a prism. The set of leaves also forms a foliation. The prism of the
moving feature can be viewed as a bundle of trajectories of points on the local
representation of the feature's geometry. If viewed in a 4 dimensional spatio-temporal
coordinate system, the points on the feature at different times are different points.

Figure 1 — Foliation, prism and trajectory

Figure 2 shows an example for trajectories of three moving points A, B and C. Each
trajectory has a start time and the end time. At t=0 (start of all data), all points start
moving. Then, at t =1, the movement of A is changed. In this case, the trajectory of A
from t=0 to t=1, the trajectory of A from t=1 to t=2, the trajectory of B from t=0 to t=2,
and the trajectory of C from t=0 to t=2 are encoded. This means that only changes of state,
including movement speed, direction, existence, and attributes, are encoded in the format.
The encoded changes of state are ordered by time in order to determine the states of all
features even if only a temporal subset of data is loaded.

8
Copyright © 2017 Open Geospatial Consortium

Figure 2 — Example of trajectories

Figure 3 summarizes the operations of existing access standards and Moving Features
Access. Operations for geometry objects have been supported by OGC 06-103r4
(OpenGIS Implementation Standard for Geographic information - Simple feature access -
Part 1: Common architecture) and ISO 13249-3 (Information technology — Database
languages — SQL multimedia and application packages Part3: Spatial). Elements of
trajectory operations are defined in ISO19141:2008.

Figure 3 — Existing access standards and Moving Features Access

This standard targets the following three types of operations.

9
Copyright © 2017 Open Geospatial Consortium

Type A: Retrieval of feature attribute
These operations retrieve positions, trajectories, and velocities of a moving feature
such as a car, a person, a vessel, an aircraft, and a hurricane.

Type B: Operations between one trajectory object and one or more geometry objects

These operations perform an “intersection” between a geometry object like a
administrative boundary and a trajectory of a moving feature like a car, a person, a
vessel, an aircraft, and a hurricane.

Type C: Operations between two trajectory objects

An example of these operations is to calculate a distance of the nearest approach of a
trajectory to another trajectory. Case studies include calculating the distance between
a criminal agent and a police agent for predicting crime patterns or the distance
between soccer players for making proper tactics.

This standard does not address all types of operations for trajectory data of moving
features. Examples of operations that are out of scope include the following.

Aggregation operations

Examples of these operations are to obtain clusters of multiple trajectories or
centroid of multiple trajectories. Such operations will be considered in the future
once the demands are clarified.

2. Conformance

Conformance with this standard shall be checked using all the relevant tests specified in
Annex A (normative) of this document. The framework, concepts, and methodology for
testing, and the criteria to be achieved to claim conformance are specified in the OGC
Compliance Testing Policies and Procedures and the OGC Compliance Testing web site1.

In order to conform to this OGC™ interface standard, a software implementation shall
choose to implement:

a) Any one of the conformance levels specified in Annex A (normative).

All requirements-classes and conformance-classes described in this document are owned
by the standard(s) identified.

1 www.opengeospatial.org/cite

10
Copyright © 2017 Open Geospatial Consortium

3. References

The following normative documents contain provisions that, through reference in this
text, constitute provisions of this document. For dated references, subsequent
amendments to, or revisions of, any of these publications do not apply. For undated
references, the latest edition of the normative document referred to applies.

OGC: [OGC 14-083r2] OGC® Moving Features Encoding Part I: XML Core, 2015

OGC: [OGC 14-084r2] OGC® Moving Features Encoding Extension: Simple Comma
Separated Values (CSV), 2015

ISO / TC 211: [ISO 19141:2008] Geographic information – Schema for moving features,
2008

OGC: [OGC 06-103r4] OpenGIS Implementation Standard for Geographic information -
Simple feature access - Part 1: Common architecture, 2011

ISO: [ISO 13249-3] Information technology — Database languages — SQL multimedia
and application packages Part3: Spatial, 2016

OGC: [OGC 06-121r9] OGC Web Services Common Specification, 2010

ISO / TC 211: [ISO 19103:2015] Geographic information – Conceptual schema language,
2015

ISO / TC 211: [ISO 19107:2003] Geographic Information – Spatial schema, 2003

ISO / TC 211: [ISO 19108:2002] Geographic information – Temporal schema, 2002

ISO / TC 211: [ISO 19133:2005] Geographic information – Location-based services –
Tracking and navigation, 2005

4. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r9], which is
based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used
to indicate a requirement to be strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

4.1
moving feature
feature whose location changes over time

11
Copyright © 2017 Open Geospatial Consortium

[ISO 19141:2008]

NOTE: Its base representation uses a local origin and local coordinate vectors, of a
geometric object at a given reference time.

4.2
geometric object
spatial object representing a geometric set

[ISO 19107:2003]

4.3
trajectory
path of a moving point described by a one parameter set of points

[ISIO19141:2008]

4.4
one parameter set of geometries
function f from an interval t � [a, b] such that f(t) is a geometry and for each point P �
f(a) there is a one parameter set of points (called the trajectory of P) P(t) : [a, b] →P(t)
such that P(t) � f(t)

[ISO 19141:2008]

4.5
period
one-dimensional geometric primitive representing extent in time

[ISO 19141:2008]

4.6
point
0-dimensional geometric primitive, representing a position

[ISO 19107:2003]

4.7
geometric primitive
geometric object representing a single, connected, homogeneous element of space

[ISO 19107:2003]

4.8
vector
quantity having direction as well as magnitude

[ISO 19123:2005]

12
Copyright © 2017 Open Geospatial Consortium

4.9
MF_TemporalTrajectory
An instance of MF_TemporalTrajectory is a trajectory whose parameter is time

[ISO 19141:2008]

5. Conventions

5.1 Symbols (and abbreviated terms)
API Application Program Interface

CSV Comma Separated Values

CRS Coordinate Reference System

HTTP Hypertext Transfer Protocol

ISO International Organization for Standardization

OASIS Organization for the Advancement of Structured Information Standards

OGC Open Geospatial Consortium

UML Unified Modeling Language

XML Extensible Markup Language

2D Two Dimensional

3D Three Dimensional

5.2 UML Notation
The diagrams that appear in this standard are presented using the Unified Modeling
Language (UML) static structure diagram. The UML notations used in this standard are
described in the diagram below.

13
Copyright © 2017 Open Geospatial Consortium

Figure 4 — UML notation

In this standard, the following three stereotypes of UML classes are used:

a) <<Type>> is used to specify a domain of objects together with operations applicable
to the objects without defining the physical implementation of those objects. It may
also have attributes and associations that are defined solely for the purpose of
specifying the behavior of the type's operations and do not represent any actual
implementation of state data.

b) <<DataType>> A descriptor of a set of values that lack identity (independent
existence and the possibility of side effects). A DataType is a class with no
operations whose primary purpose is to hold the information.

In this standard, the following standard data types are used:

a) Boolean – Only two possible values: TRUE and FALSE

5.3 XML Namespaces
All components of the Moving Feature XML schema are defined in the namespace with
the identifier "http://www.opengis.net/movingfeatures/1.0", for which the prefix mf or
the default namespace is used within this Standard.

Association between classes

role-1 role-2
Association Name

Class #1 Class #2

Association Cardinality

Clas
s Only one

Clas
s Zero or more

Clas
s Optional (zero or one)

1..*
Clas
s One or more

n
Clas
s Specific number

Aggregation between classes
Aggregate

Clas
s

Component
Class #1 Component

Class #2 Component
Class #n

……….

0..*

0..1

Class Inheritance (subtyping of classes)
Superclass

Subclass #1
…………..

Subclass #2 Subclass #n

14
Copyright © 2017 Open Geospatial Consortium

6. Overview

6.1 Operation classes
Moving Features Access is designed to obtain feature attributes, relations between one
trajectory object and one or more geometry objects, and relations between two trajectory
objects. Hereafter, these are simply called “operations.” This standard specifies the
following operations:

Type A: Retrieval of feature attribute;
Type B: Operations between one trajectory object and one or more geometry objects; and
Type C: Operations between two trajectory objects.

6.2 Trajectory data model
The model for trajectory data is defined in the [ISO 19141:2008]. The basic trajectory
data model is depicted in Figure 5. Moving Features Access defines methods to operate
upon trajectory objects which are instances of MF_TemporalTrajectory.

Figure 5 — Trajectory data model in ISO 19141:2008

This standard specifies operations using the trajectory data model in Figure 6. The
definitions of Geometry, Curve, and TemporalTrajectory in this figure correspond to
those of GM_Object, GM_Curve, and MF_TemporalTrajectory.

clas s クラス図

<<Type>>
MF _OneParamGeomet ry

<<Type>>
MF _Tempora lGeomet ry

<<Type>>
GM_Object

<<Type>>
GM_Curve

<<Type>>
MF _Tra ject ory

<<Type>>
MF _Tempora lTra ject ory

15
Copyright © 2017 Open Geospatial Consortium

Figure 6 — Trajectory data model in this specification

The operations specified in this standard are defined as methods of TemporalTrajectory
as shown in Figure 7. TemporalGeometricPrimitive, TemporalPeriod, TemporalInstant,
TemporalCoordinate, and TemporalDuration in this figure correspond to
TM_GeometricPrimitive, TM_Period, TM_Instant, TM_Coordinate, and TM_Duration
defined in ISO19108:2002 (Geographic information – Temporal schema)
[ISO19108:2002], respectively. DirectPosition corresponds to DirectPosition defined in
ISO19107:2003 (Geographic Information – Spatial schema) [ISO19107:2003].
LinearReferecePositionExpression corresponds to LR_PositionExpression defined in
ISO19133:2005 (Geographic information – Location-based services – Tracking and
navigation) [ISO19133:2005]. Distance, Velocity, and Acceleration correspond to
Distance, Velocity, and Acceleration defined in ISO19103:2015 (Geographic information
- Conceptual schema language) [ISO19103:2015], respectively.

clas s クラス図

<<Type>>
Geomet ry

<<Type>>
Curve

<<Type>>
Tempora lTra ject ory

16
Copyright © 2017 Open Geospatial Consortium

Figure 7 — TemporalTrajectory

7. Type A: Retrieval of feature attribute

The operations on retrieval of a feature attribute are based on operations of
TemporalTrajectory.

Req 1 Any implementation of the OGC Moving Features Access SHALL support
all requirements listed in Section 7.

http://www.opengis.net/spec/MovingFeatures/Access/1.0/req/typeA

17
Copyright © 2017 Open Geospatial Consortium

• pointAtTime – shall accept a TemporalCoordinate object in the domain of the
TemporalTrajectory object as input, and shall return the DirectPosition object of the
TemporalTrajectory object at that time. The DirectPosition object shall hold the
coordinates for a position within some CRS.

TemporalTrajectory::pointAtTime(t: TemporalCoordinate):
DirectPosition

• timeAtPoint – shall accept a DirectPosition object as input and shall return the set of
TemporalGeometricPrimitive objects at which the TemporalTrajectory object passes
through that DirectPosition object.

TemporalTrajectory::timeAtPoint(p: DirectPosition):
Set<TemporalGeometricPrimitive>

• velocityAtTime – shall accept a TemporalCoordinate object as input and shall return
a Velocity object at that time. The Velocity object shall represent the instantaneous
rate of change of position with a time interval and shall hold a unit of measure and a
vector.

TemporalTrajectory::velocityAtTime(t: TemporalCoordinate): Velocity

• accelerationAtTime – shall accept a TemporalCoodinate object as input and shall
return an Acceleration object at that time. The Acceleration object shall represent the
rate of change of velocity per unit of time and shall hold a unit of measure and a
vector.

TemporalTrajectory::accelerationAtTime(t: TemporalCoordinate):
Acceleration

• timeToDistance – shall return a graph of the time to distance function as a set of
curves in the Euclidean space consisting of coordinate pairs of time and distance.

TemporalTrajectory::timeToDistance(): Curve[1..*]

Example In Figure 8, the curve represents the time to distance function for an object that accelerates
from t0 to t1, moves at constant velocity from t1 until t2, and then decelerates to a stop at t3.

18
Copyright © 2017 Open Geospatial Consortium

Figure 8 — Example of time to distance curve

• timeAtDistance – shall return an array of TemporalGeometricPrimitive that lists in
ascending order the time or times a particular point (determined by the
Set<Distance> in the trajectory’s GM_GenericCurve::paramForPoint
(p:DirectPosition) : Set<Distance>, DirectPosition) is reached. The Distance object
shall hold a unit of measure and a value.

TemporalTrajectory::timeAtDistance(d: Distance):
TemporalGeometricPrimitive[0..*]

Example Figure 9 shows that timeAtDistance outputs a time instance t when a distance d is input in
the case that the time to distance curve is the same with Figure 8.

Figure 9 — Example of timeAtDistance

• cumulativeDistanceAtTime – shall accept a TemporalCoordinate object as input and
shall return the cumulative distance traveled (including all movements forward and

19
Copyright © 2017 Open Geospatial Consortium

retrograde as positive travel distance) from the beginning of the trajectory as a
Distance object at that time “t.”

TemporalTrajectory::cumulativeDistanceAtTime(t: TemporalCoordinate):
Distance

• timeAtCumulativeDistance – shall accept a Distance object as input and shall return
the time as a TemporalTrajectory object at which the trajectory’s total length
(including all movements forward and retrograde as positive travel distance) reaches
that cumulative travel distance.

TemporalTrajectory::timeAtCumulativeDistance(d: Distance):
TemporalGeometricPrimitive

• subTrajectory – shall accept two TemporalCoordinate objects in the domain of the
trajectory and shall return a TemporalTrajectory object that is a subset of the given
trajectory for the specified time interval.

TemporalTrajectory::subTrajectory(newStartTime: TemporalCoordinate,
newEndTime: TemporalCoordinate): TemporalTrajectory

• positionAtTime – shall accept a TemporalCoordinate object in the domain of the
trajectory and shall return the position of the moving feature on the trajectory at that
time as a LinearReferencePositionExpression object, expressed as a position in linear
reference system. The LinearReferencePositionExpression object describes position
given by a measure value, a curvilinear element being measured, and the method of
measurement.

TemporalTrajectory::positionAtTime(t: TemporalCoordinate):
LinearReferencePositionExpression

• snapToGrid — shall accept a Point object (origin) and an array object including
Distance objects whose elements are two cell sizes (x and y cell sizes) or three cell
sizes (x, y, and z cell sizes) for a grid as input and shall returns a TemporalTrajectory
snapped to the grid (see Figure 10). CRS of the grid is correspondence with CRS of
the input Point object. The grid is along axes of the CRS.

TemporalTrajectory::snapToGrid(p: Point, cellSize[]: Distance):
TemporalTrajectory

Example Figure 10 shows an example of a trajectory object snapped to a grid. In this case,
snapToGrid outputs the trajectory shown by the dotted arrow.

20
Copyright © 2017 Open Geospatial Consortium

Figure 10 — Example of a trajectory snapped to a grid

8. Type B: Operations between one trajectory object and one or more

geometry objects

This section defines operations between one trajectory object and one or more geometry
objects. The operations provide spatial relations (e.g., intersects) and spatial statistics
(e.g., nearestApproach) between a trajectory object and one or more geometry objects.

Req 2 Any implementation of the OGC Moving Features Access SHALL support
all requirements listed in Section 8.

http://www.opengis.net/spec/MovingFeatures/Access/1.0/req/typeB

• equals – shall accept a Point object and a TemporalPeriod object as input and shall
return TRUE if this TemporalTrajectory object is “spatially equal” to the Point object.
The parameter “timeInterval” shall restrict the search to a particular period of time.

TemporalTrajectory::equals(p: Point, timeInterval: TemporalPeriod):
Boolean

• disjoint – shall accept a Geometry object and a TemporalPeriod object as input and
shall return TRUE if this TemporalTrajectory object is “spatially disjoint” from the
Geometry object. The parameter “timeInterval” shall restrict the search to a
particular period of time.

21
Copyright © 2017 Open Geospatial Consortium

TemporalTrajectory::disjoint(geometry: Geometry, timeInterval:
TemporalPeriod): Boolean

• intersects – shall accept a Geometry object and a TemporalPeriod object as input and
shall return TRUE if this TemporalTrajectory object “spatially intersects” the
Geometry object. The parameter “timeInterval” shall restrict the search to a
particular period of time.

TemporalTrajectory::intersects(geometry: Geometry, timeInterval:
TemporalPeriod): Boolean

• distanceWithin— shall accept a Geometry object, a TemporalPeriod object, and a
Distance object as input and shall return TRUE if this TemporalTrajectory object and
the Geometry object are within the specified distance of one another. The parameter
“timeInterval” shall restrict the search to a particular period of time.

TemporalTrajectory::distanceWithin(geometry: Geometry, timeInterval:
TemporalPeriod, d: Distance): Boolean

• intersection — shall accept a Geometry object and a TemporalPeriod object as input
and shall return a TemporalTrajectory object that represents the intersection of this
TemporalTrajectory object to the Geometry object. The parameter “timeInterval”
shall restrict the search to a particular period of time.

TemporalTrajectory::intersection(geometry: Geometry, timeInterval:
TemporalPeriod): TemporalTrajectory

• difference — shall accept a Geometry object as input and shall return a
TemporalTrajectory object that represents the difference of this TemporalTrajectory
object from the Geometry object. The parameter “timeInterval” shall restrict the
search to a particular period of time. The output TemporalTrajectory holds point sets
different from the input Geometry object.

TemporalTrajectory::difference(geometry: Geometry, timeInterval:
TemporalPeriod): TemporalTrajectory

• nearestApproach — shall accept a Geometry object and a TemporalPeriod object as
input and shall return a set of TemporalGeometricPrimitive objects and a Distance
object of the nearest approach of this TemporalTrajectory object to the Geometry
object. The parameter “timeInterval” shall restrict the search to a particular period of
time. A Distance object output by this operation means a distance between closest
pairs of points from the TemporalTrajectory object projected on 2D or 3D space and
the Geometry object.

TemporalTrajectory::nearestApproach(geometry: Geometry,
timeInterval: TemporalPeriod): Distance,
TemporalGeometricPrimitive[1..*]

22
Copyright © 2017 Open Geospatial Consortium

Example Figure 11 shows that an example of nearestApproach. In this case, a distance output by
nearestApproach is the distance between closest pairs of points from the trajectory projected on x-y
plane and the geometry object.

• nearestApproachPoint — shall accept a Geometry object as input and shall return a
set of TemporalGeometricPrimitive objects and a DirectPosition object of the nearest
approach of this TemporalTrajectory object to the Geometry object. The parameter
“timeInterval” shall restrict the search to a particular period of time.

TemporalTrajectory::nearestApproachPoint(geometry: Geometry,
timeInterval: TemporalPeriod): DirectPosition,
TemporalGeometricPrimitive[1..*]

Example Figure 11 shows that an example of nearestApproachPoint. In this case, a position output
by nearestApproachPoint is position that is projected on x-y plane and is closest to a point of the
geometry object.

Figure 11 — Example of nearestApproach and nearestApproachPoint between a
trajectory and a geometry object

9. Type C: Operations between two trajectory objects

This section defines operations between two trajectory objects. The operations provide
spatio-temporal relations (e.g., intersects) and spatio-temporal statistics (e.g.,
nearestApproach) between two trajectory objects.

Req 3 Any implementation of the OGC Moving Features Access SHALL support
all requirements listed in Section 9.

http://www.opengis.net/spec/MovingFeatures/Access/1.0/req/typeC

23
Copyright © 2017 Open Geospatial Consortium

• equals – shall accept another TemporalTrajectory object and a TemporalPeriod
object as input and shall return TRUE if this TemporalTrajectory object is “spatially
equal” to the other TemporalTrajectory object. The parameter “timeInterval” shall
restrict the search to a particular period of time.

TemporalTrajectory::equals(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod): Boolean

• disjoint – shall accept another TemporalTrajectory object and a TemporalPeriod
object as input and shall return TRUE if this TemporalTrajectory object is “spatially
disjoint” from the other TemporalTrajectory object. The parameter “timeInterval”
shall restrict the search to a particular period of time.

TemporalTrajectory::disjoint(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod): Boolean

• intersects – shall accept another TemporalTrajectory object and a TemporalPeriod
object as input and shall return TRUE if this TemporalTrajectory object “spatially
intersects” the other TemporalTrajectory object. The parameter “timeInterval” shall
restrict the search to a particular period of time.

TemporalTrajectory::intersects(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod): Boolean

• distanceWithin— shall accept another TemporalTrajectory object, a TemporalPeriod
object, and a Distance object as input and shall return TRUE if this
TemporalTrajectory object and the other TemporalTrajectory object are within the
distance of one another. The parameter “timeInterval” shall restrict the search to a
particular period of time.

TemporalTrajectory::distanceWithin(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod, d: Distance):
Boolean

• durationWithin— shall accept another TemporalTrajectory object, a
TemporalPeriod object, and a TemporalDuration object as input and shall return
TRUE if a difference between a time at which this TemporalTrajectory object passes
through a intersection point between this TemporalTrajectory object and the other
TemporalTrajectory object and a time at which the other TemporalTrajectory object
passes through the intersection point is within the time length.

TemporalTrajectory::durationWithin(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod, timeLength:
TemporalDuration): Boolean

Example Figure 12 shows that a trajectory object and another trajectory object pass through (x,y) at
t1 and t2, respectively. If the absolute value of the difference between t1 and t2 is below a input time
length, durationWithin outputs TRUE.

24
Copyright © 2017 Open Geospatial Consortium

Figure 12 — Example of durationWithin

• intersection — shall accept another TemporalTrajectory object and a
TemporalPeriod object as input and shall return a set of DirectPosition objects that
represent the intersection of this TemporalTrajectory object and the other
TemporalTrajectory object. The parameter “timeInterval” shall restrict the search to a
particular period of time.

TemporalTrajectory::intersection(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod):
Set<DirectPosition>

• nearestApproach — shall accept another TemporalTrajectory object and a
TemporalPeriod object as input and shall return a set of
TemporalGeometricPrimitive objects and a Distance object of the nearest approach
of this TemporalTrajectory object to the other TemporalTrajectory object. The
parameter “timeInterval” shall restrict the search to a particular period of time. A
Distance object output by this operation is a distance between the closest pairs of
points from two TemporalTrajectory objects at the same time.

TemporalTrajectory::nearestApproach(anotherTemporalTrajectory:
TemporalTrajectory, timeInterval: TemporalPeriod): Distance,
TemporalGeometricPrimitive[1..*]

Example Figure 13 shows that a trajectory is nearest approach to another trajectory at t1. In this case,
the distance output by nearestApproach is that between points from these two trajectories at t1.

• nearestApproachPoint — shall accept another TemporalTrajectory object and shall
return a set of TemporalGeometricPrimitive objects and a directPosition object of the
nearest approach of this TemporalTrajectory object to the other TemporalTrajectory
object. The parameter “timeInterval” shall restrict the search to a particular period of
time.

TemporalTrajectory::nearestApproachPoint(anotherTemporalTrajectory:
TemporalTrajectory):directPosition, TemporalGeometricPrimitive[1..*]

25
Copyright © 2017 Open Geospatial Consortium

Example Figure 13 shows a nearest approach from a trajectory object to another trajectory object at
t1. In this case, a position output by nearestApproachPoint is that of the trajectory object at t1.

Figure 13 — Example of nearestApproach and nearestApproachPoint between two
trajectory objects

10. Exception Guidance

This section describes exception guidance for this standard. Operations of this standard
raise the following types of exceptions.

a) Exception caused by invalid operation

This exception type occurs when an operation cannot calculate the output. For
example, pointAtTime cannot return the output if a temporal position of the input
TemporalCoordinate object is not included in a time interval of the
TemporalTrajectory object. Another example is that nearestApproach of type C
cannot return the output if a time interval of the TemporalTrajectory object is not
included in that of another TemporalTrajectory object.

b) Exception caused by a wrong parameter

This exception type occurs when a given parameter has a wrong type or an error in a
part of the data format.

c) Exception caused by performance issue

This exception type occurs when a processing time of an operation is very long or
when an out-of-memory condition occurs. For example, the processing time of
nearestApproach is very long when the input time interval is very long.

26
Copyright © 2017 Open Geospatial Consortium

d) Exception caused by an operation not implemented yet

This exception type occurs when an operation is not implemented yet.

27
Copyright © 2017 Open Geospatial Consortium

Annex A Conformance Class Abstract Test Suite (Normative)

A.1 Introduction

This section describes conformance test for Moving Features Access.

A.2 Test 1: Type A — Retrieval of feature attribute

Test id http://www.opengis.net/spec/MovingFeatures/Access/1.0/conf/typeA

Requirements http://www.opengis.net/spec/MovingFeatures/Access/1.0/req/typeA

Test purpose Check if any implementation of the OGC Moving Features Access
supports all requirements as defined in Section 7.

Test method Send a query, check if the implementation returns appropriate result
as defined in this specification.

A.3 Test 2: Type B — Operations between one trajectory object and one or more
geometry objects

Test id http://www.opengis.net/spec/MovingFeatures/Access/1.0/conf/typeB

Requirements http://www.opengis.net/spec/MovingFeatures/Access/1.0/req/typeB

Test purpose Check if any implementation of the OGC Moving Features Access
supports all requirements as defined in Section 8.

Test method Send a query, check if the implementation returns appropriate result
as defined in this specification.

A.4 Test 3: Type C — Operations between two trajectory objects

Test id http://www.opengis.net/spec/MovingFeatures/Access/1.0/conf/typeC

Requirements http://www.opengis.net/spec/MovingFeatures/Access/1.0/req/typeC

Test purpose Check if any implementation of the OGC Moving Features Access
supports all requirements as defined in Section 9.

Test method Send a query, check if the implementation returns appropriate result
as defined in this specification.

28
Copyright © 2017 Open Geospatial Consortium

Annex B The correspondence of concepts of the Moving Features
Access with concepts of existing ISO standards (Informative)

B.1 Introduction

This informative annex identifies similarities and differences between Moving Features
Access and existing ISO standards.

B.2 Correspondence with ISO 19141:2008

Moving Features Access ISO 19141:2008 Comment

TemporalTrajectory MF_TemporalTrajectory -

B.3 Correspondence with ISO 19103:2015

Moving Features Access ISO 19103:2015 Comment

Distance Distance -

Velocity Velocity -

Acceleration Acceleration -

B.4 Correspondence with ISO 19107:2003

Moving Features Access ISO 19107:2003 Comment

Geometry GM_Object -

Curve GM_Curve -

29
Copyright © 2017 Open Geospatial Consortium

B.5 Correspondence with ISO 19108:2002

Moving Features Access ISO 19108:2002 Comment

TemporalGeometricPrimitive TM_GeometricPrimitive -

TemporalPeriod TM_Period -

TemporalInstant TM_Instant -

TemporalCoordinate TM_Coordinate -

TemporalDuration TM_Duration

B.6 Correspondence with ISO 19133:2005

Moving Features Access ISO 19133:2005 Comment

LinearReferencePositionExpression LR_PositionExpression -

30
Copyright © 2017 Open Geospatial Consortium

Annex C Implementation Examples (Informative)

C.1 Introduction

This section provides examples of the Moving Features Access operations defined in this
standard. RESTful style web services examples are used to describe the operation of
Moving Feature Access. Other styles, such as JAVA or C++ could be used to implement
the access operations. The examples of access operations refer to OGC 15-078r6 (OGC
SensorThings API Part 1: Sensing) [1], which provides an open data model and
application programming interface for accessing sensors on the Web by using RESTful
approaches and OASIS OData (Open Data Protocol) specification [2].

A client can make an HTTP request to retrieve moving features trajectory data through a
simple fixed URL. The operations for trajectory data of moving features are represented
by the following URL template format:

GET [service]/MovingFeatures/[version]/[collection]?[operation]{&f=[mime-type]}

The main HTTP methods are POST, GET, PUT, and DELETE corresponding to create,
read, update, and delete operations. The Moving Feature Access can be implemented
using the HTTP GET method to retrieve feature information and the results of operations
between TemporalTrajectory and Geometry/TemporalTrajectory.

・	 Content surrounded by [] are basic elements and will be replaced with a string literal
describing as:
- service: The URL of service entry point
- version: The version of OGC Moving Feature Encoding standard
- collection: A collection of Moving Features; a feature layer
- operation: Query strings by the use of $select (for Type A) and $filter (for Type

B and C) of OData query options with a pre-defined operation name of which is
shown in Figure 7

- mime-type: A media type such as XML(default), CSV, JSON, etc.
・	 Content surrounded by {} is optional.

An Access service returns a response in XML, CSV, or JSON with a status code
described by HTTP protocol such as 200 (OK), 400 (Bad Request), or 404 (Not Found).
The service returns 200 when the operation was successfully completed. When an
exception occurs during the operation, the service returns a status code corresponding to
the exception type described in Section 10 as follows:

31
Copyright © 2017 Open Geospatial Consortium

Table 1 — Exception codes

Exception Type HTTP Status Code
Exception caused by invalid operation 404
Exception caused by a wrong parameter 406
Exception caused by performance issue 500
Exception caused by an operation not
implemented yet

501

C.2 pointAtTime

The following HTTP GET example represents the retrieval of the direct position of the
trajectory whose identifier is 1234 at that time in the collection.

C.3 timeAtPoint

The following HTTP GET example describes a set of times at which each trajectory
passed through that direct position in the collection.

>> GET
http://www.opengis.net/spec/MovingFeatures/1.0/Vehicles(1234)?$
select=pointAtTime(2013-05-01T10:33:41Z) HTTP/1.1
<<
HTTP/1.1 200 OK
Content-Type: application/gml+xml
...
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<DirectPosition
xmlns="http://www.opengis.net/gml/3.2">115.86984331920205
40.83836699554286 </DirectPosition>

>> GET http://www.opengis.net/spec/MovingFeatures/1.0/Vehicles?
$select=timeAtPoint(POINT(103%201.0))&f=CSV HTTP/1.1
<<
HTTP/1.1 200 OK
Content-Type: text/csv
...
id, timeAtPoint
1234, 2013-05-01T10:33:41Z

32
Copyright © 2017 Open Geospatial Consortium

C.4 velocityAtTime

The following HTTP GET example returns an instance of velocity of each trajectory at
that time in the collection.

>> GET http://www.opengis.net/spec/MovingFeatures/1.0/Vehicles?
$select=velocity(2013-05-01T10:33:50Z)&f=JSON HTTP/1.1
<<
HTTP/1.1 200 OK
Content-Type: application/json
...
[{ “id”: 1234,
 “velocity”: {
 “value”: 80,“uom”: km/h
 }},
 ...
]

33
Copyright © 2017 Open Geospatial Consortium

C.5 subTrajectory

The following HTTP GET example describes a subset of the trajectory whose identifier is
1234 for the specified time interval.

>> GET
http://www.opengis.net/spec/MovingFeatures/1.0/Vehicles(1234)?
$select=subTrajectory(2008-02-05T13:33:00Z, 2008-02-
05T13:34:00Z)&f=GML HTTP/1.1
<<
HTTP/1.1 200 OK
Content-Type: application/gml+xml
...
<?xml version="1.0" encoding="UTF-8" standalone="yes"?>
<mf:MovingFeatures xmlns:mf="http://schemas.opengis.net/mf-
core/1.0"
 xmlns:gco="http://www.isotc211.org/2005/gco"
 xmlns:xlink="http://www.w3.org/1999/xlink"
 xmlns:gmd="http://www.isotc211.org/2005/gmd"
 xmlns:gts="http://www.isotc211.org/2005/gts"
 xmlns:gml="http://www.opengis.net/gml/3.2"
 xmlns:xs="http://www.w3.org/2001/XMLSchema">
 <mf:stBoundedBy unitOfTime="sec">
 <gml:EnvelopeWithTimePeriod>
 <gml:lowerCorner>116.35971 39.86818</gml:lowerCorner>
 <gml:upperCorner>116.3679 39.86895</gml:upperCorner>
 <gml:beginPosition>2008-02-
05T13:33:00Z</gml:beginPosition>
 <gml:endPosition>2008-02-05T13:34:00Z</gml:endPosition>
 </envelopeWithTimePeriod>
 </stBoundedBy>
 <mf:header></mf:header>
 <mf:foliation>
 <mf:LinearTrajectory gml:id="1234" start="0" end="17">
 <gml:posList>116.38602408293059 39.869248273875 116.3679,
39.86895</gml:posList>
 </mf:LinearTrajectory>
 <mf:LinearTrajectory gml:id="1234" start="17" end="37">
 <gml:posList>116.3679 39.86895 116.36307
39.86857</gml:posList>
 </mf:LinearTrajectory>
 <mf:LinearTrajectory gml:id="1234" start="37" end="47">
 <gml:posList>116.36307 39.86857 116.36195
39.86845</gml:posList>
 </mf:LinearTrajectory>
 ...
 </mf:foliation>
</mf:MovingFeatures>

 <!—continue -->

34
Copyright © 2017 Open Geospatial Consortium

C.6 intersects

The following HTTP GET example filters a set of trajectories that intersect with the
parameter geometry object for a particular period of time from the collection.

C.7 distanceWithin

The following HTTP GET example returns true or false whether trajectory whose
identifier is 1234 is located within 100km from the given position during the parameter
time period

>> GET http://www.opengis.net/spec/MovingFeatures/1.0/Vehicles?
$filter=intersects(POLYGON((30%2010%2C40%2040%2C20%2040%2C10%20
20%2C30%2010)),2013-05-01T10:33:50Z,2013-05-01T10:36:41Z)&f=CSV
HTTP/1.1
<<
HTTP/1.1 200 OK
Content-Type: text/csv
...
id, intersects
1234, true
2452, true
...

>> GET
http://www.opengis.net/spec/MovingFeatures/1.0/Vehicles(1234)?
$filter=distanceWithin(POINT(103%201.0),2013-05-
01T10:33:50Z,2013-05-01T10:36:41Z,100;km)&f=CSV HTTP/1.1
<<
HTTP/1.1 200 OK
Content-Type: text/csv
...
distanceWithin
true

35
Copyright © 2017 Open Geospatial Consortium

Annex D Revision history

Date Release Author Paragraph modified Description

2016/9/15 OGC 16-120 r2 Hideki Hayashi All Draft for seeking
public comment

2016/10/26 OGC 16-120 r3 Hideki Hayashi Many Minor edits for
TC electronic
vote

2017/02/16 OGC 16-120r3 Scott Simmons Many Final edits for
publishing

36
Copyright © 2017 Open Geospatial Consortium

Annex E Bibliography

[1] OGC: OGC 15-078r6, OGC SensorThings API Part 1: Sensing, 2016

[2] OASIS: OASIS OData Version 4.0 Part 1: Protocol Plus Errata 02, 2014

