
1
Copyright © 2018 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date: 2018-03-20

Approval Date: 2018-08-27

Publication Date: 2018-12-19

External identifier: http://www.opengis.net/doc/BP/CDB-model-guidance/1.1

Internal reference number of this OGC® document: 16-010r4

Version: 1.1

Category: OGC® Best Practice

Editor: Carl Reed

Volume 7: OGC CDB Data Model Guidance
Formerly Annex A Volume Part 2

Copyright notice

Copyright © 2018 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document defines an OGC Best Practices on a particular technology or approach
related to an OGC standard. This document is not an OGC Standard and may not be
referred to as an OGC Standard. It is subject to change without notice. However, this
document is an official position of the OGC membership on this particular technology
topic.

Document type: OGC® Best Practice
Document subtype:
Document stage: Approved
Document language: English

2
Copyright © 2018 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent,
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

3
Copyright © 2018 Open Geospatial Consortium

Contents	
1. Scope ... 7

2. Conformance ... 7

3. References ... 7

4. Terms and Definitions ... 8

5. Conventions .. 8

6. Data Model Guidance ... 8

6.1 Guideline: Creating a 3D Model for a Powerline Pylon 8

6.1.1 Pylon Model Orientation ... 9

6.1.2 OpenFlight Graph ... 10

6.1.3 Attach Point Orientation ... 11

6.2 Guideline: Generating Wires between Pylons of a Powerline 12

6.2.1 Powerline Network Attributes .. 12

6.2.2 Generation of HGT ... 13

6.2.3 Pylon Orientation .. 14

6.2.4 Number of Wires ... 14

6.2.5 How to Connect Wires to Attach Points 14

6.3 Guideline: How to Interpret the AHGT, HGT, BSR, BBH, and Z
Attributes 14

6.3.1 Typical Use-case ... 16

6.3.2 Light Points ... 16

6.3.3 Recommendation .. 16

6.3.4 When should AHGT be used? .. 16

6.4 Guideline: How to Model a Wind Turbine 17

6.5 Guideline: Handling of Model Interiors 18

6.5.1 Relationship between Model Shell and Model Interior 18

4
Copyright © 2018 Open Geospatial Consortium

6.5.2 Detecting Presence of a Model Interior .. 19

6.5.3 Access of a Model Interior .. 19

6.5.4 UHRB vs CDB Object Models ... 19

6.6 Guideline: Applying Constraints to Uniformly Gridded Terrain . 22

6.6.1 Constraint Points ... 23

6.6.2 Constraint Linear Features .. 24

6.6.3 Constraint Polygons .. 25

6.7 Guideline: Applying Constraints to Non-Uniform Gridded Terrain
(A.7) 27

6.7.1 Constraint Points ... 28

6.7.2 Constraint Linear Features .. 28

6.7.3 Constraint Polygons .. 30

6.8 Guideline: LOD Read Behavior of Subordinate Datasets (A.8) ... 32

6.9 Information: Tide Simulation Modeling Alternatives (Was A15) 35

6.10 CDB and FalconView (Was A.16) ... 36

6.10.1 FalconView Directory structure .. 37

6.10.2 FalconView Zones definition .. 37

6.10.3 FalconView Zone resolution ... 38

6.10.4 FalconView Zone extension based on resolution 39

6.10.5 FalconView Frame Position .. 41

6.10.6 FalconView File Naming Convention .. 42

6.11 Managing CDB Data Store Versions (Was A.18) 43

6.12 Guideline: Handling of GS and T2D Models (Was A.19) 44

6.12.1 GSModels ... 44

6.12.2 T2DModels ... 52

6.13 Guideline: Examples of Vector Dataset Usages (Was A.20) 62

5
Copyright © 2018 Open Geospatial Consortium

6.13.1 Linear Feature Radar Simulation Example 62

6.13.2 Road Following Example ... 64

6.13.3 Point Feature Radar Simulation Example 65

6.13.4 Polygon Feature Radar Simulation Example 68

6.14 Guideline: Vector Priority Tile-LOD Generation (Was A-21) 71

6.14.1 Creation of the Finest Tile-LOD ... 71

6.14.2 Network Lineal Tile-LOD Generation .. 71

6.14.3 Non-Networked Lineal Tile-LOD Generation 72

6.14.4 Areal Tile-LOD Generation .. 72

6
Copyright © 2018 Open Geospatial Consortium

i. Abstract
This CDB Volume provides Guidelines, Clarifications, Rationales, Primers, and
additional information for the definition and use of various models that can be stored in a
CDB compliant data store.

Please note that the term “lineal” has been replaced with the term “line” or “linear”
throughout this document

Please note that the term “areal” has been replaced with the term “polygon” throughout
this document.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, cdb, models, guidance, simulation

iii. Preface
This document contains material from Annex A in the original CDB 3.2 specification
submission to the OGC. These sections provide guidance for model builders to build and
maintain model content in a CDB data store.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to the Open Geospatial
Consortium (OGC):

The following organizations submitted this Document to the Open Geospatial
Consortium (OGC):

CAE Inc.
Carl Reed, OGC Individual Member
Envitia, Ltd
Glen Johnson, OGC Individual Member
KaDSci, LLC
Laval University
Open Site Plan
University of Calgary
UK Met Office

7
Copyright © 2018 Open Geospatial Consortium

The OGC CDB standard is based on and derived from an industry developed and
maintained specification, which has been approved and published as OGC Document 15-
003: OGC Common Data Base Volume 1 Main Body. An extensive listing of
contributors to the legacy industry-led CDB specification is at Chapter 11, pp 475-476 in
that OGC Best Practices Document
(https://portal.opengeospatial.org/files/?artifact_id=61935)

v. Submitters
All questions regarding this submission should be directed to the editor or the submitters:

Name Affiliation
Carl Reed Carl Reed & Associates
David Graham CAE Inc.

1. Scope

The CDB standard defines a standardized model and structure for a single, versionable,
simulation-rich, virtual representation of the earth. A CDB structured data store provides
for a synthetic environment repository that is plug-and-play interoperable between data
store authoring workstations. Moreover, a CDB structured data store can be used as a
common online (or runtime) repository from which various simulator client-devices can
simultaneously retrieve and modify, in real-time, relevant information to perform their
respective runtime simulation tasks. In this case, a CDB data store is plug-and-play
interoperable between CDB-compliant simulators. A CDB data store can be readily used
by existing simulation client-devices (legacy Image Generators, Radar simulator,
Computer Generated Forces, etc.) through a data publishing process that is performed on-
demand in real-time.

2. Conformance

This is an informative document. There are no normative clauses

3. References

For ease of editing and review, the standard has been separated into 12 Volumes and a
schema repository.

● Volume 0: OGC CDB Companion Primer for the CDB standard. (Best Practice)
● Volume 1: OGC CDB Core Standard: Model and Physical Data Store Structure.

The main body (core) of the CBD standard (Normative).

8
Copyright © 2018 Open Geospatial Consortium

• Volume 2: OGC CDB Core Model and Physical Structure Annexes (Best
Practice).

● Volume 3: OGC CDB Terms and Definitions (Normative).
● Volume 4: OGC CDB Use of Shapefiles for Vector Data Storage (Best Practice).
● Volume 5: OGC CDB Radar Cross Section (RCS) Models (Best Practice).
● Volume 6: OGC CDB Rules for Encoding Data using OpenFlight (Best Practice).
● Volume 7: OGC CDB Data Model Guidance (Best Practice).
● Volume 8: OGC CDB Spatial Reference System Guidance (Best Practice).
● Volume 9: OGC CDB Schema Package: provides the normative schemas for key

features types required in the synthetic modelling environment. Essentially, these
schemas are designed to enable semantic interoperability within the simulation
context. (Normative)

● Volume 10: OGC CDB Implementation Guidance (Best Practice).
● Volume 11: OGC CDB Core Standard Conceptual Model (Normative)
● Volume 12: OGC CDB Navaids Attribution and Navaids Attribution

Enumeration Values (Best Practice)

4. Terms and Definitions

This document uses the terms defined in Sub-clause 5.3 of [OGC 06-121r8], which is
based on the ISO/IEC Directives, Part 2, Rules for the structure and drafting of
International Standards. In particular, the word “shall” (not “must”) is the verb form used
to indicate a requirement to be strictly followed to conform to this standard.

For the purposes of this document, the following additional terms and definitions apply.

Volume 3: OGC CDB Terms and Definitions (normative).

5. Conventions

This section provides details and examples for any conventions used in the document.
Examples of conventions are symbols, abbreviations, use of XML schema, or special
notes regarding how to read the document.

6. Data Model Guidance

6.1 Guideline: Creating a 3D Model for a Powerline Pylon
Formerly Annex A.1 Volume 2 of the CDB Best Practice

9
Copyright © 2018 Open Geospatial Consortium

The goal of this guidance is to model a typical high voltage electrical pylon resembling
the one in the following figure. This guideline is based on version 3.1 of the CDB Best
Practice, but is applicable to version 3.0 as well1.

Figure 6-1: Typical Electrical Pylon

6.1.1 Pylon Model Orientation
The front (and back) of a powerline pylon is aligned with the general direction of the
attached wires as illustrated below.

1 See the OGC CDB Best Practice. This document is version 3.x of the CDB specification as submitted to
the OGC

10
Copyright © 2018 Open Geospatial Consortium

Figure 6-2: Pylon Orientation

The above snapshot is similar to the one found in Figure 6–10 of CDB Best Practice -
Volume 6: OGC CDB Rules for Encoding Data using OpenFlight.

6.1.2 OpenFlight Graph
The OpenFlight graph of the above pylon exposes the 3 cross-arms, each with 2
insulators where wires are attached. Here are the names of the components that are used
to model this power pylon:

• Pylon (global zone)
• Arm (horizontal cross-arm at the top of the structure)
• Insulator (ceramic insulator string attached at the end of each arm)

These 3 names are used to create CDB Zones as explained in section 6.5 of the CDB Best
Practice: Volume 6 OGC CDB Rules for Encoding Data using OpenFlight. Here is the
first level of the resulting graph.

The rounded rectangle named Object is an OpenFlight object node containing the
geometry of the concrete base and lattice steel structure of the pylon, but excluding the
geometry of the cross-arms. Arm[1] is the lowest cross-arm; Arm[2] is the middle one;
Arm[3] is the top one. Each arm is then made of a steel structure and 2 insulators.

Pylon

Object Arm[1] Arm[2] Arm[3]

11
Copyright © 2018 Open Geospatial Consortium

Again, Object represents the steel structure of the cross-arm without the insulators.
When looking at one of the cross-arm of the power pylon from the back, Insulator[1] is to
the left while Insulator[2] is to the right. Finally, each insulator has an attach point to
indicate where to connect an eventual wire.

The node Object contains the geometry of the insulator.
As explained in section 6.8 of the CDB Best Practice Volume 6: OGC CDB Rules for
Encoding Data using OpenFlight, the resulting list of paths is as follow:

• \Pylon
• \Pylon\Arm[1]
• \Pylon\Arm[1]\Insulator[1]
• \Pylon\Arm[1]\Insulator[1]\Attach_Point
• \Pylon\Arm[1]\Insulator[2]
• \Pylon\Arm[1]\Insulator[2]\Attach_Point
• \Pylon\Arm[2]
• \Pylon\Arm[2]\Insulator[1]
• \Pylon\Arm[2]\Insulator[1]\Attach_Point
• \Pylon\Arm[2]\Insulator[2]
• \Pylon\Arm[2]\Insulator[2]\Attach_Point
• \Pylon\Arm[3]
• \Pylon\Arm[3]\Insulator[1]
• \Pylon\Arm[3]\Insulator[1]\Attach_Point
• \Pylon\Arm[3]\Insulator[2]
• \Pylon\Arm[3]\Insulator[2]\Attach_Point

Note the presence of a total of 6 attach points (1 attach point per insulator × 2 insulators
per cross-arm × 3 cross-arms per pylon = 6 attach points per pylon). Even though all
attach points have the same name, there is a unique path to reach each one. For this
reason, there is no ambiguity identifying and locating each point.

6.1.3 Attach Point Orientation
When creating the attach point of the insulator, pay attention to its orientation. Since the
cable attaches underneath the insulator, the Z-axis of the local coordinate system (LCS)
must be pointing down. To achieve a proper positioning of the attach point, the modeler
usually inserts two transformations in the node, one translation and one rotation. The
translation positions the point underneath the insulator while the rotation changes the
orientation of the Z-axis. Make sure to leave the Y-axis in the direction of the wire as in
the figure below.

Arm[n]

Object Insulator[1] Insulator[2]

Insulator[n]

Object Attach_Point

12
Copyright © 2018 Open Geospatial Consortium

Figure 6-3: Attach Point Orientation

In this figure, the position and orientation of the attach point is identified by the blue-red-
green axis system beneath the insulator. The Y-axis is in red and points in the same
direction as the model’s Y-axis, which is toward the front of the model. The Z-axis is in
green and points down indicating that wires attach under the insulator.

6.2 Guideline: Generating Wires between Pylons of a Powerline
Formerly Annex A.2 in the CDB Best Practice, Volume 2.

This guideline is intended for both modelers and developers responsible for the creation
of:

• CDB content such as 3D models representing pylons
• Tools used to generate the Powerline Network datasets
• Client-devices that use the Powerline Network datasets to generate pylons and

wires along the transmission line.

6.2.1 Powerline Network Attributes
The table below is the collection of class and instance-level attributes from tables 5-46
and 5-47 of Volume 1: OGC CDB standard2.

2 Need correct cross reference.

13
Copyright © 2018 Open Geospatial Consortium

Table 6-1: Powerline Attributes

Required
Attributes

Optional
Attributes

CMIX AHGT

CNAM AO1

DIR BBH

EJID BBL

FACC BBW

FSC BSR

JID HGT

LENL MODL

RTAI MODT

SJID SCALn

WGP

The occurrence of some of the optional attributes depends on the occurrence of other
optional attributes. In particular, when MODL is present, other attributes become
required while others remain optional. The table below provides the relation between
MODL and other attributes.

Table 6-2: MODL-related Attributes

Required Optional

BSR AO1

HGT BBH, BBL, BBW

MODT SCALn

As a result of the above tables, a CDB-compliant Powerline Network dataset requires 11
mandatory attributes (listed in the first column of Table 6-1). Optionally, when a 3D
model representing a pylon is provided, 4 additional attributes are required (MODL
obviously, plus BSR, HGT, and MODT) and 5 others remain optional (AO1, BBH, BBL,
BBW, and SCALn).

6.2.2 Generation of HGT
The HGT attribute represents a special case because table 5-47 suggests that the attribute
is optional while, in fact, it should always be present. If you carefully read its description
in paragraph 5.3.1.2.3.17, you realize that HGT is required in both the line and figure
point features of the Powerline Network.

14
Copyright © 2018 Open Geospatial Consortium

For line features, HGT represents the average height above ground of the powerline when
no MODL is specified, as suggested by the discussion about HGT in section 5.3.1.17 of
the CDB Standard Volume 1: OGC CDB Core Standard: Model and Physical Data Store
Structure In the figure point features, HGT represents the height above ground of the
pylon, whether or not a MODL is provided. In either file, when MODL is supplied, HGT
represents the height of the 3D model above the ground.
You should read guideline (6.3 – old Annex 6.3) for a complete discussion about HGT

6.2.3 Pylon Orientation
If the orientation of the pylon is specified by AO1, then use the value as-is. If the
orientation is not specified, the client device must compute its value using the orientation
of the segments of the line that are adjacent to the pylon. In the case of the first and last
segments, the orientation of the segment is also the orientation of the pylon. For the other
segments, the orientation of the pylon is the average of the orientation of the two adjacent
segments.

6.2.4 Number of Wires
When no MODL is provided at all – meaning no MODL for the line and none for the
figure points – and because there is no attribute specifying the number of wires along the
transmission line, the client device must assume a generic powerline with two wires
separated by a width of WGP meters connecting generic posts (simple pylons) of HGT
meters high.
When a common MODL is specified for the whole line and no figure points are provided,
it is possible to determine the number of wires by counting the number of attach points in
the 3D model. Refer to guideline 6.1.2 (old 6.1.2) for details on how to detect attach
points.
If specific MODLs are defined through figure points, the number of attach points in each
3D model of the collection of all MODLs referenced by the powerline network must be
identical. For instance, if the line refers to a generic pylon supporting 4 wires, then all
specific pylons referenced as figure points must also support 4 wires. Furthermore, the
general configuration of all pylons must be identical. If the general pylon supports 6
wires configured as a matrix of 2 wires horizontally by 3 wires vertically, then all specific
pylons must also share the same configuration.

6.2.5 How to Connect Wires to Attach Points
If the client device has a single generic pylon along the line, then there is no problem
connecting wires and attach points. That is when multiple pylons are used along the
same line that problems arise. The client has to match attach points from one type of
pylon to attach points on another pylon that may be of a different type. The algorithm to
determine how to connect pylons of different types is left to the client device. A future
version of CDB Standard will provide a robust and deterministic approach on how to
connect the wires.

6.3 Guideline: How to Interpret the AHGT, HGT, BSR, BBH, and Z Attributes
Formerly Annex A.3 in the OGC CDB Best Practice, Volume 2.

15
Copyright © 2018 Open Geospatial Consortium

The goal of this guideline is to promote a correct use of five CDB attributes: AHGT,
HGT, BSR, BBH, and Z. The article is aimed to both developers and users of content
creation tools as well as developers of client applications.
A picture being worth a thousand words, the following diagram should help understand
the relations between the AHGT, HGT, BSR, BBH, and Z attributes.

Here is a reminder of what these attributes are. The complete definitions can be found in
Section 5.3.1.3, CDB Attributes in the CDB Standard Volume 1: OGC CDB Core
Standard: Model and Physical Data Store Structure.

• AHGT (Absolute Height) is a flag to interpret correctly the value of
the Z coordinate of a feature. When false, the value of Z is relative to
the ground (Zr); when true, Z is the absolute altitude (Za).

• AHGT is not related with HGT even though their names are similar.
• HGT (Height Above Surface Level) is the distance from the top of the

model to the ground.
• BBH (Bounding Box Height) is the distance from the top of the model

to its XY plane.
• BSR (Bounding Sphere Radius) encompasses the portion of the model

that is above its XY plane.
• Z is the altitude of a feature, either absolute or relative to the ground.

In the diagram above, a model (MODL) is positioned above the ground. This is indicated
by the fact that the model’s XY plane does not lie directly on the ground. The distance
above the ground is represented by Zr. The diagram clearly shows the relation between
HGT, BBH, and Zr.

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐵𝐵𝐵𝐵𝐻𝐻 + 𝑍𝑍𝑍𝑍
When the value of Zr is not readily available from the instance of the feature itself
(because AHGT is true), it can be computed using the ground height (Gh).

𝑍𝑍𝑍𝑍 = 𝑍𝑍𝑍𝑍 − 𝐻𝐻ℎ
The BBH attribute is optional and defaults to twice the value of BSR, which is mandatory
for a MODL model.

𝑑𝑑𝑑𝑑𝑑𝑑𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑	𝐵𝐵𝐵𝐵𝐻𝐻 = 2 × 𝐵𝐵𝐵𝐵𝐵𝐵

𝑑𝑑𝑑𝑑𝑑𝑑𝑍𝑍𝑑𝑑𝑑𝑑𝑑𝑑	𝐵𝐵𝐵𝐵𝐻𝐻 ≥ 𝑍𝑍𝑑𝑑𝑍𝑍𝑑𝑑	𝐵𝐵𝐵𝐵𝐻𝐻

XY Plane
Ground

BS
R

 Zr Za

 BBH HGT

16
Copyright © 2018 Open Geospatial Consortium

6.3.1 Typical Use-case
Typically, a model is positioned relative to the ground without any offset. As a result,
AHGT is false, and Zr is set to zero. Hence…

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐵𝐵𝐵𝐵𝐻𝐻

6.3.2 Light Points
In the case of airport and environmental light points, no model of a light fixture is
provided (the MODL attribute is not allowed). Hence…

𝐵𝐵𝐵𝐵𝐵𝐵 = 0	 → 𝐵𝐵𝐵𝐵𝐻𝐻 = 0
Currently, the light point datasets do not allow the HGT attribute, the client application
may have to compute its value using the equation given previously…

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝐵𝐵𝐵𝐵𝐻𝐻 + 𝑍𝑍𝑍𝑍
where BBH is null.

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑍𝑍𝑍𝑍
And if the light point is positioned at an absolute height (AHGT is true), then…

𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑍𝑍𝑍𝑍 − 𝐻𝐻ℎ

6.3.3 Recommendation
Refrain from using AHGT. There are several advantages to leave this flag to false.
First, it facilitates the creation of CDB datasets that are independent of each other. When
the Z coordinate (altitude) of a feature is relative to the ground, the elevation dataset can
be updated without the need to re-compute and update all features that have an absolute
altitude.
Second, when a feature has an absolute altitude, it is possible that it will end up being
displayed below the ground by a given client. How is this possible? Isn’t it an error in
the data store itself? No, this is not an error. It is perfectly possible to create content that
is valid and – still – produce an incorrect result at the client level. Consider a feature that
is positioned with an absolute height in a valley between two mountains of a high
resolution terrain profile. At coarse LOD of terrain elevation, the valley and the
mountains may (and will) be flattened producing a terrain skin that may no longer pass
underneath the feature. Now imagine a client that uses that coarse LOD of elevation to
create a terrain skin and then draw the feature at its absolute altitude, which happen to be
underneath the terrain skin. The feature will not be visible or will be partially occluded
by the terrain.
These reasons explain why the use of the AHGT flag should be avoided whenever
possible.

6.3.4 When should AHGT be used?
Limit the use of AHGT to data whose source is inherently absolute. Such source data
include geodetic marks or survey marks that provide a known position in terms of

17
Copyright © 2018 Open Geospatial Consortium

latitude, longitude, and altitude. Good examples of such markers are boundary markers
between countries.h

6.4 Guideline: How to Model a Wind Turbine
Formerly Annex A.4 in the OGC CDB Best Practice, Volume 2.

This text proposes a way to create a 3D model representing an
articulated wind turbine. The articulations of interest are the
yaw control to orient the turbine in the direction of the wind,
the roll control to allow rotation of the rotor, and, optionally,
the pitch control to change the orientation of the blades, if
needed.

Beside is a typical Horizontal Axis Wind
Turbine. The components of interest are
the following:

• Turbine
• Rotor
• Blade

Looking at appendix F – CDB Model
Components – we note that Turbine is
not listed and, consequently, will be
proposed for addition to future version of
the CDB standard.

The CDB metadata folder provides the proper
code for a Wind Turbine, AD010-0053. The code
indicates the presence of a man-made point
feature.

A = Culture
D = Power Generator
010 = Power Plant
005 = Wind

The hierarchy graph of the OpenFlight model could look like the one on the right. If
individual control of the pitch of each blade is required, the Blades object (the lower right
node) could be replaced with three (3) sub-trees each containing a Blade zone, a DOF
node, and an object node.
With the proposed layout, a client device will detect the presence of a wind turbine
through its feature attribute code (aka feature code), and recognize and control two
articulations, the Turbine Yaw angle, and Rotor Roll angle.
A last note: to comply with the prescribed orientation of the CDB coordinate system as
defined in section 6.3 Volume 6: OGC CDB Rules for Encoding Data using OpenFlight,
the rotor must represent the front of the wind turbine (and not its right side).

3 As of CDB Specification 3.2, the CDB FDD is no longer provided in the documents to avoid the risk of
miscorrelation between the appendix and the metadata. The FDD is now exclusively found in the Metadata
folder.

Wind Turbine
(Global Zone)

Mast
(Object)

Turbine
(Zone)

Yaw Control
(DOF)

Nacelle
(Object)

Rotor
(Zone)

Roll Control
(DOF)

Hub
(Object)

Blades
(Object)

18
Copyright © 2018 Open Geospatial Consortium

Reference: http://en.wikipedia.org/wiki/Wind_turbine

6.5 Guideline: Handling of Model Interiors
Formerly Annex A.5 in the OGC CDB Best Practice, Volume 2.

CDB introduces the concept of the interior of a 3D model. The concept is developed in
section 6.18, Model Interior, of the CDB Standard Volume 6: OGC CDB Rules for
Encoding Data using OpenFlight. The following text serves as a complement to the
standard to understand how the concept has been developed and how model interior is
intended to be used.

6.5.1 Relationship between Model Shell and Model Interior
The ModelInteriorGeometry dataset is a subordinate dataset of the ‘regular’
ModelGeometry dataset. It depends directly on it. This is best illustrated by an example.

LOD ModelGeometry

(Shell)
ModelInteriorGeometry

(Interior)
… - -
0 - -
1 - -
2 Coarsest Shell -
3 - -
4 - -
5 - -
6 Medium Shell Medium Interior
7 - -
8 Fine Shell Fine Interior
9 - -
10 Finest Shell Finest Interior
11 - -
12 - -
13 - -
14 - -
15 - -
… - -

In the above table, the Shell column represents what is called the ‘regular’
ModelGeometry dataset. In this example, the model appears at LOD 2, a better version
exists at LOD 6, an even better at LOD 8, and finally, the most detailed shell is at LOD
10. The Interior column shows 3 different LODs of interiors. There cannot be more
Interior LODs than Shell LODs. Also, once an interior is provided (here at LOD 6), it
must be provided for all subsequent (finer) LODs of the shell (LOD 8 and 10). Which
means… interior at LOD 8 and 10 must exist.

19
Copyright © 2018 Open Geospatial Consortium

6.5.2 Detecting Presence of a Model Interior
It is expected that a client will first request the shell of the model, then discover that the
model has an interior because of the presence of a CDB Zone whose name is Interior (see
6.18.2 Volume 6: OGC CDB Rules for Encoding Data using OpenFlight, Pseudo-
Interior), and then decide if the pseudo interior is sufficient for the application or if the
real interior is necessary.

6.5.3 Access of a Model Interior
Client applications that are interested in 3D models will typically perform the following
sequence of actions:

1. Load the GS Features of a tile
2. Load the GS and GT Models referenced by the GS Features
3. For each model, traverse its graph and detect the presence of an

optional Interior (Zone name = Interior)
4. Decide to load the corresponding Interior (or not)

Interior datasets exists for both geospecific and geotypical models; hence, all features can
be represented by a 3D model and all 3D models can have a separately modeled interior.
Note the symmetry between the file names of shell and interior datasets. For geospecific
models encoded as OpenFlight, the names of geometry files are…

• GeoCell_D300_S001_T001_Lxx_Ux_Rx_FeatureCode_FSC_MODL.flt
• GeoCell_D305_S001_T001_Lxx_Ux_Rx_FeatureCode_FSC_MODL.flt

For geotypical models encoded as OpenFlight, the file names become…
• D510_S001_T001_Lxx_FeatureCode_FSC_MODL.flt
• D515_S001_T001_Lxx_FeatureCode_FSC_MODL.flt

Note that in both cases, the only difference between the name of the shell and the name of
the corresponding interior is the dataset code; and in both cases, a value of 5 is added to
the ‘regular’ ModelGeometry dataset code.

6.5.4 UHRB vs CDB Object Models
To help understand how CDB Model Interior maps to UHRB concepts, three (3)
diagrams are provided below. The first two diagrams illustrate the UHRB Object Model4
while the third diagram presents the corresponding CDB Object Model.
The first diagram is the UHRB Class Diagram presented in Figure 6-4 below. The class
diagram presents twelve classes of which eight are concrete classes that can be used to
represent tangible objects. The UHRB_EDM_COMPLEX_FEATURE class implements
an extension mechanism that is not required in the context of the CDB Specification. The
remaining seven UHRB classes will be mapped to CDB zones.

4 The two UHRB diagrams presented here come from the document entitled UHRB_2_Object_Model.pdf
available on the OneSAF web site: www.onesaf.net.

20
Copyright © 2018 Open Geospatial Consortium

Figure 6-4: UHRB Class Diagram

The second diagram is the UHRB Association Diagram of Figure 6-5; it shows all
permissible associations between the UHRB classes.

21
Copyright © 2018 Open Geospatial Consortium

Figure 6-5: UHRB Association Diagram

The third diagram, in Figure 6-6 below, presents the Object Model proposed by CDB
Model Interior objects. The UML diagram is both the class and association diagram of
CDB zones listed in table 6-27 of section 6.18.5 of CDB 3.1.

22
Copyright © 2018 Open Geospatial Consortium

Figure 6-6: CDB Model Interior Object Model

6.6 Guideline: Applying Constraints to Uniformly Gridded Terrain
Formerly Annex A.6 in the OGC CDB Best Practice, Volume 2.

The following sub-sections describe the handling of point, linear and polygon (polygon)
constraint features into a Uniformly Gridded Terrain Elevation dataset (e.g. terrain x,y
offset datasets are not available)

Interior
-Ground_Floor

Floor
-Label

1..*

Room
-Label
-Apertures
-Partitions

1..*

Partition
-Label
-Room
-Surface

Fixture
-Label
-Moveable

0..*

*

Aperture
-Label
-Is_Open
-Is_Fixed
-Damage_Level
-Rooms
-Surfaces

*

*

Surface

**

-List of Aperture Surfaces

*

-List of Partition Surfaces

*

-List of Room Partitions

*

-List of Room Apertures

*

Classes holding
real geometry

Classes holding
only footprints

-C
on

ne
ct

ed
 R

oo
m

s

2

-Adjacent Rooms
2

23
Copyright © 2018 Open Geospatial Consortium

Note that the rendering outcome into the Elevation dataset may vary depending on the
rendering order of overlapping points, lines or polygons (polygons). In order to achieve
deterministic outcome by all types of client-devices, client-devices are required to sort
features by their layer priority number LPN before using them to constrain the terrain
elevation dataset.

The rendering of a point, a linear or polygon (polygon) features into the Uniformly
Sampled Terrain Elevation dataset is performed into the same LOD as the LOD in which
the vector feature appeared.

6.6.1 Constraint Points

This section describes the required client-device behavior for PointZ and MultiPointZ
features used as terrain elevation constraint points (AHGT is true) into a uniformly
sampled terrain elevation dataset.

The application of a constraint point P is very much like drawing an anti-aliased rectangle
centered on P into the uniform terrain elevation grid. The rectangle shape is defined by
feature attributes BBL, BBH and AO1. Consider a terrain grid element A in the
immediate vicinity of a constraint point P. After applying the constraint P to terrain grid
element A, the new elevation 𝐸𝐸;	is:

𝐸𝐸; 	= 	𝐸𝐸< ∗ 𝐴𝐴𝐴𝐴𝐴𝐴<; +	𝐸𝐸; ∗ 	𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑<;	

where…

𝐸𝐸; is elevation of grid element A

𝐸𝐸< is elevation of constraint point P

𝐴𝐴𝐴𝐴𝐴𝐴<; is the percentage overlap of constraint point P onto grid
element A

𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑<; = (1	 −	𝐴𝐴𝐴𝐴𝐴𝐴<;)

24
Copyright © 2018 Open Geospatial Consortium

Figure 6-7: Application of Constraint Point - Uniformly-Sampled Terrain

6.6.2 Constraint Linear Features

This section describes the required client-device behavior for PolyLineZ features used as
terrain elevation constraint linear feature (AHGT is true) into a uniformly sampled terrain
elevation dataset.

First, the PolyLineZ feature is broken into a series of constraint lines. The application of
each constraint line L is very much like drawing an anti-aliased line centered on L into
the uniform terrain elevation grid. The width of the line is defined by feature attribute
WGP. Consider a terrain grid element A in the immediate vicinity of a constraint line L,
defined by vertices V1 and V2. After applying the constraint line L to terrain grid
element A, the new elevation 𝐸𝐸;	is:

𝐸𝐸; 	= 	𝐸𝐸E; ∗ 𝐴𝐴𝐴𝐴𝐴𝐴E; +	𝐸𝐸; ∗ 	𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑E;	

where…

𝐸𝐸; is elevation of grid element A

𝐸𝐸E; is interpolated elevation of constraint line L at grid element A

 A B

C D

Ain

A

BB

BB
P

25
Copyright © 2018 Open Geospatial Consortium

𝐴𝐴𝐴𝐴𝐴𝐴E; is the percentage overlap of constraint line L onto grid
element A

𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑E; = (1	 −	𝐴𝐴𝐴𝐴𝐴𝐴E;)

Figure 6-8: Application of Constraint Line - Uniformly-Sampled Terrain

6.6.3 Constraint Polygons

This section describes the required client-device behavior of PolygonZ and MultiPatch
features used as terrain elevation constraint points (AHGT is true) into a uniformly
sampled terrain elevation dataset.

Each vector PolygonZ feature consists of a
number of rings (or parts). Each ring is a closed
(the first vertex is same as the last vertex), non-
self-intersecting loop. A PolygonZ feature may
contain multiple outer rings. A sequence of rings
can describe a convex or concave feature outline.
In the CDB standard, rings can only be made up
of triangles.

V

 A

V

Ai

W

26
Copyright © 2018 Open Geospatial Consortium

Each vector MultiPatch feature consists of a number of rings (or parts). Each ring is a
closed (the first vertex is same as the last vertex), non-self-intersecting loop. A sequence
of rings can describe a convex or concave feature outline. While the vector MultiPatch
feature permits multiple inner rings (aka parts), this capability is dis-allowed in CDB.
Furthermore, rings can only be made up of triangles.

The rendering of the vector feature is handled as a series of constraint triangles applied in
the order in which they appear within the vector PolygonZ record. The application of
each constraint triangle T is very much like drawing an anti-aliased triangle into the
uniform terrain elevation grid. Consider a terrain grid element A in the immediate
vicinity of a constraint triangle T, defined by vertices V1, V2 and V3. After applying the
constraint triangle T to terrain grid element A, the new elevation 𝐸𝐸;	is:

𝐸𝐸; 	= 	𝐸𝐸F; ∗ 𝐴𝐴𝐴𝐴𝐴𝐴F; +	𝐸𝐸; ∗ 	𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑F;	

where…

𝐸𝐸; is elevation of grid element A

𝐸𝐸F; is interpolated elevation of constraint triangle T at grid element
A

𝐴𝐴𝐴𝐴𝐴𝐴F; is the percentage overlap of constraint line T onto grid
element A

𝐴𝐴𝐴𝐴𝑑𝑑𝑑𝑑<; = (1	 −	𝐴𝐴𝐴𝐴𝐴𝐴F;)

27
Copyright © 2018 Open Geospatial Consortium

Figure A-9: Constraint Polygons

6.7 Guideline: Applying Constraints to Non-Uniform Gridded Terrain (A.7)

Formerly Annex A.7 in the OGC CDB Best Practice, Volume 2.

The following sub-sections describe the rendering of point, line and polygon (polygons)
into a Non-Uniformly Gridded Terrain Elevation dataset described in addendum “CDB
Standard Addendum – Non-Uniform Sampled Terrain Elevation”

Note that the rendering outcome into the Elevation dataset may vary depending on the
rendering order of overlapping points, lines or polygons. The Layer Priority Number
(LPN) attribute is used to achieve deterministic outcome by all types of client-devices.
When ECP is supplied, client-devices are required to sort overlapping constraint points,
lines and polygons in low-to-high order and then render them in that order. Value of
LPN can range from 0-32767.

The rendering of a point, a line or polygon features into the Non-uniformly Sampled
Terrain Elevation dataset is performed into the same LOD as the LOD in which the
vector feature appeared.

V

 A

V

Ai

V

28
Copyright © 2018 Open Geospatial Consortium

6.7.1 Constraint Points

This section describes the required client-device behavior for PointZ and MultiPointZ
features used as terrain elevation constraint points (AHGT is true) into a non-uniformly
sampled terrain elevation dataset.

The application of a constraint point P is applied as follows.
1. The x,y address of the affected terrain grid element is computed by

truncating the lat-long coordinates of point P; note that the truncation
operation varies in accordance to LOD of the terrain; however, it always
yields grid element addresses in the range of 0-1023.

2. The x,y offset of the affected terrain grid element is computed by
performing a MOD of the lat-long coordinates of point P in accordance to
its LOD.

Figure 6-9: Application of Constraint Point – Non-uniform Grid

6.7.2 Constraint Linear Features

This section describes the required client-device behavior for PolyLineZ features used as
terrain elevation constraint line (AHGT is true) into a non-uniformly sampled terrain
elevation dataset.

Vertices of Constrain

P

29
Copyright © 2018 Open Geospatial Consortium

First, the PolyLineZ feature consisting of n vertices is broken-down into (n-1) line
segments defined by successive pairs of vertices.

The application of a constraint line segment L is
applied as follows.

1. The x,y offsets of the grid elements of each
vertex are computed. (see application of
constraint points into non-uniformly sampled
terrain (case 1).

2. The offsets of all of the other grid elements
that are intersected by the line segment are
handled in accordance to the illustration
shown here. (case 2 to Case 5

30
Copyright © 2018 Open Geospatial Consortium

Figure 6-10: Application of Constraint Line – Non-uniform Grid

6.7.3 Constraint Polygons

This section describes the required client-device behavior of PolygonZ and MultiPatch
features used as terrain elevation constraint points (AHGT is true) into a non-uniformly
sampled terrain elevation dataset.

Each vector PolygonZ feature consists of a number of rings (or parts). Each ring is a
closed (the first vertex is same as the last vertex), non-self-intersecting loop. A PolygonZ
feature may contain multiple outer rings. A sequence of rings can describe a convex or
concave feature outline. In the CDB standard, rings can only be made up of triangles.

Each vector MultiPatch feature consists of a number
of rings (or parts). Each ring is a closed (the first
vertex is same as the last vertex), non-self-
intersecting loop. A sequence of rings can describe a
convex or concave feature outline. While the vector
MultiPatch feature permits multiple inner rings (aka

Vertices of

Constrain Line
 Constrain Line

V

V

V

31
Copyright © 2018 Open Geospatial Consortium

parts), this capability is dis-allowed in CDB. Furthermore, rings can only be made up of
triangles.

The application of a constraint triangle T is applied as follows.
1. The x,y offsets of the grid elements of each

vertex are computed. (see application of
constraint points into non-uniformly
sampled terrain (case 1).

2. The x,y offsets of all the other grid elements

that are intersected by the line segments are
handled in accordance to the illustration
shown here. (case 2 to Case 5)

3. The x,y offsets of all the other grid elements
elevation are set to 0 and the elevation at
that lat-long is interpolated using the
elevation at the triangle’s vertices.

32
Copyright © 2018 Open Geospatial Consortium

Figure 6-11: Application of Constraint Polygon – Non-uniform Grid

6.8 Guideline: LOD Read Behavior of Subordinate Datasets (A.8)
Formerly Annex A.8 in the OGC CDB Best Practice, Volume 2.
In the CDB Standard, LOD read behavior of subordinated datasets was mentioned only
briefly in…

• Section 5.2.1.2.3 Subordinate Terrain Elevation Components (Volume 1: OGC
CDB Core Standard: Model and Physical Database Structure) which stated “The
CDB standard does not permit the use of subordinate Terrain Elevation
component when the primary Terrain Elevation component is not generated.”

• Section 5.2.1.3.4 Default Read Value: which stated “Simulator client-devices
should assume … if the data values are not available (files associated with the
Subordinate Terrain Elevation component for the area covered by a tile, at a given
LOD or coarser, are either missing or cannot be accessed).

• Section 5.2.1.6 Subordinate Bathymetry Component: which stated “Furthermore,
since the Bathymetry values are relative to Terrain Elevation component, each
value in the Bathymetry component must be matched to the finest available LOD
elevation values of the Terrain Elevation component”.

Vertices of Constrain Triangle

Constrain Triangle

V

V

V

33
Copyright © 2018 Open Geospatial Consortium

• Section 5.2.1.7.3 Default Read Value: which stated “Simulator client-devices
should assume … if the data values are not available (files associated with the
Subordinate Terrain Elevation component for the area covered by a tile, at a given
LOD or coarser, are either missing or cannot be accessed).

• Section 5.2.2.3.2 Default Read Value: which stated “Simulator client-devices
should assume … if the data values are not available (files associated with the
Subordinate Terrain Elevation component for the area covered by a tile, at a given
LOD or coarser, are either missing or cannot be accessed).

This guideline provides clarification on the client-device LOD read behavior of
subordinated datasets; it describes the mandated behavior of a simulator client-device
when reading a LOD of a Primary Elevation Component and combining it with another
LOD of a Subordinate Terrain Elevation Component
Consider the case where a simulator client-device is attempting to read CDB data for a
given region of the CDB at LOD = p. The CDB region has a Primary Elevation
Component populated with data ranging from LOD = -10 to LOD = m, and a Subordinate
Elevation Component populated with data ranging from LOD = -10 to LOD = n.
The required client-device read behavior is illustrated in Figure 6-12 below, and can be
summarized as follows.

• For -10 ≤ p ≤ m, the client-device accesses the primary elevation data at
LOD = p.

• For p > m ≥ -10, the client-device accesses the primary elevation data at
LOD = m.

• For -10 ≤ p ≤ n, the client-device accesses the subordinate elevation data
at LOD = p.

• For p > n ≥ -10, the client-device accesses the primary elevation data at
LOD = n.

• For p > m and p < n and m < n, the client-device interpolates the primary
elevation data from LOD = m to LOD = p before combining it with the
subordinate elevation data of LOD = p.

• For p > m and p > n and m < n, the client-device interpolates the primary
elevation data from LOD = m to LOD = n before combining it with the
subordinate elevation data of LOD = n.

• For p < m and p > n and m > n, the client-device interpolates the
subordinate elevation data from LOD = n to LOD = p before combining it
with the primary elevation data of LOD = p.

• For p > m and p > n and m > n, the client-device interpolates the
subordinate elevation data from LOD = n to LOD = m before combining it
with the primary elevation data of LOD = m.

• For n = φ (unavailable) and p > m ≥ -10, the client-device accesses the
default value in Defaults.xml for the subordinate elevation data.

34
Copyright © 2018 Open Geospatial Consortium

• The combination of (m = φ (unavailable) and n ≥ -10), is not permitted,
i.e., the generation of Subordinate Terrain Elevation LODs is not
permitted if the Primary Terrain Elevation component have not been
generated.

• If the default value for the Primary Elevation dataset is unavailable in
Defaults.xml, or if Defaults.xml file is missing, then the client-device must
revert to the client-device’s internal default value for this dataset.

• If the default value for the Subordinate Elevation dataset is unavailable in
Defaults.xml, or if Defaults.xml file is missing, then the client-device must
revert to the client-device’s internal default value for this dataset.

Figure 6-12: Client-device Read Behavior

The default value for the Primary Terrain Elevation component is the constant
Primary_Elevation, which can be found in \CDB\Metadata\Defaults.xml. The CDB
standard recommends that the value for Primary_Elevation = 0. In the case where the
default value cannot be found within the Defaults.xml file, or that the Defaults.xml file
cannot be found, the CDB standard recommends that client-devices internally generate a
default value of Primary_Elevation = 0.
The default values for the Subordinate Terrain Elevation layer “n” (where “n” is the
subordinate elevation layer number, e.g., a value from 2 to 99) is the constant
Subordinate_Elevation-n, which can be found in \CDB\Metadata\Defaults.xml. The
CDB standard recommends that the value for Subordinate_Elevation-n = 0. In the case

35
Copyright © 2018 Open Geospatial Consortium

where the default value cannot be found within the Defaults.xml file, or that the
Defaults.xml file cannot be found, the CDB standard recommends that client-devices
internally generate a default value of Subordinate_Elevation-n = 0.

The CDB standard does not permit the use of Subordinate Terrain Elevation components
when the Primary Terrain Elevation component is not generated.

6.9 Information: Tide Simulation Modeling Alternatives (Was A15)
Formerly Annex A.15 in the OGC CDB Best Practice, Volume 2.

The availability of a Tide component permits realistic simulation of tides with a minimal
computational overhead by the simulation application. Furthermore, the Tide component
also permits simulation of tides whose amplitude varies differently with location. In
order to determine the shoreline profile at a given location, the simulator client-devices
must first determine the height of (say) the ocean in the immediate vicinity of that
location. The sophistication of this calculation can vary greatly with simulation fidelity.

Figure 6-13: Examples of Ocean Tide Simulation Fidelity in Simulator, illustrates
examples of how tide simulation might be handled. At the low-end of the fidelity
spectrum, the tide level (expressed as a value between –100% (average low tide) and
100% (average high tide) could be provided directly at the simulator’s control console.
In a high-end simulation, one could develop a simulation of the earth’s oceans that takes
into account Bathymetry profile of the oceans and the ephemeris model (particularly
moon and sun) as a function of time and date. Regardless of simulation fidelity, the CDB
internal representation facilitates the work of simulation client devices that are interested
in obtaining the shoreline profile and ocean heights.

36
Copyright © 2018 Open Geospatial Consortium

Figure 6-13: Examples of Ocean Tide Simulation Fidelity in Simulator

6.10 CDB and FalconView (Was A.16)
Formerly Annex A.16 in the OGC CDB Best Practice, Volume 2.

While the CDB file naming convention and its directory structure are somewhat different
from that used in FalconView5, it is possible to find equivalent files between the two.
The FalconView directory structure contains some metadata describing its content and
area coverage; it has a three-level directory structure. The first level “rpf” is a raster
product format: the second level being the dataset such as “gnc” (global navigation
chart): and the third level relates to the zones; all files are under the third level. The file
name is eight characters long followed by a three-character file extension, and the file
name portion uses a radix 34 numbering notation that is based on the position of the
frame in the zone as well as revision info and the producer ID key. The file extension is
based on the dataset and the zone. Note that frames are equivalent to CDB tiles.
From information such as a given lat/lon, a given resolution such as one-meter pixel size
and the dataset such as global navigation chart, it is possible to generate the
corresponding FalconView file name and its path. Similarly, given a lat/lon, an LOD and
a dataset it is possible to generate a CDB file name and its path. Though not identical in
coverage and resolution these two files should be similar in content for the same dataset.

5 FalconView® is a multi-platform mapping and mission planning application developed by the Georgia
Tech Research Institute for the United States Department of Defense. With a 20-year history of active
development the software has become a de facto standard within the US DoD and is also used by various
Federal Agencies and Allied Countries. https://www.falconview.org/trac/FalconView

37
Copyright © 2018 Open Geospatial Consortium

Note that when given a CDB file name, it is possible to extract the tile position in lat/lon,
the dataset it belongs to, and the LOD, even its full path name, i.e. the file name is unique
for the entire CDB. This is not the case for FalconView. Since the resolution is not
implicit in the name, the file itself must be read to extract this information; the dataset
and zone info can be extracted from the file extension. Also note that directories in
FalconView can potentially be very large since all files in a zone reside in the same
directory; this is especially true for fine resolutions.
The FalconView directory structure follows the guidelines and conventions specified by
MIL-STD-2411.
The algorithms used to find file name are given by examples within the MIL-C-89041
Controlled Image Base (CIB) document; in that document, zones are shown as
overlapping. Note that this may not reflect the manner in which FalconView was
implemented; nonetheless this does not affect the methodology provided in this section.

6.10.1 FalconView Directory structure
In FalconView, a top-level directory contains files that are metadata containing
information about the various datasets and files in the directories.
The FalconView directory structure is as follows:

Falconviewmaps
+---covdata Coverage data
| cgnc.cov Global Navigation charts
| cjga.cov Joint Operation Graphics Air
| cjnc.cov Jet Navigation Chart
| conc.cov Operational Navigation Chart
| ctpc.cov Tactical Pilotage Chart
| mm100.cov 1:100,000 maps
| mm250.cov 1:250,000 maps
| sigfile.sig
| trs_8km.cov Township Range Section
|
+---rpf Raster Product Format
| +---cgnc Global Navigation Map
| | +---1 Zone
| | | 00023023.GN1 File Name

6.10.2 FalconView Zones definition
MIL-STD-2411 divides the world into 18 zones, nine in the northern hemisphere and
nine in the southern hemisphere. The first eight zones in both hemispheres are divided

38
Copyright © 2018 Open Geospatial Consortium

into frames, which in turn are divided into sub-frames. Frames are made of pixels with
1536 x 1536 pixels in a frame; there are 36, 6x6 sub-frames per frame. Between each
zone, there is an overlap of one frame; this implies that the size of zones will vary slightly
depending on the resolution that is used. Table 6-3 Zones Range No Overlap gives the
approximate range of each zones; 1 – 9 in the north, A - J in the south. The two extreme
zones, which cover the north and south poles, use a different scheme and are not
discussed here.

Table 6-3 Zones Range No Overlap

Zone Zone Extent
No overlap (deg)

Zone extent
No overlap (deg)

1, A 0 32
2, B 32 48

3, C 48 56
4, D 56 64
5, E 64 68

6, F 68 72
7, G 72 76

8, H 76 80
9, J 80 90

6.10.3 FalconView Zone resolution
Along lines of constant longitude, the pixel constant used to determine the size of frames
is a function of the resolution but is independent of the zone. Along lines of constant
latitude the constant is a function of both resolution and zone and is based on the mid
latitude of the zone. Table 6-4 Example Resolution east-west pixel constants that is extracted
from MIL-C-89041 enumerates the factors for three resolutions.

Table 6-4 Example Resolution east-west pixel constants

Zone Pixel constant
(10 meter product)

Pixel constant
(5 meter product)

Pixel constant
(1 meter product)

1,A 3,696,640 7,393,280 36,966,400

2,B 3,025,920 6,051,840 30,259,200

3,C 2,457,600 4,915,200 24,576,000

4,D 1,991,680 3,983,360 19,916,800

5,E 1,633,280 3,266,560 16,332,800

39
Copyright © 2018 Open Geospatial Consortium

The north-south or latitudinal pixel constant is the number of pixels from the
equator to the pole (90°). The east-west pixel constant is the number of pixels
longitudinally from the 180° west longitude meridian going 360° in an
easterly direction along the zone midpoint.

6.10.4 FalconView Zone extension based on resolution
To illustrate, we will use as an example a resolution of 10 meters. To calculate the exact
latitudinal zone extent for a given resolution, first calculate the number of pixels in a

degree of latitude for the resolution

The number of frames needed to reach the nominal zone boundary is the number of
pixels per degree of latitude multiplied by the nominal zone boundary (in degrees),
divided by 1536, the number of pixels rows in a frame, and rounded up to the nearest

integer. For example in the first zone the number of frames is

The extent of the zone is then

In order to find the extent of the next zone we use the following method, which applies to
all zones from 2 to 8 or B to H.

Since there is an overlap of one frame the start point of the zone 2 will be

 the number of frames required to reach the next zone which

nominally is at 48 is: and the extent is

The number of longitudinal frames and subframes is computed by determining the
number of subframes to reach around the earth along a parallel at the zone midpoint. The
east-west pixel constant is divided by 256 pixels to determine the number of subframes.
The results are divided by 6 and rounded up to obtain the number of frame columns.

7777.11121
90

1000960
==fN

232
1536
32

=÷÷
ø

ö
çç
è

æ fNRoundup

0409207.322321536
=

´

fN

9028133.312311536
=

´

fN
()

117
1536
9028133.3148

=÷÷
ø

ö
çç
è

æ - fNRoundup

0613811.4811715369028133.31 =
´

+
fN

6,F 1,372,160 2,744,320 13,721,600

7,G 1,100,800 2,201,600 11,008,000

8,H 824,320 1,648,640 8,243,200

Lat 1,000,960 2,001,920 10,009,600

40
Copyright © 2018 Open Geospatial Consortium

For example, longitudinally in the first zone we get

subframes and frames. Table 6-5 Frame/Subframe Sizes for

Source Image GSD of 10 Meters, shows the complete set for a resolution of 10 meters.

Table 6-5 Frame/Subframe Sizes for Source Image GSD of 10 Meters

Zone Number Subframes in

Zone (Rows)
Latitudinal

Frame Rows
in Zone
Latitudinal

Equator-ward
Zone Extent
with Overlap

Pole-ward
Zone Extent
with Overlap

1,A 1,392 232 0° 32.0409207

2,B 702 117 31.9028133 48.0613811

3,C 354 59 47.9232737 56.0716113

4,D 348 58 55.9335038 64.0818414

5,E 180 30 63.9437340 68.0869565

6,F 180 30 67.9488491 72.0920716

7,G 180 30 71.9539642 76.0971867

8,H 180 30 75.9590793 80.1023018

9,J ——— ——— varies 90°

14440
256

3696640
=÷

ø
ö

ç
è
æRoundup

2407
6

14400
=÷

ø
ö

ç
è
æRoundup

41
Copyright © 2018 Open Geospatial Consortium

Zone Number Subframes
(Columns)
Longitudinal

Frames
(Columns)
Longitudinal

E-W Pixel Constant

1,A 14,440 2,407 3,696,640

2,B 11,820 1,970 3,025,920

3,C 9,600 1,600 2,457,600

4,D 7,780 1,297 1,991,680

5,E 6,380 1,064 1,633,280

6,F 5,360 894 1,372,160

7,G 4,300 717 1,100,800

8,H 3,220 537 824,320

6.10.5 FalconView Frame Position
MIL-C-89041 states that “the origin for counting nonpolar frame rows and columns is the
southernmost latitude of the zone and 180° west longitude, with columns counted in an
easterly direction from that origin, as opposed to frames and subframes where “the origin
for the subframe and pixel numbering within frames and subframes shall be from the
upper left corner”.
For a given latitude and longitude the row and column for the frame where that
geographic position is situated can be computed. The determination of the zone is
derived from the latitude except at the border of zones where an overlap exists and the
zone must be picked.

The row is given by where is the bottom southern-most

latitude of the zone at resolution r and is the number of pixels per degrees of latitude
at resolution r. Similarly, the column corresponding to the longitude is given by

 where is the number of pixel per longitudinal degrees in

zone z at resolution r, ranges from –180 to 180.

As an example, for latitude of 36 degrees and longitude of –88 degrees we would get for
a resolution of 10 meters

f l

()
÷÷
ø

ö
çç
è

æ -
=

1536
int rszr

R

N
F fff

szrf

rNf

()
÷
ø
ö

ç
è
æ +

=
1536

180
int zr

C
N

F ll
zrNl

l

42
Copyright © 2018 Open Geospatial Consortium

6.10.6 FalconView File Naming Convention
MIL-C-89041 for Controlled Image Base (CIB) states that:

“The naming convention for all resolutions of images registered in MIL-STD-
2411-1, where it is intended for producers to provide contiguous [frame file]
coverage, shall conform to MIL-STD-2411. In addition, the CIB [frame file]
names are further restricted to conform to the form “ffffffvp.ccz.” The “ffffff”
portion of the name shall be a radix 34 value that encodes the unique cumulative
frame number within a zone in base 34, with the right-most digit being the least
significant position. The radix 34 value incorporates the numbers 0 through 9 and
letters A through Z exclusive of the letters “I” and “O” as they are easily
confused with the numbers “1” and “0”. For example, the “ffffff” portion of
the names would start with “000000,” proceed through “000009,” “00000Z,”
“000010,” and so forth until “ZZZZZZ.” This allows 1,544,804,416 unique
[frame file] names; a contiguous grid of frame names down to a resolution of 0.2
meters (approximately 8 inches) can be defined. The “v” portion of the name
shall be a radix 34 value that encodes the successive version number. The “p”
portion of the name shall be a radix 34 value that designates the producer code ID,
as defined in MIL-STD-2411-1. The “cc” and “z” portions of the name
extension shall encode the data series code and the zone, respectively, as defined
in MIL-STD-2411-1. The CIB producers are responsible to ensure that [frame
files] for all image resolutions, zones, and revisions, have unique names.”

In our case:

 …

In the example of a lat of 36 and lon –88 with a resolution of 10 meters we get:

ffffff = 503+29x1970=57633 or 001FV3(34)

… where 1970 is number columns in zone 2 as given in Table 6-5 Frame/Subframe Sizes for
Source Image GSD of 10 Meters, and in RADIX 34 we get ffffff = 001FV3 ; for a global

()

() 503
1536

333.8405)88(180int

29
1536

7781112190281333136int

2 zonein are wesince 333.8405
360

3025920

778.11121
90

1000960

=÷
ø
ö

ç
è
æ ´-+

=

=÷
ø
ö

ç
è
æ ´-

=

==

==

C

R

zr

r

F

..F

N

N

l

f

 ffffff crzRC NFF ´+=

rzNczt resolutiona for zone in columns ofnumber theis where

43
Copyright © 2018 Open Geospatial Consortium

navigation chart dataset a version level 0, a manufacturer code of 3 and zone 2 the file
name would be equal to “001FV303.GN2.”
Note that nothing in the file name defines the resolution for the data; this information is
part of the [coverage section] in the file itself (see section 3.12.3 in MIL-C-89041). Also
note that the file name is unique only to the zone at a given resolution.
On the other hand a similar file for imagery (VSTI, Visible Spectrum Terrain Imagery) in
the CDB convention for an LOD of 04 which has a resolution of approximately 8 meters;
at position lat 36 and lon –88 we would get for the file name:

\CDB\Tiles\N36\W088\004_Imagery\L04\U0\

N36W088_D004_S001_T001_L04_U0_R0.jp2

Note that the file name itself is unique worldwide and that from it we can derive the
directory path to which it belongs.

6.11 Managing CDB Data Store Versions (Was A.18)
Formerly Annex A.18 in the OGC CDB Best Practice, Volume 2.

The incremental versioning mechanism of a CDB data store provides a fast method of
creating versions of the CDB data store changes since all the data changes are located
under a single root directory. The creation and the managing of the (incremental) data
files are however under the application control.
A CDB data store can simultaneously hold multiple incremental versions of the data. As
a result, it is possible to select any of the versions without transferring or copying files.
Consider the case where a data store generation facility, a data store quality assurance
facility, a simulator mission planning facility, a mission rehearsal facility and a mission
debrief are all operating concurrently on distinct versions of the CDB. This is illustrated
in Figure 3 2: Concurrent Usage of Versions of the CDB data store. By the fourth day,
there are four versions of the CDB data store, say the active default CDB (v1) and three
incremental versions (v2, v3, v4). Any of these four versions can be instantly invoked
(without copying or transferring files) by the simulator operator at the Mission Rehearsal
facility, or by an instructor at the Mission Debrief facility.

44
Copyright © 2018 Open Geospatial Consortium

Figure 6-14: Concurrent Usage of CDB Versions

The underlying CDB versioning mechanism is a fine-grained file-level mechanism, i.e.,
only the affected files of the geographic areas of the CDB data store need to be versioned,
leaving the rest of the CDB data store intact. This approach is invaluable in mission
rehearsal applications where the target areas of the CDB data store require frequent
updates based on the latest intelligence data.
The approach can also be applied to the handling of classified secure data. In this case, a
CDB version can be used to hold the portion of the CDB data store that contains the
classified information. The incremental versioning mechanism would be used to
segregate the classified portion of the CDB data store onto a separate storage medium.
Since the classified portion of the CDB data store is embedded within the overall CDB
structure, it is possible for the runtime publishers to instantly switch back and forth
between the classified and non-classified versions of the data store.

6.12 Guideline: Handling of GS and T2D Models (Was A.19)
Formerly Annex A.19 in the OGC CDB Best Practice, Volume 2.

6.12.1 GSModels

6.12.1.1 GSModel Levels-of-detail
The insertion of a 3DModel-LOD into the LOD hierarchy of the GSModel Dataset is
solely dependent on its Location, its Significant Size and on its Storage Size.
The location and Significant Size of a 3DModel-LOD determines where it is nominally
inserted into the GSModel Dataset hierarchy. This approach ensures that the modeled
content is organized in files that contain co-located objects of similar size. This approach
provides client-device with an optimal means of accessing and filtering modeled content
(by location and by size).

45
Copyright © 2018 Open Geospatial Consortium

Figure 6-15: Handling Tile-LOD Overflows in GSModel Dataset

3DModel-LODs are accumulated into the Tile-LODs of the GSModel hierarchy. The
size of these Tile-LODs is capped to GSModelFileSize. In the event that a group of
3DModel-LODs nominally assigned to a Tile-LOD causes this limit to be exceeded, the
3DModel-LODs that are deemed to have the lowest contribution to the Tile-LOD are
moved to finer (children) Tile-LODs until the Tile-LOD is once again within its size limit
(illustrated in Figure 6-15: Handling Tile-LOD Overflows in GSModel Dataset). In the
event that a 3DModel-LOD is itself larger than GSModelFileSize, the 3DModel-LOD is
moved to the 4 finer Tile-LODs of the GSModel Dataset hierarchy. This approach

46
Copyright © 2018 Open Geospatial Consortium

ensures that the modeled content is accessible in chunks that are bounded; this improves
the allocation and management of memory allocation in the client-devices.

NOTE: The Significant Size of a 3DModel-LOD determines where it is
nominally inserted into the 3DModel LOD hierarchy. In this nominal
case, each Tile-LOD of the 3DModel Dataset holds a group of
3DModels-LODs that have similar Significant Sizes. This enables the
client-devices to determine the range at which the 3DModel-LOD can be
optimally blended-in to the scene (so that the model falls within a
specified angular error criterion).

The bounding criterion of 3DModel Tiles can lead to LOD migration, thus

breaking the relationship between the Significant Size of a 3DModel-
LOD and the nominal CDB LOD it belongs to. As a result, client-devices
can no longer guarantee the range at which the 3DModel-LOD will be
blended-in to the scene. In effect, each time the 3DModel-LOD is
migrated by one LOD, the client-device will likely shorten the range at
which it is blended into the scene by a factor of 2X, leading to potentially
distracting artifacts. The severity of the artifacts is proportional to the
amount of content that has migrated to finer LODs and to the number of
LODs by which the content has moved.

While the CDB standard allows the migration of 3DModel-LODs to finer

LODs when Tile-LODs overflows are encountered, it is understood that
this may lead to rendering artifacts that might be considered
unsatisfactory. Consequently, it is strongly recommended that tools
(that generate the CDB hierarchy) be designed to optionally
disallow the migration of 3DModel-LODs to finer LODs upon
overflows, and instead flag the overflow condition and then abort.
Upon such cases, modelers can then re-assess which 3DModels should
be discarded or remodeled in order to simultaneously satisfy the CDB
bounding criteria and the application requirements.

Each of the 3DModel-LODs is nominally configured as exchange-LODs. The exchange-
LOD mechanism assumes that client-devices gradually substitute a coarser 3DModel-
LOD located in a coarser Tile-LOD with a finer 3DModel-LOD located in a finer Tile-
LOD.
While this exchange-LOD mechanism is simple, it can lead to inefficiencies when
extremely fine features cause the GSModel Dataset hierarchy to be extended by several
LODs. Consider the case of a 1 meter road sign located next to a large building (30m
wide x 30m long x 10 m high). As we will see in the following section, the road sign
would nominally be inserted at LOD 9 of the GSModel Dataset hierarchy. Conversely,
the large modeled building would nominally be inserted at LOD 4. The road sign forces
the GSModel Dataset hierarchy to be extended by 5 additional LODs.

47
Copyright © 2018 Open Geospatial Consortium

Figure 6-16: Compacting the GSModel Dataset

In order to reduce the depth of the LOD hierarchy, the GSModel Dataset is post-
processed and subjected to a “compaction” process, starting from the finest LOD (e.g.
LODmax) and progressing to the coarser levels. The compaction process takes finer
3DModel-LODs and appends them to the corresponding 3DModels in coarser Tile-LODs
of the GSModel Dataset. The appended (finer) 3DModel-LOD must have an explicit
OpenFlight LOD node with the Significant Size of the 3DModel-LOD; this provides the
necessary information for the client-device to control the range at which the 3DModel-
LOD will be introduced into the rendered scene. The process is recursively applied to the
coarser LODs until the parent LOD is packed to capacity. This approach ensures that the

48
Copyright © 2018 Open Geospatial Consortium

modeled content is accessible in similarly-sized chunks of processing; this provides the
means to improve internal parallelism and pipelining (i.e. improves client-device
determinism).
The access and selection of 3DModel-LODs is done through the GSFeature Dataset.
Each of the Tile-LODs of the GSFeature Dataset contains a list of Features; each Feature
in turn points to a 3DModel-LOD at the appropriate LOD. In effect, the appearance of a
Feature (along with its modeled representation) and the evolution of its modeled
representation are entirely controlled by the GSFeature Dataset. As a result, the
3DModel-LODs of a 3DModel need not be located in consecutive LODs of GSModel
Dataset hierarchy.

6.12.1.2 CDB LOD versus GSModel Significant Size
Section 6.8.3 of CDB Standard Volume 6: OGC CDB Rules for Encoding Data using
OpenFlight provides a set of guidelines to establish the values for Significant Size SSc
and SSLOD for GSModels.
Table 3 1: CDB LOD vs. Model Resolution shows the nominal position of a GSModel
within the LOD hierarchy of the GSModel Dataset. Note all of the GSModel-LODs of a
GSModel normally fall within a range of 8 levels-of-detail (i.e. the smallest tile size the
GSModel can sit on). However, it is possible to extend this range by breaking up a
GSModel-LOD into several OpenFlight files.
Here is a summary of the rules required by the CDB standard in order to ensure
deterministic operation from client-devices.

1. Each feature may have multiple modeled representations at progressively
coarser levels of detail. Each of the modeled representations is referred to
as a GSModel-LOD. In absence of pre-modeled coarser LOD
representations, the tools may automatically generate coarser modeled
levels-of-detail.

2. A GSModel-LOD consists of a group of polygons that represent a feature
at a specific level-of-detail; this group of polygons shares a unique Model
Identifier derived from the Feature Attribute Code a Feature Sub-Code
(FSC), a Model Name (MODL or MMDC), the GSModel-LOD’s
Significant Size SS’LOD.

3. Each GSModel has a distinct Significant Size SS’ value based on its
dimensions. In turn, each GSModel-LOD of a same GSModel has a
distinct Significant Size value SS’LOD based on its modeled accuracy.

4. Insertion of a GSModel-LOD into the GSModel Dataset hierarchy
proceeds as follows. Starting with LODmax (LODmax is a variable set by the
user that sets the maximum depth of the LOD hierarchy) and progressing
to coarser LODs…
a. For each Tile-LOD, create a Model_List that is constructed from the

GSModel-LODs that straddle the Tile-LOD.
i. If the GSModel-LOD is not the coarsest LOD and its Significant Size

is in accordance to Table 3 1: CDB LOD vs. Model Resolution,
then add it to the Tile-LOD. Only the coarser GSModel-LODs of this

49
Copyright © 2018 Open Geospatial Consortium

GSModel are available for future insertion into the GSModel LOD
hierarchy.

ii. If the GSModel-LOD is the coarsest LOD of the GSModel and its
Significant Size is in accordance to Table 3 1: CDB LOD vs.
Model Resolution, then insert it at this LOD of the hierarchy. If the
GSModel-LOD matches the Tile-LOD, remove it from the list for the
processing of the coarser Tile-LOD.

b. If the Model_List is less than GSModelFileSize, no further processing
is required.

NOTE: The Storage Size of (statically-positioned) MModels is assumed
to be zero.

c. The Model_List of each Tile-LOD is sorted in decreasing order of
Diff, where Diff is the difference between the Significant Size SS of
the Model and the Significant Size as specified in Table 2.

d. If the size of the Model_List is greater than GSModelFileSize, then
(starting with the first entry in the sorted Model_List), Models are
simplified one-by-one until the size of the Model_List is less than
GSModelFileSize. When a simplification occurs, the Model_List is re-
sorted using the Diff value.

e. If a) the Model_List is deemed non-reducible and b) the Model_List is
still greater than GSModelFileSize …
i. If LOD < LODmax, then…

(1) a Temp_Model_List is created and initialized with the contents
of the Model_list. Starting from the end of the Model_List,
Models are removed one-by-one from the Model_list (starting
with the first Model in the Model_List) and are copied into the
Temp_Model_List until the Model_List reaches
GSModelFileSize.

(2) The Temp_Model_List is merged to the children Tile-LODs and
the children are re-processed using steps 4a to 4e. The process
is iterative, i.e., the “overflow” is propagated into the finer
LODs of the GSModel hierarchy.

ii. Else…
(1) Models are removed one-by-one, starting with the first Model

in the Model_List, until the Model_List is less than
GSModelFileSize. The corresponding GSModels are removed
from the CDB and a warning is issued stating that content was
removed

NOTE: It is strongly recommended that GSModels be modeled using
several GSModel-LODs, spanning a wide range of fidelity. The
availability of many LODs ensures suitability of the resulting CDB for
real-time use with a minimum degradation in fidelity. Conversely, a low
number of LODs can lead to unacceptably large steps in fidelity.

50
Copyright © 2018 Open Geospatial Consortium

NOTE: It is strongly recommended that the coarsest modeled LOD of
GSModels have no more than 128 vertices; this reduces the likelihood
that the coarsest modeled LOD need be propagated to a finer LOD of
the hierarchy.

NOTE: This algorithm preserves the highest available modeled content
while ensuring that the runtime constraint file size limits are respected.
While the CDB data model allows for infinitely-sized GSModel-LODs, a
client-device may refuse to render the GSModel-LOD if it has insufficient
memory to load all of the OpenFlight files that make-up the GSModel-
LODs.

5. Each GSModel-LOD is subject to an OpenFlight file size limit of

GSModelFileSize, i.e. several OpenFlight files, each within the
GSModelFileSize limit, can be used to represent a very complex
GSModel-LOD. Each of OpenFlight files that form the GSModel-LOD
share the same GSModel-LOD Identifier (see rule 2) and GSModel-LOD
origin. Client-devices must render the GSModel-LOD in its entirety, even
if it is allocated to several OpenFlight files.

NOTE: While the CDB data model allows for infinitely-sized GSModel-
LODs, a client-device may refuse to render the GSModel-LOD if it has
insufficient memory to load all of the OpenFlight files that make-up the
GSModel-LODs.

6. Each Tile-LOD is subject to a file size limit of GSModelFileSize.
7. All of the GSModel-LODs in a GSModel OpenFlight file are nominally

exchange-LODs (see exception in next rule).
8. The depth of the GSModel LOD hierarchy should be reduced by folding-

in the finer GSModel-LOD located in a finer Tile-LOD to the next coarser
Tile-LOD of the hierarchy. Failure to perform this “compaction step” may
result in significantly deeper GSModel LOD hierarchy when the finest
GSModel-LODs consist of small features or small details on the same
features (e.g., small posts next to a terminal building or fine window
details on a large building).

9. The finer modeled representation of a GSModel (i.e. a GSModel-LOD
with a smaller Significant Size) always appears in finer LODs of the
GSModel Dataset LOD hierarchy than a coarser GSModel-LOD.

10. A Tile-LOD cannot contain more than one GSModel-LOD of the same
GSModel.

11. Once inserted into the GSModel Dataset LOD hierarchy, there is no
mandatory requirement to clip the contents of a GSModel Tile-LOD

51
Copyright © 2018 Open Geospatial Consortium

against its Tile-LOD boundaries. However, the contents of the GSModel
Tile-LOD cannot protrude Tile-LODs by more than ½ the dimension of
the Tile-LOD.

12. There is no mandatory requirement to have consecutive GSModel-LODs
in consecutive LODs of Tile-LOD hierarchy; it is permissible to have gaps
within the Tile-LOD hierarchy.

13. Gaps in the LOD file hierarchy of the GSFeature Dataset are not
permitted. This may result in Tile-LODs that are empty (e.g. without any
GSFeatures). The presence of an empty Tile-LOD file for the GSFeature
Dataset indicates the availability of modeled content invoked by finer
LODs of the GSFeature hierarchy.

6.12.1.3 Example – Insertion of a GSModel with 3 LODs into the CDB Hierarchy
Consider an industrial building 200m wide x 200m length x 10m high. The modeler has
not supplied any values for its Significant Size, nor has he provided a value for RTAI. It
is modeled in three distinct levels of detail as follows:

a) Coarsest level: 5 polygons
b) Mid level: 60 polygons
c) Finest level: 300 polygons

Based on this information, we can derive Significant Size values for each of the modeled
representation as follows and determine where within the hierarchy each of the
GSModel-LODs should be inserted:

a. Coarsest level-of-detail:

a. Compute the model’s Significant Size …

𝐵𝐵𝐵𝐵 = 	H
(10 × .96) × 200) +	(200 × 200 × .259)

𝜋𝜋

𝐵𝐵𝐵𝐵 = 	62.5𝑚𝑚
b. Since the model is opaque and has no assigned value for RTAI, the

final value for SS’ is 62.5m.
c. Table 3 1: CDB LOD vs. Model Resolution, tells us that the

(coarsest LOD) of the model should be nominally inserted at LOD 3 of
the Tile-LOD (assuming its file size limit is not exceeded)

b. Mid level-of-detail:
a. Compute the ratio of vertices

	𝐵𝐵 = 	𝑉𝑉EPQ
𝑉𝑉RSTUVWVX

Y =
60
5 = 12

b. Compute the Significant Size of the GSModel-LOD…

𝐵𝐵𝐵𝐵′EPQ =
𝐵𝐵𝐵𝐵′RSTUVWVX

√12
= 18.04𝑚𝑚

c. Since the model is opaque and has no assigned value for RTAI, the
final value for SS’ is 18.04m.

52
Copyright © 2018 Open Geospatial Consortium

d. d. Table 3 1: CDB LOD vs. Model Resolution, tells us that the (mid-
LOD) of the model should be nominally inserted at LOD = 5 of the Tile-
LOD (assuming its file size limit is not exceeded)

c. Finest level-of-detail:
a. Compute the ratio of vertices

	𝐵𝐵 = 	𝑉𝑉EPQ
𝑉𝑉RSTUVWVX

Y =
300
60 = 5

b. Compute the Significant Size of the GSModel-LOD…

𝐵𝐵𝐵𝐵′EPQ =
𝐵𝐵𝐵𝐵′R
√5

= 8.07𝑚𝑚

c. Since the model is opaque and has no assigned value for RTAI, the
final value for 𝐵𝐵𝐵𝐵′EPQ is 8.07.

d. d. Table 3 1: CDB LOD vs. Model Resolution, tells us that the
(finest-LOD) of the model should be nominally inserted at LOD = 6 of
the Tile-LOD (assuming its file size limit is not exceeded)

6.12.2 T2DModels
The T2DModels are stored in the OpenFlight format. The CDB conventions described
herein are designed to facilitate the integration of such models onto the terrain tile, hence
the name “Tiled 2D Models”. Each 2DModel can have one or more modeled
representation (called a 2DModel-LOD) that represents the feature to a certain level of
fidelity. 2DModel-LODs are re-grouped into T2DModel Tile-LODs; this re-grouping
approach is designed to reduce the overheads associated with the access of 2DModel-
LODs. Furthermore, T2DModel-LODs can be accessed without a prior reference to a
corresponding feature in the GSFeature dataset.
The integration of T2DModels to the underlying terrain skin is performed by the client-
devices at runtime. Historically, this integration has always been performed by the tools
and was “baked-in” into the SE terrain skin during the offline data store generation
process. Many client-specific considerations went into the mechanisms required to
support this integration and as a result, the resulting synthetic environments were very
client-specific and did not scale easily to higher resolutions.
In line with CDB principles, the T2DModel Dataset defers this integration and imposes it
on the consumers (not the producers) of synthetic environments. As a result, client-
devices can independently access, manage and control each dataset, i.e., the Primary
Elevation, the VSTI Imagery, the T2DModel, etc. This layered approach to synthetic
environment production and consumption provides a much greater level of abstraction
between the SE data model and the data models internal to each client-device. It is
understood, that the deferral of the integration process imposes added functionality and
computational requirements on the part of the CDB client-devices.
While it would be possible, in theory, to use the T2DModel Dataset for the modeling of
the terrain skin, this use-case is specifically forbidden because the T2DModel Dataset
does not provide a guarantee of full tile coverage. As a result, the Primary Elevation
Dataset is always required regardless of whether a corresponding Tile-LOD of the
T2DModel is present or not. Furthermore, since CDB forbids the duplication of
information, the terrain skin cannot be duplicated by the T2DModel Dataset.

53
Copyright © 2018 Open Geospatial Consortium

Client-devices must always access the Primary Elevation prior to any other raster
datasets. Once a Tile-LOD of the Primary Elevation is loaded, a client-device can then
access the T2DModel Dataset at an “appropriate” LOD6. Following this, the client-
device must integrate the models found within the T2DModel Tile-LOD with the terrain
found in the Primary Elevation dataset.

6.12.2.1 T2DModel Levels-of-detail
As with 3D features, 2D features can have modeled representations at varying levels of
detail. Each of these modeled-representations is referred to as a 2DModel-LOD. A
2DModel-LOD consists of a group of polygons that represent a 2D feature at a specific
level-of-detail.
Once a 2DModel-LOD is inserted into the T2DModel Dataset hierarchy, it is then
referred to as a T2DModel-LOD. The insertion of a 2DModel-LOD into the LOD
hierarchy of the T2DModel Dataset is solely dependent on its Location, its Significant
Size and on its Storage Size. 2DModel-LODs are regrouped into files called T2DModel
Tile-LODs. Note that when a 2DModel is clipped to the T2DModel’s Tile-LOD
boundaries, each of the clipped model fragments will appear in distinct OpenFlight files
of the T2DModel Dataset. The T2DModel Tile-LODs are assembled into a hierarchy of
Tile-LODs called the T2DModel Dataset.
The organization of the modeled content into files that contain co-located objects of
similar size greatly improves runtime performance. The location and Significant Size of
a 2DModel-LOD determines where it is nominally inserted into the T2DModel LOD
hierarchy. This approach ensures that the modeled content is organized in files that
contain co-located objects of similarly size. This approach provides client-device with an
optimal means of accessing and filtering modeled content (by location and by size).
2DModel-LODs are accumulated into Tiles for each LOD of the T2DModel hierarchy.
The size of these T2DModel Tiles is capped to T2DModelFileSize7. The current value
for T2DModelFileSize is 4 megabytes. In the event that the insertion of a 2DModel-LOD
causes this limit to be exceeded, the 2DModel-LODs that are deemed to have the lowest
contribution to the Tile are moved to finer Tiles of the T2DModel hierarchy until the Tile
is once again within its size limit. In the event that the 2DModel-LOD is larger than
T2DModelFileSize, the 2DModel-LOD can be moved to the 4 finer Tiles of the
T2DModel hierarchy and clipped against the Tile boundaries as illustrated in Figure 6-17:
Handling Tile-LOD Overflows within the T2DModel Dataset Hierarchy. This approach
ensures that the modeled content is accessible in chunks that are bounded; this is critical
to the effective allocation and management of memory in the client-devices as well as
improving client-device performance and determinism.

6 In this context, “appropriate” means a LOD that falls within the capabilities of the client-device.

7 The T2DModelFileSize storage size limit for T2DModel Tile-LODs is critical in achieving
runtime determinism.

54
Copyright © 2018 Open Geospatial Consortium

NOTE: The Significant Size of a 2DModel-LOD determines where it is
nominally inserted into the T2DModel LOD hierarchy. In this nominal
case, each Tile-LOD of the T2DModel Dataset holds a group of
2DModel-LODs that have similar Significant Sizes. This enables the
client-devices to determine the range at which the T2DModel-LOD can
be optimally blended into the scene so that the model falls within a
specified angular error criterion.

The bounding criterion of T2DModel Tiles can lead to LOD migration, thus

breaking the relationship between the Significant Size of a 2DModel-
LOD and the nominal CDB LOD it belongs to. As a result, client-devices
can no longer guarantee the range at which the 2DModel-LOD will be
blended into the scene. In effect, each time the 2DModel-LOD is
migrated by one LOD, the client-device will likely shorten the range at
which it is blended into the scene by a factor of 2, leading to potentially
distracting artifacts. The severity of the artifacts is proportional to the
amount of content that has migrated to finer LODs and to the number of
LODs by which the content has moved.

While the CDB Standard allows the migration of 2DModel-LODs to finer

LODs when Tile-LODs overflows are encountered, it is understood that
this may lead to rendering artifacts that might be considered
unsatisfactory. Consequently, it is strongly recommended that tools
(that generate the CDB hierarchy) be designed to optionally
disallow the migration of T2DModel-LODs to finer LODs upon
overflows, and instead flag the overflow condition and then abort.
Upon such cases, modelers can then re-assess which T2DModels
should be discarded or remodeled in order to simultaneously satisfy the
CDB bounding criteria and the application requirements.

Each of the Tile-LODs of the T2DModel Dataset is nominally configured as exchange-
LODs (aka substitution-LODs) as defined in chapter 6.
The exchange-LOD mechanism assumes that client-devices gradually substitute a coarser
Tile-LOD with a four finer Tile-LODs.
While this exchange-LOD mechanism is simple, it can lead to inefficiencies when
extremely fine features cause the T2DModel Dataset hierarchy to be extended by several
LODs. Consider the case of 13m road lines overlaid with 6 cm stripe lines. As we will
see in the following section, insertion of the Stripe line would nominally occur at
LOD=7 of the T2DModel hierarchy while the Road line would occur at LOD=-1. The
Stripe lines force the T2DModel Dataset hierarchy to be extended (and clipped) to 8
additional LODs. In effect, the Road lines are repeated8 in LODs 0 through 7 leading to
important storage inefficiencies and greater computational burden by the client-devices.

8 Since the nominal LOD mechanism is the exchange-LOD, and that gaps are not permitted in the LOD
hierarchy

55
Copyright © 2018 Open Geospatial Consortium

Figure 6-17: Handling Tile-LOD Overflows within the T2DModel Dataset Hierarchy

In order to resolve this use-case, the T2DModel Dataset is post-processed and subjected
to a “compaction” process, starting from the finest LOD (e.g. LODmax) and progressing to
the coarser levels. The compaction process takes the content of the Tile-LODs located at
LODmax and packs them as an additive LODs of the parent Tile-LOD at (LODmax – 1) of
the parent Tile-LOD. The process is recursively applied to the coarser LODs until the
parent LOD is packed to capacity. This approach ensures that the modeled content is
accessible in similarly-sized chunks of processing; this provides the means to improve
internal parallelism and pipelining (ie. improves client-device determinism). The result is
a LOD hierarchy which is less deep, and with content which is more uniformly
distributed; both of these characteristics improve runtime performance and determinism.

56
Copyright © 2018 Open Geospatial Consortium

The T2DModel LOD structure is continuous i.e. there is no gap in the LOD hierarchy.
This means that once a 2DModel-LOD is inserted into a finer level of the T2DModel
hierarchy, the same 2DModel-LOD is propagated to coarser LODs until a coarser
2DModel-LOD is available.
Note that some client-devices may be sensitive to the precision of clipped vertices; some
client-devices may demand that the clipped vertices be shared at the tile boundary
between two tiles of the same LODs. This can be done as follows.

- The X coordinate (longitude) of clipped vertices along the top or bottom
edges of the tile can be used to uniquely identify the matching coordinate in
an adjacent tile.

- The Y coordinate (latitude) of clipped vertices along the right or left edges
of the tiles can be used to uniquely identify the matching coordinate in an
adjacent tile.

57
Copyright © 2018 Open Geospatial Consortium

 Figure 6-18: Compacting the T2DModels Dataset Hierarchy

6.12.2.2 CDB LOD versus T2DModel Significant Size
Section 6.8.3 of the CDB Standard Volume 6: OGC CDB Rules for Encoding Data using
OpenFlight provides a set of guidelines to establish the values for Significant Size SSc
and SSLOD for T2D Models (for both lines and polygons).
Table 3 32: T2DModel LOD versus Significant Size, shows us the relationship between
SSc and SSLOD. They are offset by 3 LODs. The implication of this statement is in the

58
Copyright © 2018 Open Geospatial Consortium

case of a model with two LOD, the finer 2DModel-LOD must have sufficient detail to
justify its existence.

Note: Each of the 2DModel-LODs of a 2DModel must differ by at least one
CDB LOD. Some 2DModel-LODs will be discarded if this relationship is
not respected.

Consider for example a 12m line road feature with two modeled representations. The
nominal CDB LOD for the coarsest 2DModel-LOD is LOD=3 in accordance to the table
below. The Significant Size of the finer 2DModel-LOD is obtained by “walking” around
its outline; we determine that the largest value of d for successive vertex triplets is 3m,
hence SSLOD = 3m. Table 6-6: T2DModel LOD versus Significant Size, tells us that the
2DModel-LOD should also be nominally inserted at CDB LOD = 3. Since both
2DModel-LODs have the same nominal CDB LOD, only one of them is retained
(preferably the more detailed of the two).

Table 6-6: T2DModel LOD versus Significant Size

T2DModel
CDB Level

Significant Size
SSc

(Coarsest Model-LOD)

Significant Size
SSLOD

(Other Model-LODs)
OTHER Interp.

Max Error with respect to
finest

Tile-LOD
Size

-10 56 km < SS < 110 km SS < 14 km 110 km

-9 28 km < SS ≤ 56 km SS < 6.9 km 110 km

-8 14 km < SS ≤ 28 km SS < 3.5 km 110 km

-7 6.9 km < SS ≤ 14 km SS < 1.7 km 110 km

-6 3.4 km < SS ≤ 6.9 km SS < 870 m 110 km

-5 1.7 km < SS ≤ 3.4 km SS < 430 m 110 km

-4 860 m < SS ≤ 1.7 km SS < 220 m 110 km

-3 430 m < SS ≤ 860 m SS < 110 m 110 km

-2 220 m < SS ≤ 430 m SS < 54 m 56 km

-1 110 m < SS ≤ 220 m SS < 27 m 28 km

0 54 m < SS ≤ 110 m SS < 13 m 14 km

1 27 m < SS ≤ 54 m SS < 6.8 m 6.9 km

2 13 m < SS ≤ 27 m SS < 3.4 m 3.4 km

3 6.7 m < SS ≤ 13 m SS < 1.7 m 1.7 km

59
Copyright © 2018 Open Geospatial Consortium

4 3.4 m < SS ≤ 6.7 m SS < 840 mm 860 m

5 1.7 m < SS ≤ 3.4 m SS < 420 mm 430 m

6 840 mm < SS ≤ 1.7 m SS < 210 mm 220 m

7 420 mm < SS ≤ 840 mm SS < 110 mm 110 m

8 210 mm < SS ≤ 420 mm SS < 52 mm 54 m

9 110 mm < SS ≤ 210 mm SS < 26 mm 27 m

10 52 mm < SS ≤ 110 mm SS < 13 mm 13 m

11 26 mm < SS ≤ 52 mm SS < 6.6 mm 6.7 m

12 13 mm < SS ≤ 26 mm SS < 3.3 mm 3.4 m

13 6.7 mm < SS ≤ 13 mm SS < 1.6 mm 1.7 m

14 3.4 mm < SS ≤ 6.7 mm SS < 820 um 840 mm

15 1.7 mm < SS ≤ 3.4 mm SS < 410 um 420 mm

16 820 um < SS ≤ 1.7 mm SS < 210 um 210 mm

17 410 um < SS ≤ 820 um SS < 100 um 110 mm

18 210 um < SS ≤ 410 um SS < 51 um 52 mm

19 110 um < SS ≤ 210 um SS < 26 um 26 mm

20 52 um < SS ≤ 110 um SS < 13 um 13 mm

21 26 um < SS ≤ 52 um SS < 6.7 um 6.7 mm

22 13 um < SS ≤ 26 um SS < 3.4 um 3.4 mm

23 SS ≤ 13 um SS < 1.7 um 1.7 mm

6.12.2.3 Rules Governing T2DModel LOD Hierarchy
Here is a summary of the rules required by the standard in order to ensure deterministic
operation from client-devices.

1. Each feature may have multiple modeled representations at progressively
coarser levels of detail. Each of the modeled representations is referred to
as a 2DModel-LOD. In absence of pre-modeled coarser LOD
representations, the tools may automatically generate coarser modeled
levels-of-detail.

2. A 2DModel-LOD consists of a group of polygons that represent a feature
at a specific level-of-detail; this group of polygons shares a common
Feature Attribute Code, a Feature Sub-Code (FSC), a Model Name
(MODL) and 2DModel-LOD’s Significant Size SS’LOD.

60
Copyright © 2018 Open Geospatial Consortium

3. Each 2DModel has a distinct Significant Size value SS’ based on its
dimensions. In turn, each of the 2DModel-LODs of a 2DModel has a
distinct Significant Size value SS’LOD based on its modeled accuracy.

4. Insertion of a 2DModel-LOD into the T2DModel Dataset hierarchy
proceeds as follows. Starting with LODmax (LODmax is a variable set by the
user that sets the maximum depth of the LOD hierarchy) and progressing
to coarser LODs…
a. For each Tile-LOD, create a Model_List that is constructed from the

2DModel-LODs that straddle the Tile-LOD.
i. If the 2DModel-LOD is not the coarsest LOD and its Significant

Size is in accordance to Table 6-6: T2DModel LOD versus
Significant Size, then iteratively simplify the 2DModel-LOD
(iterate until its Significant Size is no longer in accordance to
Table 6-6: T2DModel LOD versus Significant Size and keep
results of previous iteration) and add it to the Tile-LOD. Only the
coarser 2DModel-LODs of this 2DModel are available for future
insertion into the T2DModel hierarchy.

ii. If the 2DModel-LOD is the coarsest LOD of the 2DModel and its
Significant Size is in accordance to Table 6-6: T2DModel LOD
versus Significant Size, insert it at this LOD of the hierarchy. If
the 2DModel-LOD matches the Tile-LOD, remove it from the list
for the processing of the coarser Tile-LOD.

b. If the Model_List is less than T2DModelFileSize, no further processing
is required.

c. The Model_List of each Tile-LOD is sorted in decreasing order of
Diff, where Diff is the difference between the Significant Size SS of
the Model and the Significant Size as specified in Table 3.

d. If the Model_List is greater than T2DModelFileSize, then (starting
with the first entry in the sorted Model_List), Models are simplified
one-by-one until the size of the Model_List is less than
T2DModelFileSize. When a simplification occurs, the Model_List is
re-sorted using the Diff value.

e. If a) the Model_List is deemed non-reducible and b) the Model_List is
still greater than T2DModelFileSize …
i. If LOD < LODmax, then…

(1) a Temp_Model_List is created and initialized with the
contents of the Model_list. Starting from the end of the
Model_List, Models are removed one-by-one from the
Model_list (starting with the first Model in the Model_List)
and are copied into the Temp_Model_List until the Model_List
reaches T2DModelFileSize.

(2) The Temp_Model_List is merged to the children Tile-LODs
and the children are re-processed using steps 4a to 4e. The
process is iterative, i.e., the “overflow” is propagated into the
finer LODs of the T2DModel hierarchy.

ii. Else…

61
Copyright © 2018 Open Geospatial Consortium

(1) Models are removed one-by-one, starting with the first Model
in the Model_List, until the Model_List is less than
T2DModelFileSize. The corresponding T2DModels are
removed from the CDB and a warning is issued stating that
content was removed.

NOTE: The algorithm preserves the highest available modeled content
while ensuring that the runtime constraint file size limits are respected.
While the CDB data model allows for infinitely-sized 2DModel-LODs, a
client-device may refuse to render the 2DModel-LOD if it has insufficient
memory to load all of the OpenFlight files that make-up the 2DModel-
LOD.

5. Each T2DModel Tile-LOD is subject to an OpenFlight file size limit of

T2DModelFileSize, i.e., several OpenFlight files, each within the
T2DModelFileSize file size limit, can be used to represent a very complex
T2DModel Tile-LOD. Each of T2DModel-LODs of an T2DModel Tile-
LOD share the same T2DModel-LOD Identifier (see rule 2)

6. Each Tile-LOD is subject to a file size limit of T2DModelFileSize.
7. All of the 2DModel-LODs in a T2DModel Tile-LOD are nominally

exchange-LODs (see exception in next rule).
8. The depth of the T2DModel LOD hierarchy should be reduced by folding-

in the Tile-Models_List of finer Tile-LODs as an additive LOD to the
Tile-Model_List of a coarser Tile-LOD. Failure to perform this
“compaction step” may result in significantly deeper T2DModel LOD
hierarchy when the finest 2DModel-LODs consist of small details (e.g.,
thin stripes and markings on roads), and reduce the paging performance of
client-devices.

9. The finer modeled representation of a T2DModel (i.e., a 2DModel-LOD
with a smaller Significant Size) always appears in finer LODs of the Tile-
LOD hierarchy than a coarser 2DModel-LOD.

10. A Tile-LOD cannot contain more than one 2DModel-LOD of the same
T2DModel.

11. All T2DModels are clipped against the Tile-LOD boundaries.
12. Gaps in the LOD file hierarchy of the T2DModel Dataset are not

permitted. This may result in Tile-LODs that are empty (e.g., without any
T2DModels). The presence of an empty Tile-LOD file indicates the
availability of content in T2DModel files located in finer LODs of the
T2DModel hierarchy.

11 Future versions of this Best Practice may include guidance on using other vector encodings such as
GeoJSON, GML, or GeoPackage.

62
Copyright © 2018 Open Geospatial Consortium

6.13 Guideline: Examples of Vector Dataset Usages (Was A.20)
Formerly Annex A.20 in the OGC CDB Best Practice, Volume 2.

6.13.1 Linear Feature Radar Simulation Example
The following diagram represents a typical usage of a linear model in a CDB data store
for a typical radar client-device.
The radar application first extracts the line features from the CDB data stores and
constructs an object. The constructed object contains the necessary information for the
radar to compute the equivalent radar image using the radar cross-section (RCS) of the
line features with material attributes and directivity, etc.

NOTE: With the introduction of version 3.2 of the CDB Specification (prior to OGC
submission), it is recommended that the terrain-conformal features be
modeled using T2DModels and that radar client-devices use this modeled
representation instead of the vector line and polygon features.

Figure 6-20: Example of Line Features, illustrates three line features stored in the tile in
in a vector data set. The junction nodes of each line feature represents the start and end
junctions of the line feature. In this example, there is only one chain per line feature.

Figure 6-20: Example of Line Features

The radar uses the position of the lineal coordinates to construct a line representation of
the radar image. It extracts the line feature information from the chains to construct an
internal local representation. The necessary information needed by radar is…

1. Network Datasets:
The datasets along with the Feature Attribution Code indicate if the feature is a
road, a highway, or river for example. In the above illustration, we have a river, a
powerline and a railway. The CDB Standard represents this in the *.dbf file of
the Shapefile representation.

63
Copyright © 2018 Open Geospatial Consortium

2. Composite Material IndeX (CMIX):
The Composite Material IndeX attribute points to the Composite Material Table
and provides the Radar the types of Base Materials that the feature is made of.
This information is used, in addition to the geometry of the line feature or a
generic RCS, to provide a radar signature of the target, which is proportional to
the reflection value of the various materials. The intensity of the radar image
represents the interaction of the simulated Radar Beam with the features in the
synthetic environment. Each line contains a reference to a composite material
which in turn is mapped to a reflectivity factor value in the radar simulation.

3. Width (WGP):
The width of the line features is also taken into consideration. This information is
part of the vector data used to construct a 2D radar image of the terrain. The
width information is encoded as an attribute of the line feature.

4. Height (HGT):
The height of the line feature is used to indicate the height of each point/line with
respect to the terrain height.

NOTE: The height value is a delta height above the terrain and is only provided
for objects that require it such as the powerlines or the train tracks in this
example. The height property is especially valuable to radar client-devices
because erect objects in the data store produce significant returns and occultation
areas in the displayed radar image. The height property can be assigned to the
train tracks, long fences and the powerlines each with average altitudes.

5. Position:
Currently, this information is contained in the line *.shp files11. The x and y
coordinate of each point is extracted from those objects.

11 Future versions of this Best Practice may include guidance on using other vector encodings such as
GeoJSON, GML, or GeoPackage.

64
Copyright © 2018 Open Geospatial Consortium

Figure 6-21: Radar Beam Simulation

The radar then uses a beam simulation to process the above information and construct an
image representing the content of each small beam sections. The intersection of the beam
pie slice is compared with the line feature’s position and converted into an image whose
intensity is based on the computed RCS of the line features. As mentioned above, the
RCS value (which is modeled internally in the radar simulation) takes into account the
properties (which are derived from the attributes) of each line feature.

6.13.2 Road Following Example
Figure 6-22: Network Dataset Used to Describe a Navigable Network, illustrates how
line features can be used to describe a navigable network; the example could represent a
network of roads. First, the application reads a vector line file describing the chains, then
the vector point file describing the junction nodes. For each junction nodes the
application makes up a list of attached chains ending up with a network as illustrated in
Figure 6-22: Network Dataset Used to Describe a Navigable Network, where there are six
chains (labeled in this example as CSLID1 to CSLID6) that are joined through
intersection nodes (labeled in this example as CSZID1 to CSZID6). The small black dots
represent points forming the segments of a chain; they are essentially used to describe the
deviation from a straight line between nodes.
In Figure 6-22: Network Dataset Used to Describe a Navigable Network, the green line
shows an example of what a shortest path algorithm could determine if asked to find the
shortest route between CSZID1 and CSZID5 based on the lengths of the chains. First,
the algorithm would move to CSZID2 via the chain CSLID1; when at CSZID2 it has two
alternatives, either take CSLID4 or use CSLID3 and CSLID6. In our example it would
have determined that the latter alternative is the shortest path; the entity would then
follow the path given by the green line going through all the segments in the chains.

65
Copyright © 2018 Open Geospatial Consortium

Figure 6-22: Network Dataset Used to Describe a Navigable Network

6.13.3 Point Feature Radar Simulation Example
The following diagram represents a typical usage of a point feature as modeled in the
CDB data store for a typical radar client-device. The radar client-device extracts the
point feature from the data store using the format described in the Standard and
constructs an object. The constructed object will contain the necessary information for
the radar to compute the equivalent radar image using the radar cross-section (RCS) of
the object over the terrain; the RCS is derived from the point features characteristics.

NOTE: The example below illustrates the use of point-feature data by a radar client-
device. However, we recommend that the radar client-devices use the
modeled representation of the feature rather than the feature location, type
and attribution data.

In Figure 6-23: Objects Represented on a Terrain Tile, a series of different objects are
represented on a terrain tile. The objects are modeled as single point of zero dimensions
in radar. The radar will position the different points according to their geographic
position and altitude. The height data corresponds to a height of the feature with respect
to the terrain.

CSLID1

CSLID2

CSLID3v

v

v

CSZID1

CSZID4

CSZID3CSZID2

CSZID5

CSZID6v

v

v

v

CSLID4

CSLID6

CSLID5

CSLID chainID
CSZID Node ID

66
Copyright © 2018 Open Geospatial Consortium

Figure 6-23: Objects Represented on a Terrain Tile

The necessary information needed by radar is typically…
1. Feature Code: This information indicates if the feature is a tree, a pylon, or a

church for example. In the above drawing this would mean a tree, an industry, a
house or a radio station antenna.

2. Composite Material IndeX (CMIX): The Composite Material IndeX attribute
points to the Composite Material Table and provides the Radar client-device with
the type of material that the feature is made of. This information is used, in
addition to the width of the point feature, to provide a generic RCS of the target,
which is proportional to the reflection value of the various materials. The RCS is
then used by radar to determine the intensity of the radar image representing the
point feature, based on the aspect and grazing angles to the Radar Beam. Each
point contains a reference to a Composite Material.

3. Bounding Sphere Radius (BSR): The radius of the point is also taken into
consideration. This information is part of the vector data used to construct a 2D
radar image of the terrain. The width is part of the point object attributes.

4. Height (HGT): Since the radar sees the terrain with a perspective angle that can
be computed using the radar altitude and the feature distance, the height of objects
on the terrain becomes important to create the radar display image. This attribute
of the point is used to indicate the differential height of each point with respect to
the terrain height. In the example above, the trees all have the same average
altitude. The other point features have different height.

5. Position: The object point location in the CDB data store. The x and y coordinate
of each point is extracted from those objects. The position when combined with
the delta heights will create a pseudo-3D point feature object.

6. Orientation (AO1): The radar needs the orientation of each point feature. This is
needed because radar has a series of RCS tables, one for each of the Feature

67
Copyright © 2018 Open Geospatial Consortium

Identification Code. Those RCS tables give the RCS value for each incident
angle of the radar beam. This angle is computed by taking into account the radar
beam angle and the point feature orientation. For example, in the above drawing,
the radio antenna has an orientation of 90 degrees. This means that if a radar
beam comes from the right and points to the antenna at 270 degrees, the RCS
value will be at maximum. The radar simulation would use a RCS table that
represents the RCS with respect to the incident angle as follows:

Figure 6-24: Incident Angle

Figure 6-25: Beam Simulation

The radar then uses a beam simulation to process the above information and construct an
image representing the content of each small beam sections. The intersection of the beam
pie slice is compared with the point’s position and converted into an image whose
intensity is based on the computed RCS of the points. As mentioned above, this RCS
takes into account the attributes of each point feature.

68
Copyright © 2018 Open Geospatial Consortium

If the size of the object referred to by the point feature is much larger than a specific
threshold, the simulation could in addition use the MODL field of that point feature to
extract a more precise geometrical 3D model from the CDB to increase the simulation
fidelity.

6.13.4 Polygon Feature Radar Simulation Example
The following diagram represents a typical usage of a polygon feature as modeled in the
CDB for a radar client-device.

NOTE: With the introduction of version 3.2 of the CDB Standard (prior to OGC
submission), we recommend that the terrain-conformal features be modeled
using T2DModels and that radar client-devices use this modeled
representation instead of the vector linear and polygon features.

Currently, in a manner similar to the line example, the Radar extracts this polygon from
the data store using the ShapeFile (*.shp) file12 and constructs a tile in its memory. The
constructed tile will contain the necessary information for the radar to compute the
equivalent radar image using the radar cross-section (RCS) of the represented surface
polygon over the terrain intersecting the Radar beam.
In Figure 6-26: Four Polygon Features Stored in the Tile, four polygon features are stored
in the tile with their surface material and feature classification attributes. Each of the
features points to an array of segments.

12 Future versions of this Best Practice may include guidance on using other vector encodings such as
GeoJSON, GML, or GeoPackage.

69
Copyright © 2018 Open Geospatial Consortium

Figure 6-26: Four Polygon Features Stored in the Tile

The radar simulation uses the segment coordinates to construct a polygonal
representation on the radar image. It extracts the polygon feature attribute information
from the segments and constructs its tile data in memory. The necessary information
needed by the radar simulation is typically…

• Feature Code:
This information is the identification of the surface feature. It indicates if the
polygon feature represents a forest, a lake, or an airport runway for example. In
the above drawing, this would translate to a forested area, a grassy area, a
concrete section and a dual runway intersection.

• Composite Material IndeX (CMIX):
The Composite Material IndeX Surface Material Code attribute points to the
Composite Material Table and provides to the Radar with the type of material that
the feature is made of. This information is used, in addition to the shape of the
polygon feature, to provide a generic RCS of the simulated area. This RCS is
proportional to the reflection value of the various materials constituting the
polygon or the simulated texture of its components (e.g., an industrial area made
up of metallic roofs). The RCS is then used by radar to determine the intensity of
the radar image representing the polygon feature, based on the aspect and grazing
angles to the Radar Beam. Each chain will contain a reference to a material
namespace object in the CDB.

70
Copyright © 2018 Open Geospatial Consortium

• Height (HGT):
Normally, the radar simulation sees the terrain with a perspective angle that can
be computed using the radar altitude and the feature distance. Because of this
angle, the height of objects on the terrain becomes important to create the image
that the radar “sees”. This attribute of the chain is used to indicate the average
height of each polygon object. In the example above, the forested area could be
elevated to roughly 25 or 30 feet to produce a forest ”canopy” which will look
elevated to the radar.

The following image shows how a typical radar beam would intersect the different parts
of polygon features that are part of the terrain represented previously.
Figure 6-27: Radar Beam Simulation, shows the radar using a beam simulation to extract
the above information and construct an image representing the content of each small
beam sections (aka bins). The intersection of the beam pie slice is performed against the
polygon feature polygons. Then the material of the polygon falling in the beam bin is
converted into image intensity, which is relative to the computed RCS of that polygon’s
material. As mentioned above, this RCS takes into account the attributes of the segment
of each polygon feature.

Figure 6-27: Radar Beam Simulation

71
Copyright © 2018 Open Geospatial Consortium

6.14 Guideline: Vector Priority Tile-LOD Generation (Was A-21)
This section describes how to produce the finest Tile-LOD of linear and areal vector
datasets, and how to recursively generate the coarser Tile-LODs of these datasets.
There are two new terms that will be used in the lineal LOD generation process below:
interior vertex, and similar feature.

An interior vertex is any vertex that is not the first or last vertex of a network lineal
feature. Since the first and last vertices are usually junction vertices, modifying them
changes the connections of the feature, and thus the network topology. This LOD scheme
will seek to preserve network topology by only modifying interior vertices.

Similar features are connected features that describe a single conceptual linear, such as a
particular highway that has nearly identical attribution. Certain attributes, like the length
of the lineal (LENL), may not be identical. This LOD scheme merges such similar
features when possible to attain a better simplification.

6.14.1 Creation of the Finest Tile-LOD
The finest Tile-LOD for lineal and areal vector datasets can be determined and generated
using the following steps, starting with the full resolution dataset for a CDB Tile at the
coarsest Tile-LOD:

1. For each Tile-LOD, if the number of vertices is greater than the vertex limit
specified in Table 3-27, do the following:

a. If the current Tile-LOD is negative, go to the next finest LOD. If the
current Tile-LOD is non-negative, subdivide the tile into four finer Tile-
LODs.

b. For network lineal features, introduce Junction IDs at the boundaries of
tiles when features are subdivided into finer Tile-LODs.

c. Repeat step 1 on each subdivided tile.

It is recommended to stop when the vertex limit is satisfied so as to limit the number of
even finer Tile-LODs that would otherwise be necessary to simply satisfy the spatial
significance criterion alone.

6.14.2 Network Lineal Tile-LOD Generation
This section describes how to produce coarser Tile-LODs of lineal networks from finer
Tile-LODs, taking into account each vector’s priority, as defined in Section 5.7.1.6.4,
Network Vector Priority.

1. Begin with the set of finest Tile-LODs for this dataset determined in section
A.21.1 above.

2. Create the coarser Tile-LODs:
a. Merge up to four finer Tile-LODs by removing those junction IDs at the

tile boundary that are no longer necessary, by combining those features
that were split during the creation of the finest Tile-LOD.

72
Copyright © 2018 Open Geospatial Consortium

b. Remove any Junction IDs introduced to connect this feature to a figure
point or areal feature if both of the following criteria are satisfied:

i. The figure point or areal feature at the same LOD is no longer
present because of LOD generation for those datasets.

ii. There are two similar linear features that share this Junction ID and
have nearly identical attribution (only differing in LENL, for
example).

c. Remove interior vertices on all features such that the CDB Spatial
Significance criteria, described in Section 5.7.1.6.5, is satisfied.

d. If the vertex count limit is still exceeded, do the following:
i. Begin removing complete features in the lowest remaining priority

class if and only if they are not part of a longer connection (i.e.,
one endpoint junction ID is not connected to any other feature
including connecting to another tile).

ii. If there are no unconnected features in the lowest remaining
priority class, remove all features at that priority class.

iii. As lower priority class features are removed, merge similar higher
priority class features whose junctions were present only to
topologically connect to the removed features by converting the
junction to an interior vertex in the merged feature and adjusting
attribution like LENL to reflect the combined features.

iv. Repeat step d as necessary.
In the case that all features have been removed in step d, create empty Tile-LODs at this
and every coarser Tile-LOD to indicate the presence of content at finer LODs of this
dataset.

6.14.3 Non-Networked Lineal Tile-LOD Generation
Creating coarser Tile-LODs of non-network lineals from finer Tile-LODs is a process
similar to the one for networked lineals, but without the junction ID and topology
preserving steps.

1. Begin with the set of finest Tile-LODs for this dataset.
2. Create the coarser Tile-LODs:

a. Merge up to four finer Tile-LODs by combining features that were split
during the creation of the finest Tile-LOD.

b. Remove interior vertices on all features such that the CDB LOD based
spatial significance criteria from section 5.7.1.9.2 is satisfied.

c. If the vertex limit is still exceeded, begin removing features that have the
smallest significant size (as defined by section 5.7.1.9.1), until the number
of vertices remaining is below the vertex count limit.

In the case that all features have been removed in step c, create empty Tile-LODs at this
and every coarser Tile-LOD to indicate the presence of content at finer LODs of this
dataset.

6.14.4 Areal Tile-LOD Generation
This section describes how to produce coarser Tile-LODs of areal vector data from finer
Tile-LODs. For network areal data, there is a single Junction ID for the entire feature.

73
Copyright © 2018 Open Geospatial Consortium

Therefore, the network only requires the presence of the feature, rather than a specific
vertex, to maintain topological completeness. As such, network and non-network areals
can be treated similarly, where the important characteristics are whether a feature is
present in a particular Tile-LOD, and how precisely its shape has been preserved.

This process is similar to the one for lineal vectors.

1. Begin with the set of finest Tile-LODs for this dataset.
2. Create the coarser Tile-LODs:

a. Merge up to four finer Tile-LODs by combining features that were split
during the creation of the finest Tile-LOD.

b. Remove vertices on all areal features such that the CDB LOD based
spatial significance criteria from section 5.7.1.9.2 is satisfied.

i. For areal features that share a vertex, remove that vertex if and
only if the spatial significance criteria would remove it in each
individual areal vector. This will help maintain feature topology by
preserving shared edges between areal features.

c. If the vertex limit is exceeded, begin removing features that have the
smallest significant size (as defined by section 5.7.1.9.1), until the number
of vertices remaining is below the vertex limit.

d. In the case that all features have been removed in step c, create empty
Tile-LODs at this and every coarser Tile-LOD to indicate the presence of
content at finer LODs of this dataset.

74
Copyright © 2018 Open Geospatial Consortium

Annex B Revision history

Date Release Author Paragraph modified Description
11/23/2016 1.0 C. Reed Various Prepare for publication.
11/20/2017 1.1 C.Reed Various Minor edits for version 1.1. Also added

new clauses to make this document
consistent with late 3.2 changes as
approved by the user community.

