Open Geospatial Consortium
Submission Date 2024-11-21

Approval Date: <yyyy-mm-dd>

Publication Date: <yyyy-mm-dd>

External identifier of this OGC® document: <http://www.opengis.net/doc/[{doc-type/}]{standard}/{m.n}>

Internal reference number of this OGC® document: 24-060
Version: 1.0
Category: OGC® Community Standard

Editor: Matthias Mohr

openEO Processes Community Standard

Copyright notice
Copyright © 2025 Open Geospatial Consortium
License notice
Apache 2.0
Warning

This document is not an OGC Standard. This document is distributed for review and
comment. This document is subject to change without notice and may not be referred to
as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of
any relevant patent rights of which they are aware and to provide supporting

documentation.
Document type: OGC® Community Standard
Document subtype:
Document stage: Draft

Document language: English

Copyright © 2025 Open Geospatial Consortium

http://www.opengis.net/def/%5b%7bdoc-type/%7d%5d%7bstandard%7d/%7bm.n%7d

OGC openEO Processes Community Standard (v1.2.0)

#~ Search in processes

Show (J deprecated [J experimental

» Aggregate & Resample (5/8)
» Arrays (12/19)

» Climatology (3)

» Comparison (15/16)

» Cubes (27/41)

» Export (1)

» Filter (5/6)

» Import (2/5)

» Logic (7)

» Masks (3)

» Math (17/20)

» Math > Constants (4/5)

» Math > Exponential & Logarithmic (6)
» Math > Image Filter (1)

» Math > Indices (2)

Math > Rounding (4)

Math > Statistics (9)

Math > Trigonometric (14)
Reducer (17/19)

Sorting (3)

Texts (6)

Udf (1/2)

Vegetation Indices (2)

v v v v v v v Vv

Introduction

The OGC openEO Community Standard defines a set of well-defined processes in support of interoperable cloud-based
processing of large Earth observation datasets.

We recommend reading the glossary before diving into this specification. The glossary explains the most important terms used
in this specification.

The OGC openEO Community Standard consists of two parts:
« OGC openEO APl Community Standard, the accompanying API specification that enables discovery, chaining and

execution of the processes defined in this sepcification
» OGC openEO Processes Community Standard, this specification

Abstract

https://openeo.org/documentation/1.0/glossary.html

openEO specifies an open application programming interface (API) for connecting applications and other client software to big
Earth observation cloud back-ends in a simple and unified way.

The openEO specification aims at increasing the interoperability of big EO data processing of satellite imagery in the cloud.
Implementations of openEO can be used to add an interoperability layer on top of existing services. Its development has been
driven by the need to overcome the challenges associated with different tools, APls, and data formats in geospatial technology.
openEQO has been developed from the bottom up, with each version of the specification supported by implementations.

The primary use case for specifying openEO was to simplify and unify the data processing using a common APl and a
specification for a set of pre-defined processes. As such, users can still work in their favored programming language without
worrying about data organization and pre-processing. Users can avoid vendor lock-in as the generated process descriptions
can be executed at multiple provider endpoints, making it easier to compare and reproduce processing results between
different providers.

Source of this Document

The majority of the content in this OGC document is a direct copy of the content contained at hitps://github.com/Open-
EO/openeo-processes. No normative changes have been made to the content. This OGC document does contain content not
in source openEQO Processes GitHub repository. Specifically, while derived from content on the openEO Processes repository,
the chapters "Abstract”, "Source of this Document", "Submitting Organizations", and "Supporting Organizations" in this
document are not found on the openEQO Processes repository.

Submitting Organizations

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):
» openEO Project Steering Committee

The organizations listed above have granted the Open Geospatial Consortium (OGC) a nonexclusive, royalty-free, paid up,
worldwide license to copy and distribute this document and to modify this document and distribute copies of the modified
version under a Apache License, Version 2.0 (see below).

Supporting Organizations

The following organization (in alphabetical order) support the submission of the openEO Community Standard to the OGC:

« EOXIT Services GmbH

EUMETSAT

Eurac Research

European Space Agency (ESA)

GeoConnections - Natural Resources Canada
German Aerospace Center - DLR

Matthias Mohr - Softwareentwicklung

Planet Labs PBC

Telespazio VEGA UK Ltd

University of Mlnster - Institute for Geoinformatics
VITO (Flemish Institute for Technological Research)

License Agreement

The standard is licensed under the Apache License, Version 2.0. You can implement this standard in services, clients or
processing tools without restrictions.

absolute @

Absolute value

https://github.com/Open-EO/openeo-processes
https://github.com/Open-EO/openeo-processes
https://www.apache.org/licenses/LICENSE-2.0.html

Download JSON

Description

absolute(number|null x) : number|null

Computes the absolute value of a real number x, which is the "unsigned" portion of x and often denoted as /x/.

The no-data value null is passed through and therefore gets propagated.
Parameters

X*
A number.

Data type: number, null

Return Value
The computed absolute value.

Data type: number, null

Minimum value (inclusive): 0

Examples

Example #1

absolute(x = 8) => 0

Example #2

absolute(x = 3.5) => 3.5

Example #3
absolute(x = -0.4) => 0.4

Example #4
absolute(x = -3.5) => 3.5

See Also

» Absolute value explained by Wolfram MathWorld

http://mathworld.wolfram.com/AbsoluteValue.html

add @

Addition of two numbers

Download JSON

Description

add(number |null x, number|null y) : number|null

Sums up the two numbers x and y (x + y) and returns the computed sum.
No-data values are taken into account so that null is returned if any element is such a value.

The computations follow IEEE Standard 754 whenever the processing environment supports it.
Parameters

X*
The first summand.
Data type: number, null
y*
The second summand.

Data type: number, null

Return Value
The computed sum of the two numbers.

Data type: number, null

Examples

Example #1
add(x

5, y=2.5) =>7.5

Example #2
add(x

-2,y = -4) => -6

Example #3

add(x = 1, y = null) => null

https://ieeexplore.ieee.org/document/8766229

See Also

» |EEE Standard 754-2019 for Floating-Point Arithmetic
» Sum explained by Wolfram MathWorld

add_dimension §

Add a new dimension

Download JSON

Description

add_dimension(raster-cube data, string name, number|string label, ?string type = "other")
raster-cube

Adds a new named dimension to the data cube.

Afterwards, the dimension can be referred to with the specified name. If a dimension with the specified name exists, the
process fails with a DimensionExists exception. The dimension label of the dimension is set to the specified label.

Parameters

data*

A data cube to add the dimension to.

Data type: raster-cube

name*
Name for the dimension.

Data type: string

label*

A dimension label.

Data Types:

Data type: number

Data type: string

type "other"

https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/Sum.html

The type of dimension, defaults to other.

Data type: string

Allowed values: spatial, temporal, bands, other

Return Value

The data cube with a newly added dimension. The new dimension has exactly one dimension label. All other dimensions
remain unchanged.

Data type: raster-cube

Errors/Exceptions

o DimensionExists
Message: A dimension with the specified name already exists.

aggregate_spatial @

Zonal statistics for geometries

Download JSON

Description

aggregate_spatial(raster-cube data, geojson:object geometries, process-graph:object reducer,
?string target_dimension = "result", ?any context = null) : vector-cube

Aggregates statistics for one or more geometries (e.g. zonal statistics for polygons) over the spatial dimensions. The number
of total and valid pixels is returned together with the calculated values.

An 'unbounded' aggregation over the full extent of the horizontal spatial dimensions can be computed with the process
reduce_spatial.

This process passes a list of values to the reducer. The list of values has an undefined order, therefore processes such as
last and first that depend on the order of the values will lead to unpredictable results.

Parameters

data*
A raster data cube.
The data cube must have been reduced to only contain two spatial dimensions and a third dimension the values are

aggregated for, for example the temporal dimension to get a time series. Otherwise, this process fails with the
TooManyDimensions exception.

The data cube implicitly gets restricted to the bounds of the geometries as if filter_spatial would have been used
with the same values for the corresponding parameters immediately before this process.

Data type: raster-cube

geometries*
Geometries as GeoJSON on which the aggregation will be based.

One value will be computed per GeoJSON Feature, Geometry or GeometryCollection. Fora
FeatureCollection multiple values will be computed, one value per contained Feature. For example, a single
value will be computed for a MultiPolygon, but two values will be computed for a FeatureCollection containing
two polygons.

» For polygons, the process considers all pixels for which the point at the pixel center intersects with the
corresponding polygon (as defined in the Simple Features standard by the OGC).

» For points, the process considers the closest pixel center.

» For lines (line strings), the process considers all the pixels whose centers are closest to at least one point on the
line.

Thus, pixels may be part of multiple geometries and be part of multiple aggregations.

To maximize interoperability, a nested GeometryCollection should be avoided. Furthermore, a
GeometryCollection composed of a single type of geometries should be avoided in favour of the corresponding
multi-part type (e.g. MultiPolygon).

Data type: geojson:object

reducer*

A reducer to be applied on all values of each geometry. A reducer is a single process such as mean or a set of
processes, which computes a single value for a list of values, see the category 'reducer' for such processes.

Data type: User-defined Process (process-graph:object)

Parameters:

data*

An array with elements of any type.

Data type: array

Any data type.
Array items:
Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the vector data cube.

Any data type.

Data type: any

target_dimension = "result”
The new dimension name to be used for storing the results. Defaults to result.

Data type: string
context = null
Additional data to be passed to the reducer.

Any data type.

Data type: any

Return Value

A vector data cube with the computed results and restricted to the bounds of the geometries.
The computed value is used for the dimension with the name that was specified in the parameter target_dimension.

The computation also stores information about the total count of pixels (valid + invalid pixels) and the number of valid pixels
(see is_valid) for each geometry. These values are added as a new dimension with a dimension name derived from
target_dimension by adding the suffix _meta. The new dimension has the dimension labels total_count and
valid_count.

Data type: vector-cube

Errors/Exceptions

 TooManyDimensions

Message: The number of dimensions must be reduced to three for "aggregate_spatial".

See Also

» Aggregation explained in the openEO documentation
« Simple Features standard by the OGC

aggregate_spatial_window @

Zonal statistics for rectangular windows — experimental

Download JSON

https://openeo.org/documentation/1.0/datacubes.html#aggregate
http://www.opengeospatial.org/standards/sfa

Description

aggregate_spatial_window(raster-cube data, process-graph:object reducer, array<integer> size,
?string boundary = "pad", ?string align = "upper-left", ?any context = null) : raster-cube

Aggregates statistics over the horizontal spatial dimensions (axes x and y) of the data cube.

The pixel grid for the axes x and vy is divided into non-overlapping windows with the size specified in the parameter size. If
the number of values for the axes x and y is not a multiple of the corresponding window size, the behavior specified in the
parameters boundary and align is applied. For each of these windows, the reducer process computes the result.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

A raster data cube with exactly two horizontal spatial dimensions and an arbitrary number of additional dimensions. The
process is applied to all additional dimensions individually.

Data type: raster-cube

reducer*

A reducer to be applied on the list of values, which contain all pixels covered by the window. A reducer is a single
process such as mean or a set of processes, which computes a single value for a list of values, see the category
'reducer’ for such processes.

Data type: User-defined Process (process-graph:object)

Parameters:

data*

An array with elements of any type.

Data type: array

Any data type.
Array items:
Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the new data cube.

Any data type.

Data type: any

size*
Window size in pixels along the horizontal spatial dimensions.

The first value corresponds to the x axis, the second value corresponds to the y axis.

Data type: array<integer>
Min. number of items: 2

Max. number of items: 2

Data type: integer

Array items:
Minimum value (inclusive): 1

boundary = "pad"
Behavior to apply if the number of values for the axes x and y is not a multiple of the corresponding value in the size
parameter. Options are:

o pad (default): pad the data cube with the no-data value null to fit the required window size.
e trim: trim the data cube to fit the required window size.

Set the parameter align to specifies to which corner the data is aligned to.

Data type: string

Allowed values: pad, trim

align = "upper-left”
If the data requires padding or trimming (see parameter boundary), specifies to which corner of the spatial extent the
data is aligned to. For example, if the data is aligned to the upper left, the process pads/trims at the lower-right.

Data type: string

Allowed values: lower-left, upper-left, lower-right, upper-right

context = null
Additional data to be passed to the reducer.

Any data type.

Data type: any

Return Value

A data cube with the newly computed values and the same dimensions.

The resolution will change depending on the chosen values for the size and boundary parameter. It usually decreases for
the dimensions which have the corresponding parameter size set to values greater than 1.

The dimension labels will be set to the coordinate at the center of the window. The other dimension properties (name, type and
reference system) remain unchanged.

Data type: raster-cube

See Also

» Aggregation explained in the openEO documentation

aggregate_temporal @

Temporal aggregations

Download JSON

Description

aggregate_temporal(raster-cube data, temporal-intervals:array<temporal-
interval:array<string|null>> intervals, process-graph:object reducer, ?array<number|string>
labels = [], ?string|null dimension = null, ?any context = null) : raster-cube

Computes a temporal aggregation based on an array of temporal intervals.

For common regular calendar hierarchies such as year, month, week or seasons aggregate_temporal_period can be
used. Other calendar hierarchies must be transformed into specific intervals by the clients.

For each interval, all data along the dimension will be passed through the reducer.

The computed values will be projected to the labels. If no labels are specified, the start of the temporal interval will be used as
label for the corresponding values. In case of a conflict (i.e. the user-specified values for the start times of the temporal
intervals are not distinct), the user-defined labels must be specified in the parameter 1labels as otherwise a
DistinctDimensionlLabelsRequired exception would be thrown. The number of user-defined labels and the number of
intervals need to be equal.

If the dimension is not set or is set to null, the data cube is expected to only have one temporal dimension.
Parameters

data*
A data cube.

Data type: raster-cube

intervals*

Left-closed temporal intervals, which are allowed to overlap. Each temporal interval in the array has exactly two
elements:

https://openeo.org/documentation/1.0/datacubes.html#aggregate

1. The first element is the start of the temporal interval. The specified instance in time is included in the interval.
2. The second element is the end of the temporal interval. The specified instance in time is excluded from the
interval.

The specified temporal strings follow RFC 3339. Although RFC 3339 prohibits the hour to be '24', this process allows
the value '24' for the hour of an end time in order to make it possible that left-closed time intervals can fully cover the
day.

temporal-intervals:array<temporal-interval:array<date-

Data type: time:stringldate:stringltime:stringlyear:stringlnull>>

Min. number of items: 1

temporal-interval:array<date-

Data type: time:stringldate:stringltime:stringlyear:stringlnull>

Min. number of items: 2

Array items:
Max. number of items: 2
Array items: Data type: any
e [["2015-081-01", "2016-01-01"], ["2016-01-01", "2017-
91-01"], ["2017-01-01", "2018-01-01"]]
Examples: e [["00:00:00Z", "12:00:00Z"], ["12:00:00Z",
"24:00:00Z"] 1]
reducer*

A reducer to be applied for the values contained in each interval. A reducer is a single process such as mean or a set of
processes, which computes a single value for a list of values, see the category 'reducer' for such processes. Intervals
may not contain any values, which for most reducers leads to no-data (null) values by default.

Data type: User-defined Process (process-graph:object)

Parameters:

data*
A labeled array with elements of any type. If there's no data for the interval, the array is empty.

Data type: labeled-array

Any data type.
Array items:
Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc3339.html#section-5.7

Expected Return Value:
The value to be set in the new data cube.

Any data type.

Data type: any

labels = []

Distinct labels for the intervals, which can contain dates and/or times. Is only required to be specified if the values for
the start of the temporal intervals are not distinct and thus the default labels would not be unique. The number of labels
and the number of groups need to be equal.

Data type: array<numberlstring>

dimension = null

The name of the temporal dimension for aggregation. All data along the dimension is passed through the specified
reducer. If the dimension is not set or set to null, the data cube is expected to only have one temporal dimension.
Fails with a TooManyDimensions exception if it has more dimensions. Fails with a DimensionNotAvailable
exception if the specified dimension does not exist.

Data type: string, null

context = null
Additional data to be passed to the reducer.

Any data type.

Data type: any

Return Value

A new data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution)
remain unchanged, except for the resolution and dimension labels of the given temporal dimension.

Data type: raster-cube

Errors/Exceptions

 TooManyDimensions

Message: The data cube contains multiple temporal dimensions. The parameter ‘dimension’ must be specified.
« DimensionNotAvailable

Message: A dimension with the specified name does not exist.
o DistinctDimensionLabelsRequired

Message: The dimension labels have duplicate values. Distinct labels must be specified.

Examples

Example #1

aggregate_temporal(data = Sdata, intervals = [["2015-01-01","20816-081-01"],["2016-01-
91","2017-01-01"]1,["2017-01-01", "2018-01-01"],["2018-01-01", "2019-01-061"],["2019-01-
01","2020-81-01"]], reducer = {"process_graph":{"mean1":

{"process_id" :"mean", "arguments" :{"data" :{"from_parameter":"data"}}, "result":true}}},
labels = ["2015","2016","2017","2018","2019"])

See Also

» Aggregation explained in the openEO documentation

aggregate_temporal_period @

Temporal aggregations based on calendar hierarchies

Download JSON

Description

aggregate_temporal_period(raster-cube data, string period, process-graph:object reducer, ?
string|null dimension = null, ?any context = null) : raster-cube

Computes a temporal aggregation based on calendar hierarchies such as years, months or seasons. For other calendar
hierarchies aggregate_temporal can be used.

For each interval, all data along the dimension will be passed through the reducer.

If the dimension is not set or is set to null, the data cube is expected to only have one temporal dimension.
Parameters

data*

The source data cube.

Data type: raster-cube

period*
The time intervals to aggregate. The following pre-defined values are available:

e hour: Hour of the day

o day: Day of the year

« week: Week of the year

« dekad: Ten day periods, counted per year with three periods per month (day 1 - 10, 11 - 20 and 21 - end of
month). The third dekad of the month can range from 8 to 11 days. For example, the fourth dekad is Feb, 1 - Feb,
10 each year.

https://openeo.org/documentation/1.0/datacubes.html#aggregate

« month: Month of the year

« season: Three month periods of the calendar seasons (December - February, March - May, June - August,
September - November).

« tropical-season: Six month periods of the tropical seasons (November - April, May - October).

« year: Proleptic years

« decade: Ten year periods (0-to-9 decade), from a year ending in a 0 to the next year ending in a 9.

« decade-ad: Ten year periods (1-to-0 decade) better aligned with the anno Domini (AD) calendar era, from a
year ending in a 1 to the next year ending in a 0.

Data type: string

Allowed values: hour, day, week, dekad, month, season, tropical-season, year, decade, decade-ad

reducer*

A reducer to be applied for the values contained in each period. A reducer is a single process such as mean or a set of
processes, which computes a single value for a list of values, see the category 'reducer' for such processes. Periods
may not contain any values, which for most reducers leads to no-data (null) values by default.

Data type: User-defined Process (process-graph:object)

Parameters:

data*
A labeled array with elements of any type. If there's no data for the period, the array is empty.

Data type: labeled-array

Any data type.
Array items:

Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the new data cube.

Any data type.

Data type: any

dimension = null

The name of the temporal dimension for aggregation. All data along the dimension is passed through the specified
reducer. If the dimension is not set or set to null, the source data cube is expected to only have one temporal
dimension. Fails with a TooManyDimensions exception if it has more dimensions. Fails with a
DimensionNotAvailable exception if the specified dimension does not exist.

https://en.wikipedia.org/wiki/Decade#0-to-9_decade
https://en.wikipedia.org/wiki/Decade#1-to-0_decade

Data type: string, null

context = null
Additional data to be passed to the reducer.

Any data type.

Data type: any

Return Value

A new data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution)
remain unchanged, except for the resolution and dimension labels of the given temporal dimension. The specified temporal
dimension has the following dimension labels (YYYY = four-digit year, MM = two-digit month, DD two-digit day of month):

« hour: YYYY-MM-DD-00 - YYYY-MM-DD-23

o day: YYYY-001 - YYYY-365

o week: YYYY-0T - YYYY-52

o dekad: YYYY-00 - YYYY-36

o month: YYYY-01 - YYYY-12

» season: YYYY-djf (December - February), YYYY-mam (March - May), YYYY-jja (June - August), YYYY-son
(September - November).

» tropical-season: YYYY-ndjfma (November - April), YYYY-mjjaso (May - October).

e year: YYYY

» decade: YYYO

« decade-ad: YYY1

The dimension labels in the new data cube are complete for the whole extent of the source data cube. For example, if period
is set to day and the source data cube has two dimension labels at the beginning of the year (2020-01-01) and the end of a
year (2020-12-31), the process returns a data cube with 365 dimension labels (2020-001, 2020-002, ..., 2020-365). In
contrast, if period is setto day and the source data cube has just one dimension label 2620-01-85, the process returns a
data cube with just a single dimension label (2020-005).

Data type: raster-cube

Errors/Exceptions

« TooManyDimensions

Message: The data cube contains multiple temporal dimensions. The parameter ‘dimension™ must be specified.

o DimensionNotAvailable

Message: A dimension with the specified name does not exist.

o DistinctDimensionLabelsRequired

Message: The dimension labels have duplicate values. Distinct labels must be specified.

See Also

» Aggregation explained in the openEO documentation

https://openeo.org/documentation/1.0/datacubes.html#aggregate

all @

Are all of the values true?

Download JSON

Description

all(array<boolean|null> data, ?boolean ignore_nodata = true) : boolean|null

Checks if all of the values in data are true. If no value is given (i.e. the array is empty) the process returns null.

By default all no-data values are ignored so that the process returns null if all values are no-data, true if all values are true
and false otherwise. Setting the ignore_nodata flag to false takes no-data values into account and the array values are
reduced pairwise according to the following truth table:

|| null | false | true
————— I B B
null || null | false | null
false || false | false | false
true || null | false | true

Remark: The process evaluates all values from the first to the last element and stops once the outcome is unambiguous. A
result is ambiguous unless a value is false or all values have been taken into account.

Parameters

data*

A set of boolean values.

Data type: array<booleaninull>

ignore_nodata = true
Indicates whether no-data values are ignored or not and ignores them by default.

Data type: boolean

Return Value
Boolean result of the logical operation.

Data type: boolean, null

Examples

Example #1
all(data = [false,null]) => false

Example #2
all(data

Example #3
all(data

Example #4
all(data

Example #5
all(data

Example #6
all(data

Example #7
all(data

Example #8
all(data

Example #9
all(data

Example #10
all(data

and §

Logical AND

Description

[true,null]) => true

[false,null], ignore_nodata = false) => false

[true,null], ignore_nodata = false) => null

[true, false, true, false]) => false

[true, false]) => false

[true, true]) => true

[true]) => true

[null], ignore_nodata = false) => null

[1) => null

and(boolean|null x, boolean|null y) : boolean|null

Checks if both values are true.

Download JSON

Evaluates parameter x before y and stops once the outcome is unambiguous. If any argument is null, the result will be
null if the outcome is ambiguous.

Truth table:

a\b || null | false | true
————— I el B

null || null | false | null
false || false | false | false
true || null | false | true
Parameters
X*

A boolean value.
Data type: boolean, null
y*
A boolean value.

Data type: boolean, null

Return Value
Boolean result of the logical AND.

Data type: boolean, null

Examples

Example #1

true) => true

and(x = true, y

Example #2

and(x = true, y = false) => false

Example #3

and(x = false, y = false) => false

Example #4

and(x = false, y = null) => false

Example #5

and(x = true, y = null) => null

anomaly @

Compute anomalies

Download JSON

Description

anomaly(raster-cube data, raster-cube normals, string period) : raster-cube

Computes anomalies based on normals for temporal periods. It compares the data for each label in the temporal dimension
with the corresponding data in the normals data cube by subtracting the normal from the data.

Parameters

data*

A data cube with exactly one temporal dimension and the following dimension labels for the given period (YYYY = four-
digit year, MM = two-digit month, DD two-digit day of month):

e hour: YYYY-MM-DD-00 - YYYY-MM-DD-23

o day: YYYY-001 - YYYY-365

e week: YYYY-01 - YYYY-52

o dekad: YYYY-00 - YYYY-36

e« month: YYYY-01 - YYYY-12

o season: YYYY-djf (December - February), YYYY-mam (March - May), YYYY-jja (June - August), YYYY-son
(September - November).

o tropical-season: YYYY-ndjfma (November - April), YYYY-mjjaso (May - October).

e year: YYYY

e decade: YYYO

o decade-ad: YYY1

« single-period / climatology-period: Any

aggregate_temporal_period can compute such a data cube.

Data type: raster-cube

normals*

A data cube with normals, e.g. daily, monthly or yearly values computed from a process such as
climatological_normal. Must contain exactly one temporal dimension with the following dimension labels for the
given period:

e hour: 00 - 23

o day: 001 - 365

e week: 01 - 52

o dekad: 00 - 36

e« month: @1 - 12

o season: djf (December - February), mam (March - May), jja (June - August), son (September - November)
o tropical-season: ndjfma (November - April), mjjaso (May - October)

» year: Four-digit year numbers

» decade: Four-digit year numbers, the last digit being a @

« decade-ad: Four-digit year numbers, the last digit being a 1

e single-period / climatology-period: A single dimension label with any name is expected.

Data type: raster-cube

period*
Specifies the time intervals available in the normals data cube. The following options are available:

e hour: Hour of the day

« day: Day of the year

« week: Week of the year

« dekad: Ten day periods, counted per year with three periods per month (day 1 - 10, 11 - 20 and 21 - end of
month). The third dekad of the month can range from 8 to 11 days. For example, the fourth dekad is Feb, 1 - Feb,
10 each year.

« month: Month of the year

« season: Three month periods of the calendar seasons (December - February, March - May, June - August,
September - November).

« tropical-season: Six month periods of the tropical seasons (November - April, May - October).

« year: Proleptic years

- decade: Ten year periods (0-to-9 decade), from a year ending in a 0 to the next year ending in a 9.

« decade-ad: Ten year periods (1-t0-0 decade) better aligned with the anno Domini (AD) calendar era, from a
year ending in a 1 to the next year ending in a 0.

« single-period / climatology-period: A single period of arbitrary length

Data type: string

hour, day, week, dekad, month, season, tropical-season, year, decade, decade-ad,

Allowed values: climatology-period, single-period

Return Value

A data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution) remain
unchanged.

Data type: raster-cube

any @

Is at least one value true?

Download JSON

Description

any(array<boolean|null> data, ?boolean ignore_nodata = true) : boolean|null

Checks if any (i.e. at least one) value in data is true. If no value is given (i.e. the array is empty) the process returns null.

By default all no-data values are ignored so that the process returns null if all values are no-data, true if at least one value
is true and false otherwise. Setting the ignore_nodata flag to false takes no-data values into account and the array
values are reduced pairwise according to the following truth table:

https://en.wikipedia.org/wiki/Decade#0-to-9_decade
https://en.wikipedia.org/wiki/Decade#1-to-0_decade

null | false | true

I
|
| null | null | true
|
I

null |
false || null | false | true
true || true | true | true

Remark: The process evaluates all values from the first to the last element and stops once the outcome is unambiguous. A
result is ambiguous unless a value is true.

Parameters

data*

A set of boolean values.

Data type: array<booleaninull>

ignore_nodata = true
Indicates whether no-data values are ignored or not and ignores them by default.

Data type: boolean

Return Value
Boolean result of the logical operation.
Data type: boolean, null

Examples

Example #1

any(data [false,null]) => false

Example #2

any(data [true,null]) => true

Example #3

any(data [false,null], ignore_nodata = false) => null

Example #4

any(data [true,null], ignore_nodata = false) => true

Example #5

any(data [true, false, true, false]) => true

Example #6
any(data = [true,false]) => true
Example #7
any(data = [false,false]) => false
Example #8
any(data = [true]) => true
Example #9
any(data = [null], ignore_nodata = false) => null
Example #10
any(data = []) => null

apply @
Apply a process to each pixel

Download JSON

Description

apply(raster-cube data, process-graph:object process, ?any context = null) : raster-cube

Applies a process to each pixel value in the data cube (i.e. a local operation). In contrast, the process apply_dimension
applies a process to all pixel values along a particular dimension.

Parameters
data*

A data cube.

Data type: raster-cube

process*

A process that accepts and returns a single value and is applied on each individual value in the data cube. The process
may consist of multiple sub-processes and could, for example, consist of processes such as abs or
linear_scale_range.

Data type: User-defined Process (process-graph:object)

Parameters:

X*
The value to process.

Any data type.

Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:

The value to be set in the new data cube.

Any data type.

Data type: any

context = null
Additional data to be passed to the process.

Any data type.

Data type: any

Return Value

A data cube with the newly computed values and the same dimensions. The dimension properties (name, type, labels,
reference system and resolution) remain unchanged.

Data type: raster-cube

See Also

» Apply explained in the openEO documentation

https://openeo.org/documentation/1.0/datacubes.html#apply

apply_dimension @

Apply a process to pixels along a dimension

Download JSON

Description

apply_dimension(raster-cube data, process-graph:object process, string dimension, ?
string|null target_dimension = null, ?any context = null) : raster-cube

Applies a process to all pixel values along a dimension of a raster data cube. For example, if the temporal dimension is
specified the process will work on a time series of pixel values.

The process reduce_dimension also applies a process to pixel values along a dimension, but drops the dimension
afterwards. The process apply applies a process to each pixel value in the data cube.

The target dimension is the source dimension if not specified otherwise in the target_dimension parameter. The pixel
values in the target dimension get replaced by the computed pixel values. The name, type and reference system are
preserved.

The dimension labels are preserved when the target dimension is the source dimension and the number of pixel values in the
source dimension is equal to the number of values computed by the process. Otherwise, the dimension labels will be
incrementing integers starting from zero, which can be changed using rename_labels afterwards. The number of labels will
equal to the number of values computed by the process.

Parameters
data*

A data cube.

Data type: raster-cube

process*

Process to be applied on all pixel values. The specified process needs to accept an array and must return an array with
at least one element. A process may consist of multiple sub-processes.

Data type: User-defined Process (process-graph:object)

Parameters:

data*

A labeled array with elements of any type.

Data type: labeled-array

Any data type.
Array items:
Data type: any

context = null

Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the new data cube.

Data type: array

Any data type.
Array items:
Data type: any

dimension*

The name of the source dimension to apply the process on. Fails with a DimensionNotAvailable exception if the
specified dimension does not exist.

Data type: string

target_dimension = null

The name of the target dimension or null (the default) to use the source dimension specified in the parameter
dimension.

By specifying a target dimension, the source dimension is removed. The target dimension with the specified name and
the type other (see add_dimension) is created, if it doesn't exist yet.

Data type: string, null

context = null
Additional data to be passed to the process.

Any data type.

Data type: any

Return Value

A data cube with the newly computed values.

All dimensions stay the same, except for the dimensions specified in corresponding parameters. There are three cases how
the dimensions can change:

1. The source dimension is the target dimension:
o The (number of) dimensions remain unchanged as the source dimension is the target dimension.
o The source dimension properties name and type remain unchanged.

o The dimension labels, the reference system and the resolution are preserved only if the number of pixel values in
the source dimension is equal to the number of values computed by the process. Otherwise, all other dimension
properties change as defined in the list below.

2. The source dimension is not the target dimension and the latter exists:

o The number of dimensions decreases by one as the source dimension is dropped.

o The target dimension properties name and type remain unchanged. All other dimension properties change as
defined in the list below.

3. The source dimension is not the target dimension and the latter does not exist:

o The number of dimensions remain unchanged, but the source dimension is replaced with the target dimension.

o The target dimension has the specified name and the type other. All other dimension properties are set as defined
in the list below.

Unless otherwise stated above, for the given (target) dimension the following applies:

» the number of dimension labels is equal to the number of values computed by the process,
» the dimension labels are incrementing integers starting from zero,

the resolution changes, and

« the reference system is undefined.

Data type: raster-cube

Errors/Exceptions

o DimensionNotAvailable

Message: A dimension with the specified name does not exist.

See Also

« Apply explained in the openEO documentation

apply_kernel @

Apply a spatial convolution with a kernel

Download JSON

Description

apply_kernel(raster-cube data, kernel:array<array<number>> kernel, ?number factor = 1, ?
string|number border = @, ?number replace_invalid = 8) : raster-cube

Applies a 2D convolution (i.e. a focal operation with a weighted kernel) on the horizontal spatial dimensions (axes x and y) of
the data cube.

Each value in the kernel is multiplied with the corresponding pixel value and all products are summed up afterwards. The sum
is then multiplied with the factor.

The process can't handle non-numerical or infinite numerical values in the data cube. Boolean values are converted to integers
(false =0, true = 1), but all other non-numerical or infinite values are replaced with zeroes by default (see parameter
replace_invalid).

For cases requiring more generic focal operations or non-numerical values, see apply_neighborhood.

https://openeo.org/documentation/1.0/datacubes.html#apply

Parameters

data*

A data cube.

Data type: raster-cube

kernel*

Kernel as a two-dimensional array of weights. The inner level of the nested array aligns with the x axis and the outer

level aligns with the y axis. Each level of the kernel must have an uneven number of elements, otherwise the process
throws a KernelDimensionsUneven exception.

A two-dimensional array of numbers.

Data type: kernel:array<array<number>>

Data type: array<number>
Array items:
Array items: Data type: number

factor = 1

A factor that is multiplied to each value after the kernel has been applied.

This is basically a shortcut for explicitly multiplying each value by a factor afterwards, which is often required for some
kernel-based algorithms such as the Gaussian blur.

Data type: number

border = ©

Determines how the data is extended when the kernel overlaps with the borders. Defaults to fill the border with zeroes
The following options are available:

numeric value - fill with a user-defined constant number n: nnnnnn|abcdefgh|nnnnnn (default, with n = 0)
replicate - repeat the value from the pixel at the border: aaaaaa|abcdefgh|hhhhhh

reflect - mirror/reflect from the border: fedcba|abcdefgh|hgfedc

reflect_pixel - mirror/reflect from the center of the pixel at the border: gfedcb |abcdefgh|gfedch
wrap - repeat/wrap the image: cdefgh|abcdefgh|abcdef

Data Types:

Data type: string

Allowed values: replicate, reflect, reflect_pixel, wrap

Data type: number

replace_invalid = ©
This parameter specifies the value to replace non-numerical or infinite numerical values with. By default, those values
are replaced with zeroes.

Data type: number

Return Value

A data cube with the newly computed values and the same dimensions. The dimension properties (name, type, labels,
reference system and resolution) remain unchanged.

Data type: raster-cube

Errors/Exceptions

o KernelDimensionsUneven

Message: Each dimension of the kernel must have an uneven number of elements.

See Also

« Apply explained in the openEO documentation
« Convolutions explained
« Example of 2D Convolution

apply_neighborhood @

Apply a process to pixels in a n-dimensional neighborhood

Download JSON

Description

apply_neighborhood(raster-cube data, process-graph:object process, array<chunk-size:object>
size, ?array<chunk-size:object> overlap, ?any context = null) : raster-cube

Applies a focal process to a data cube.

A focal process is a process that works on a 'neighborhood' of pixels. The neighborhood can extend into multiple dimensions,
this extent is specified by the size argument. It is not only (part of) the size of the input window, but also the size of the output
for a given position of the sliding window. The sliding window moves with multiples of size.

An overlap can be specified so that neighborhoods can have overlapping boundaries. This allows for continuity of the output.
The values included in the data cube as overlap can't be modified by the given process. The missing overlap at the borders
of the original data cube are made available as no-data (null) in the sub data cubes.

The neighborhood size should be kept small enough, to avoid running beyond computational resources, but a too small size
will result in a larger number of process invocations, which may slow down processing. Window sizes for spatial dimensions
typically are in the range of 64 to 512 pixels, while overlaps of 8 to 32 pixels are common.

The process must not add new dimensions, or remove entire dimensions, but the result can have different dimension labels.

https://openeo.org/documentation/1.0/datacubes.html#apply
http://www.songho.ca/dsp/convolution/convolution.html
http://www.songho.ca/dsp/convolution/convolution2d_example.html

For the special case of 2D convolution, it is recommended to use apply_kernel.

Parameters

data*
A data cube.

Data type: raster-cube

process*
Process to be applied on all neighborhoods.

Data type: User-defined Process (process-graph:object)

Parameters:

data*

A subset of the data cube as specified in context and overlap.

Data type: raster-cube

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:

The data cube with the newly computed values and the same dimensions. The dimension properties (name, type,
labels, reference system and resolution) must remain unchanged, otherwise a
DataCubePropertiesImmutable exception will be thrown.

Data type: raster-cube

size*
Neighborhood sizes along each dimension.

This object maps dimension names to either a physical measure (e.g. 100 m, 10 days) or pixels (e.g. 32 pixels). For
dimensions not specified, the default is to provide all values. Be aware that including all values from overly large
dimensions may not be processed at once.

Data type: array<chunk-size:object>

Array items: . .
Data type: chunk-size:object

Object Properties:

dimension * Datatype: string

value *

unit

overlap

Data type: any

Default value: null

The unit the values are given in, either in meters (m) or pixels (
px). If no unit is given, uses the unit specified for the dimension
or otherwise the default unit of the reference system.

Data type: string

Allowed values: px, m

Overlap of neighborhoods along each dimension to avoid border effects.

For instance a temporal dimension can add 1 month before and after a neighborhood. In the spatial dimensions, this is
often a number of pixels. The overlap specified is added before and after, so an overlap of 8 pixels will add 8 pixels on

both sides of the window, so 16 in total.

Be aware that large overlaps increase the need for computational resources and modifying overlapping data in

subsequent operations have no effect.

Data type: array<chunk-size:object>

Data type: chunk-size:object

Object Properties:

dimension *

value *

Array items:
unit

context = null

Data type: string

Data type: any

Default value: null

The unit the values are given in, either in meters (m) or pixels (
px). If no unit is given, uses the unit specified for the dimension
or otherwise the default unit of the reference system.

Data type: string

Allowed values: px, m

Additional data to be passed to the process.

Any data type.

Data type: any

Return Value

A data cube with the newly computed values and the same dimensions. The dimension properties (name, type, labels,
reference system and resolution) remain unchanged.

Data type: raster-cube

Errors/Exceptions

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

» DataCubePropertiesImmutable

Message: The dimension properties (name, type, labels, reference system and resolution) must remain unchanged.

Examples

Example #1

apply_neighborhood(data = Sdata, process = {"process_graph":{"udf":
{"process_id" :"run_udf", "arguments" :{"data":
{"from_parameter":"data"}, "udf":"ml.py", "runtime" :"Python"}, "result":true}}}, size =
[{"dimension":"x", "value":128, "unit":"px"}, {"dimension":"y", "value" :128, "unit" :"px"},
{"dimension":"t", "value":"P5D"}], overlap = [{"dimension":"x", "value":16, "unit":"px"},
{"dimension":"y", "value":16, "unit":"px"}, {"dimension":"t", "value" :"P3D"}])

See Also

» Apply explained in the openEO documentation

arccos

Inverse cosine

Download JSON

Description

arccos(number |null x) : number|null

Computes the arc cosine of x. The arc cosine is the inverse function of the cosine so that arccos(cos(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.

Parameters

https://openeo.org/documentation/1.0/datacubes.html#apply

X*
A number.

Data type: number, null

Return Value
The computed angle in radians.

Data type: number, null

Examples

Example #1

arccos(x = 1) => 0

See Also

« Inverse cosine explained by Wolfram MathWorld

arcosh @

Inverse hyperbolic cosine

Description

arcosh(number |null x) : number|null

Computes the inverse hyperbolic cosine of X. It is the inverse function of the hyperbolic cosine so that

arcosh(cosh(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.

Parameters

X*
A number.

Data type: number, null

Download JSON

http://mathworld.wolfram.com/InverseCosine.html

Return Value
The computed angle in radians.

Data type: number, null

Examples

Example #1

arcosh(x = 1) => 0

See Also

« Inverse hyperbolic cosine explained by Wolfram MathWorld

arcsin @

Inverse sine

Description

arcsin(number|null x) : number|null

Computes the arc sine of x. The arc sine is the inverse function of the sine so that arcsin(sin(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.

Parameters
X*
A number.

Data type: number, null

Return Value
The computed angle in radians.

Data type: number, null

Download JSON

http://mathworld.wolfram.com/InverseHyperbolicCosine.html

Examples

Example #1

arcsin(x = @) => 0

See Also

« Inverse sine explained by Wolfram MathWorld

arctan

Inverse tangent

Description

arctan(number|null x) : number|null

Download JSON

Computes the arc tangent of x. The arc tangent is the inverse function of the tangent so that arctan(tan(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.

Parameters

X*
A number.

Data type: number, null

Return Value
The computed angle in radians.

Data type: number, null

Examples

Example #1

arctan(x = 0) => 0

http://mathworld.wolfram.com/InverseSine.html

See Also

« Inverse tangent explained by Wolfram MathWorld

arctan2 @

Inverse tangent of two numbers

Description

arctan2(number|null y, number|null x)

: number|null

Download JSON

Computes the arc tangent of two numbers x and vy. It is similar to calculating the arc tangent of y / x, except that the signs

of both arguments are used to determine the quadrant of the result.

Works on radians only. The no-data value null is passed through and therefore gets propagated if any of the arguments is

null.

Parameters

y*

A number to be used as the dividend.

Data type: number, null

X*

A number to be used as the divisor.

Data type: number, null

Return Value
The computed angle in radians.
Data type: number, null

Examples

Example #1

arctan2(y = 9, x = 0) => 0

http://mathworld.wolfram.com/InverseTangent.html

Example #2

arctan2(y = null, x = 1.5) => null

See Also

» Two-argument inverse tangent explained by Wikipedia

ard_normalized _radar backscatter @

CARDA4L compliant SAR NRB generation — experimental

Download JSON

Description

ard_normalized_radar_backscatter(raster-cube data, ?collection-id:string|null elevation_model
= null, ?boolean contributing_area = false, ?boolean ellipsoid_incidence_angle = false, ?
boolean noise_removal = true, ?object options = {}) : raster-cube

Computes CARDA4L compliant backscatter from SAR input. The radiometric correction coefficient is gammao (terrain), which is
the ground area computed with terrain earth model in sensor line of sight.

Note that backscatter computation may require instrument specific metadata that is tightly coupled to the original SAR
products. As a result, this process may only work in combination with loading data from specific collections, not with general
data cubes.

This process uses bilinear interpolation, both for resampling the DEM and the backscatter.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
The source data cube containing SAR input.

Data type: raster-cube

elevation_model = null
The digital elevation model to use. Set to null (the default) to allow the back-end to choose, which will improve
portability, but reduce reproducibility.

Data Types:

Data type: collection-id:string

https://en.wikipedia.org/wiki/Atan2

Data type: null

contributing_area = false

If setto true, a DEM-based local contributing area band named contributing_area is added. The values are
given in square meters.

Data type: boolean

ellipsoid_incidence_angle = false
If setto true, an ellipsoidal incidence angle band named ellipsoid_incidence_angle is added. The values are
given in degrees.

Data type: boolean

noise_removal = true
If setto false, no noise removal is applied. Defaults to true, which removes noise.

Data type: boolean

options = {}
Proprietary options for the backscatter computations. Specifying proprietary options will reduce portability.

Data type: object

Each property: X No

Return Value

Backscatter values expressed as gammao in linear scale.

In addition to the bands contributing_area and ellipsoid_incidence_angle that can optionally be added with
corresponding parameters, the following bands are always added to the data cube:

« mask: A data mask that indicates which values are valid (1), invalid (0) or contain no-data (null).
« local_incidence_angle: Aband with DEM-based local incidence angles in degrees.

The data returned is CARDA4L compliant with corresponding metadata.

Data type: raster-cube

Errors/Exceptions

o DigitalElevationModelInvalid

Message: The digital elevation model specified is either not a DEM or can't be used with the data cube given.

See Also

» CEOS CARDA4L specification
« Gamma nought (0) explained by EO4GEO body of knowledge.
» Reasoning behind the choice of bilinear resampling

ard_surface_reflectance @

CARDA4L compliant Surface Reflectance generation — experimental

Download JSON

Description

ard_surface_reflectance(raster-cube data, string atmospheric_correction_method, string
cloud_detection_method, ?collection-id:string|null elevation_model = null, ?object
atmospheric_correction_options = {}, ?object cloud_detection_options = {}) : raster-cube

Computes CARDA4L compliant surface (bottom of atmosphere/top of canopy) reflectance values from optical input.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

The source data cube containing multi-spectral optical top of the atmosphere (TOA) reflectances. There must be a
single dimension of type bands available.

Data type: raster-cube

atmospheric_correction_method*
The atmospheric correction method to use.

Data type: string
Allowed values: FORCE, iCOR

cloud_detection_method*
The cloud detection method to use.

Each method supports detecting different atmospheric disturbances such as clouds, cloud shadows, aerosols, haze,
ozone and/or water vapour in optical imagery.

Data type: string

Allowed values: Fmask, s2cloudless, Sen2Cor

http://ceos.org/ard/files/PFS/NRB/v5.0/CARD4L-PFS_Normalised_Radar_Backscatter-v5.0.pdf
https://bok.eo4geo.eu/PP2-2-4-3
https://doi.org/10.3390/data4030093

elevation_model = null

The digital elevation model to use. Set to null (the default) to allow the back-end to choose, which will improve
portability, but reduce reproducibility.

Data Types:

Data type: collection-id:string

Data type: null

atmospheric_correction_options = {}

Proprietary options for the atmospheric correction method. Specifying proprietary options will reduce portability.

Data type: object

Each property: X No

cloud_detection_options = {}

Proprietary options for the cloud detection method. Specifying proprietary options will reduce portability.

Data type: object

Each property: X No

Return Value

Data cube containing bottom of atmosphere reflectances for each spectral band in the source data cube, with atmospheric
disturbances like clouds and cloud shadows removed. No-data values (null) are directly set in the bands. Depending on the
methods used, several additional bands will be added to the data cube:

Data cube containing bottom of atmosphere reflectances for each spectral band in the source data cube, with atmospheric
disturbances like clouds and cloud shadows removed. Depending on the methods used, several additional bands will be
added to the data cube:

date (optional): Specifies per-pixel acquisition timestamps.

incomplete-testing (required): Identifies pixels with a value of 1 for which the per-pixel tests (at least saturation,
cloud and cloud shadows, see CARDA4L specification for details) have not all been successfully completed. Otherwise,
the value is 0.

saturation (required) / saturation_{band} (optional): Indicates where pixels in the input spectral bands are
saturated (1) or not (0). If the saturation is given per band, the band names are saturation_{band} with {band}
being the band name from the source data cube.

cloud, shadow (both required),aerosol, haze, ozone, water_vapor (all optional): Indicates the probability of
pixels being an atmospheric disturbance such as clouds. All bands have values between 0 (clear) and 1, which
describes the probability that it is an atmospheric disturbance.

snow-1ice (optional): Points to a file that indicates whether a pixel is assessed as being snow/ice (1) or not (0). All
values describe the probability and must be between 0 and 1.

land-water (optional): Indicates whether a pixel is assessed as being land (1) or water (0). All values describe the
probability and must be between 0 and 1.

incidence-angle (optional): Specifies per-pixel incidence angles in degrees.

azimuth (optional): Specifies per-pixel azimuth angles in degrees.

sun-azimuth: (optional): Specifies per-pixel sun azimuth angles in degrees.

sun-elevation (optional): Specifies per-pixel sun elevation angles in degrees.

» terrain-shadow (optional): Indicates with a value of 1 whether a pixel is not directly illuminated due to terrain
shadowing. Otherwise, the value is 0.

» terrain-occlusion (optional): Indicates with a value of 1 whether a pixel is not visible to the sensor due to terrain
occlusion during off-nadir viewing. Otherwise, the value is 0.

» terrain-illumination (optional): Contains coefficients used for terrain illumination correction are provided for each
pixel.

The data returned is CARDA4L compliant with corresponding metadata.

Data type: raster-cube

See Also

« CEOS CARDAL specification

array_append @

Append a value to an array — experimental

Download JSON

Description

array_append(array data, any value) : array

Appends a value to the end of the array. Array labels get discarded from the array.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

An array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

value*
Value to append to the array.

http://ceos.org/ard/files/PFS/SR/v5.0/CARD4L_Product_Family_Specification_Surface_Reflectance-v5.0.pdf

Any data type is allowed.

Data type: any

Return Value
The new array with the value being appended.

Data type: array

Any data type is allowed.
Array items:
Data type: any

Examples

Example #1

array_append(data = [1,2], value = 3) => [1,2,3]

array_apply B

Apply a process to each array element

Description

array_apply(array data, process-graph:object process, ?any context

Download JSON

: array

Applies a process to each individual value in the array. This is basically what other languages call either a for each loop or a

map function.

Parameters

data*

An array.

Data type: array

Array items:

Any data type is allowed.

Data type: any

process*

A process that accepts and returns a single value and is applied on each individual value in the array. The process may
consist of multiple sub-processes and could, for example, consist of processes such as abs or
linear_scale_range.

Data type: User-defined Process (process-graph:object)

Parameters:

X*
The value of the current element being processed.

Any data type.
Data type: any

index*
The zero-based index of the current element being processed.

Data type: integer

Minimum value (inclusive): 0

label = null

The label of the current element being processed. Only populated for labeled arrays.

Data Types:

Data type: number

Data type: string

Data type: null

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the new array.

Any data type.

Data type: any

context = null
Additional data to be passed to the process.

Any data type.

Data type: any

Return Value
An array with the newly computed values. The number of elements are the same as for the original array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

array_concat @

Merge two arrays — experimental

Download JSON

Description

array_concat(array arrayl, array array2) : array

Concatenates two arrays into a single array by appending the second array to the first array. Array labels get discarded from
both arrays before merging.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

arrayl1*
The first array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

array2*
The second array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

Return Value
The merged array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

Examples

Example #1

Concatenates two arrays containing different data type.

array_concat(arrayl = ["a","b"], array2 = [1,2]) => ["a","b",1,2]

array_contains @

Check whether the array contains a given value

Download JSON

Description

array_contains(array data, any value) : boolean

Checks whether the array specified for data contains the value specified in value. Returns true if there's a match,
otherwise false.

Remarks:

To get the index or the label of the value found, use array_find.

All definitions for the process eq regarding the comparison of values apply here as well. A null return value from eq is
handled exactly as false (no match).

Data types MUST be checked strictly. For example, a string with the content 17 is not equal to the number 1.

An integer 1 is equal to a floating-point number 7.0 as integer is a sub-type of number. Still, this process may return
unexpectedly false when comparing floating-point numbers due to floating-point inaccuracy in machine-based
computation.

Temporal strings are treated as normal strings and MUST NOT be interpreted.

If the specified value is an array, object or null, the process always returns false. See the examples for one to check
for null values.

Parameters

data*

List to find the value in.

Data type: array

Any data type is allowed.
Array items:

Data type: any

value*

Value to find in data.

Any data type is allowed.

Data type: any

Return Value

true if the list contains the value, false™ otherwise.

Data type: boolean

Examples

Example #1

array_contains(data = [1,2,3], value = 2) => true

Example #2

array_contains(data = ["A","B","C"], value = "b") => false
Example #3

array_contains(data = [1,2,3], value = "2") => false
Example #4

array_contains(data = [1,2,null], value = null) => true

Example #5

array_contains(data = [[1,2],[3,4]], value [1,2]) => false

Example #6

array_contains(data = [[1,2],[3,4]], value = 2) => false

Example #7

array_contains(data = [{"a":"b"},{"c":"d"}], value = {"a":"b"}) => false

Processes

» Check for no-data values in arrays

array_create @

Create an array — experimental

Download JSON

Description

array_create(?array data = [], ?integer repeat = 1) : array

Creates a new array, which by default is empty.
The second parameter repeat allows to add the given array multiple times to the new array.

In most cases you can simply pass a (native) array to processes directly, but this process is especially useful to create a new
array that is getting returned by a child process, for example in apply_dimension.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

https://processes.openeo.org/1.2.0/examples/array_contains_nodata.json

data = []

A (native) array to fill the newly created array with. Defaults to an empty array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

repeat = 1
The number of times the (native) array specified in data is repeatedly added after each other to the new array being
created. Defaults to 1.

Data type: integer

Minimum value (inclusive): 1

Return Value
The newly created array.

Data type: array

Any data type is allowed.
Array items:

Data type: any

Examples

Example #1

array_create() => []

Example #2

array_create(data ["this","is","a", "test"]) => ["this",6 "is","a", "test"]

Example #3
[null], repeat = 3) => [null,null,null]

array_create(data

Example #4
[1,2,3], repeat = 2) => [1,2,3,1,2,3]

array_create(data

array_create_labeled @

Create a labeled array — experimental

Download JSON

Description

array_create_labeled(any data, array<number|string> labels) : labeled-array

Creates a new labeled array by using the values from the 1abels array as labels and the values from the data array as the
corresponding values.

The exception ArrayLengthMismatch is thrown, if the number of the values in the given arrays don't match exactly.

The primary use case here is to be able to transmit labeled arrays from the client to the server as JSON doesn't support this
data type.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
An array of values to be used.

Any data type is allowed.

Data type: any

labels*

An array of labels to be used.

Data type: array<numberlstring>

Return Value
The newly created labeled array.

Data type: labeled-array

Any data type is allowed.
Array items:
Data type: any

Errors/Exceptions

« ArrayLengthMismatch

Message: The number of values in the parameters ‘data” and “labels” don't match.

array_element @

Get an element from an array

Download JSON

Description

array_element(array data, ?integer index, ?number|string label, ?boolean return_nodata =
false) : any

Gives the element with the specified index or label from the array.

Either the parameter index or 1label must be specified, otherwise the ArrayElementParameterMissing exception is
thrown. If both parameters are set the ArrayElementParameterConflict exception is thrown.

Parameters

data*

An array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

index
The zero-based index of the element to retrieve.

Data type: integer

Minimum value (inclusive): 0

label

The label of the element to retrieve. Throws an ArrayNotLabeled exception, if the given array is not a labeled array
and this parameter is set.

Data Types:

Data type: number

Data type: string

return_nodata = false

By default this process throws an ArrayElementNotAvailable exception if the index or label is invalid. If you want
to return null instead, set this flag to true.

Data type: boolean

Return Value
The value of the requested element.

Any data type is allowed.

Data type: any

Errors/Exceptions

e ArrayElementNotAvailable

Message: The array has no element with the specified index or label.

o ArrayElementParameterMissing

Message: The process “array_element’ requires either the “index” or ‘labels” parameter to be set.

« ArrayElementParameterConflict

Message: The process ‘array_element’ only allows that either the “index" or the ‘labels” parameter is set.

e ArrayNotLabeled

Message: The array is not a labeled array, but the “label” parameter is set. Use the “index" instead.

Examples

Example #1

array_element(data [9,8,7,6,5], index = 2) => 7

Example #2

array_element(data ["A","B","C"], index = @) => "A"

Example #3

array_element(data [1, index = @, return_nodata = true) => null

array_filter @

Filter an array based on a condition

Download JSON

Description

array_filter(array data, process-graph:object condition, ?any context = null) : array

Filters the array elements based on a logical expression so that afterwards an array is returned that only contains the values,
indices and/or labels conforming to the condition.

Parameters
data*

An array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

condition*

A condition that is evaluated against each value, index and/or label in the array. Only the array elements for which the
condition returns true are preserved.

Data type: User-defined Process (process-graph:object)

Parameters:

X*
The value of the current element being processed.

Any data type.
Data type: any

index*
The zero-based index of the current element being processed.

Data type: integer

Minimum value (inclusive): 0

label = null

The label of the current element being processed. Only populated for labeled arrays.

Data Types:

Data type: number
Data type: string

Data type: null

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:

true if the value should be kept in the array, otherwise false.

Data type: boolean

context = null
Additional data to be passed to the condition.

Any data type.

Data type: any

Return Value
An array filtered by the specified condition. The number of elements are less than or equal compared to the original array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

array_find @

Get the index for a value in an array

Download JSON

Description

array_find(array data, any value, ?boolean reverse = false) : null|integer

Returns the zero-based index of the first (or last) occurrence of the value specified by value in the array specified by data or
null if there is no match. Use the parameter reverse to switch from the first to the last match.

Remarks:

Use array_contains to check if an array contains a value regardless of the position.

Use array_find_label to find the index for a label.

All definitions for the process eq regarding the comparison of values apply here as well. A null return value from eq is
handled exactly as false (no match).

Data types MUST be checked strictly. For example, a string with the content 17 is not equal to the number 1.

An integer 1 is equal to a floating-point number 7.0 as integer is a sub-type of number. Still, this process may return
unexpectedly false when comparing floating-point numbers due to floating-point inaccuracy in machine-based
computation.

Temporal strings are treated as normal strings and MUST NOT be interpreted.

If the specified value is an array, object or null, the process always returns null. See the examples for one to find
null values.

Parameters

data*

List to find the value in.

Data type: array

Any data type is allowed.
Array items:
Data type: any

value*

Value to find in data.

Any data type is allowed.

Data type: any

reverse = false

By default, this process finds the index of the first match. To return the index of the last match instead, set this flag to
true.

Data type: boolean

Return Value
The index of the first element with the specified value. If no element was found, null is returned.

Data Types:

Data type: null

Data type: integer

Minimum value (inclusive): 0

Examples

Example #1

array_find(data = [1,2,3,2,3], value = 2) => 1

Example #2
array_find(data = [1,2,3,2,3], value

2, reverse = true) => 3

Example #3

array_find(data = ["A","B","C"], value = "b") => null

Example #4
array_find(data = [1,2,3], value = "2") => null

Example #5
array_find(data = [1,null,2,null], value = null) => 1

Example #6

array_find(data = [[1,2],[3,4]], value [1,2]) => null

Example #7

array_find(data = [[1,2],[3,4]], value = 2) => null

Example #8
array_find(data = [{"a":"b"},{"c":"d"}], value = {"a":"b"}) => null

Processes

« Find no-data values in arrays

https://processes.openeo.org/1.2.0/examples/array_find_nodata.json

array_find_label @

Get the index for a label in a labeled array — experimental

Download JSON

Description

array_find_label(array data, number|string label) : null|integer

Checks whether the labeled array specified for data has the label specified in 1abel and returns the zero-based index for it.
If there's no match as either the label doesn't exist or the array is not labeled, null is returned.

Use array_find to find the index for a given value in the array.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*
List to find the label in.

Data type: array

Any data type is allowed.
Array items:
Data type: any

label*

Label to find in data.

Data Types:

Data type: number

Data type: string

Return Value
The index of the element with the specified label assigned. If no such label was found, null is returned.

Data Types:

Data type: null

Data type: integer

Minimum value (inclusive): 0

array_interpolate_linear @

One-dimensional linear interpolation for arrays — experimental

Download JSON

Description

array_interpolate_linear(array<number|null> data) : number|null

Performs a linear interpolation for each of the no-data values (null) in the array given, except for leading and trailing no-data
values.

The linear interpolants are defined by the array indices or labels (x) and the values in the array (y).

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

An array of numbers and no-data values.

If the given array is a labeled array, the labels must have a natural/inherent label order and the process expects the
labels to be sorted accordingly. This is the default behavior in openEQ for spatial and temporal dimensions.

Data type: array<numberinull>

Return Value

An array with no-data values being replaced with interpolated values. If not at least 2 numerical values are available in the
array, the array stays the same.

Data type: number, null

Examples

Example #1

array_interpolate_linear(data = [null,1,null,6,null,-8]) => [null,1,3.5,6,-1,-8]

Example #2

array_interpolate_linear(data [null, 1,null,null]) => [null,1,null,null]

See Also

« Linear interpolation explained by Wikipedia

array_labels B

Get the labels for an array

Download JSON

Description

array_labels(array data) : array<number|string>

Gives all labels for a labeled array or gives all indices for an array without labels. If the array is not labeled, an array with the
zero-based indices is returned. The labels or indices have the same order as in the array.

Parameters

data*

An array.

Data type: array

Return Value

The labels or indices as array.

Data type: array<numberlstring>

array_modify @

Change the content of an array (remove, insert, update) — experimental

Download JSON

https://en.wikipedia.org/wiki/Linear_interpolation

Description

array_modify(array data, array values, integer index, ?integer length = 1) : array

Modify an array by removing, inserting or updating elements. Updating can be seen as removing elements followed by
inserting new elements (not necessarily the same number).

All labels get discarded and the array indices are always a sequence of numbers with the step size of 1 and starting at 0.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

The array to modify.

Data type: array

Any data type is allowed.
Array items:
Data type: any

values*
The values to insert into the data array.

Data type: array

Any data type is allowed.
Array items:
Data type: any

index*
The index in the data array of the element to insert the value(s) before. If the index is greater than the number of
elements in the data array, the process throws an ArrayElementNotAvailable exception.

To insert after the last element, there are two options:

1. Use the simpler processes array_append to append a single value or array_concat to append multiple

values.
2. Specify the number of elements in the array. You can retrieve the number of elements with the process count,

having the parameter condition setto true.

Data type: integer

Minimum value (inclusive): 0

length = 1
The number of elements in the data array to remove (or replace) starting from the given index. If the array contains
fewer elements, the process simply removes all elements up to the end.

Data type: integer

Minimum value (inclusive): 0

Return Value
An array with values added, updated or removed.

Data type: array

Any data type is allowed.
Array items:
Data type: any

Errors/Exceptions

« ArrayElementNotAvailable

Message: The array can't be modified as the given index is larger than the number of elements in the array.

Examples

Example #1

Replace a single value in the array.

array_modify(data = ["a","d","c"], values ["b"], index = 1) => ["a","b","c"]

Example #2

Replace multiple values in the array.

array_modify(data = ["a","b",4,5], values
[112131415]

[1,2,3], index = @, length = 2) =>

Example #3

Insert a value to the array at a given position.

array_modify(data = ["a","c"], values = ["b"], index = 1, length = @) => ["a","b","c"]

Example #4

Remove a single value from the array.

array_modify(data = ["a","b",null,"c"], values = [], index = 2) => ["a","b","c"]

Example #5

Remove multiple values from the array.
array_modify(data = [null,null,"a","b","c"], values = [], index = @, length = 2) =>

..a..‘ ”b”, net

Example #6

Remove multiple values from the end of the array and ignore that the given length is exceeding the size of the array.

array_modify(data = ["a","b","c"], values = [], index = 1, length = 18) => ["a"

arsinh

Inverse hyperbolic sine

Download JSON

Description

arsinh(number|null x) : number|null

Computes the inverse hyperbolic sine of x. It is the inverse function of the hyperbolic sine so that arsinh(sinh(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.
Parameters

X*
A number.

Data type: number, null

Return Value
The computed angle in radians.

Data type: number, null

Examples

Example #1

arsinh(x = 0) => 0

See Also

« Inverse hyperbolic sine explained by Wolfram MathWorld

artanh |

Inverse hyperbolic tangent

Download JSON

Description

artanh(number |null x) : number|null

Computes the inverse hyperbolic tangent of x. It is the inverse function of the hyperbolic tangent so that
artanh(tanh(x)) = x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.
Parameters

X*
A number.

Data type: number, null

Return Value
The computed angle in radians.

Data type: number, null

Examples

Example #1

artanh(x = @) => 0

See Also

« Inverse hyperbolic tangent explained by Wolfram MathWorld

http://mathworld.wolfram.com/InverseHyperbolicSine.html
http://mathworld.wolfram.com/InverseHyperbolicTangent.html

atmospheric_correction @

Apply atmospheric correction — experimental

Download JSON

Description

atmospheric_correction(raster-cube data, string|null method, ?collection-id:string|null
elevation_model = null, ?object options = {}) : raster-cube

Applies an atmospheric correction that converts top of atmosphere reflectance values into bottom of atmosphere/top of canopy
reflectance values.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
Data cube containing multi-spectral optical top of atmosphere reflectances to be corrected.

Data type: raster-cube

method*

The atmospheric correction method to use. To get reproducible results, you have to set a specific method.

Set to null to allow the back-end to choose, which will improve portability, but reduce reproducibility as you may get
different results if you run the processes multiple times.

Data Types:
Data type: string

Allowed values: FORCE, iCOR

Data type: null

elevation_model = null

The digital elevation model to use. Set to null (the default) to allow the back-end to choose, which will improve
portability, but reduce reproducibility.

Data Types:

Data type: collection-id:string

Data type: null

options = {}
Proprietary options for the atmospheric correction method. Specifying proprietary options will reduce portability.

Data type: object

Each property: X No

Return Value
Data cube containing bottom of atmosphere reflectances.

Data type: raster-cube

Errors/Exceptions

» DigitalElevationModelInvalid

Message: The digital elevation model specified is either not a DEM or can't be used with the data cube given.

See Also

» Atmospheric correction explained by EO4GEO body of knowledge.

between @

Between comparison

Download JSON

Description

between(any x, number|string min, number|string max, ?boolean exclude_max = false)
boolean|null

By default, this process checks whether x is greater than or equal to min and lower than or equal to max, which is the same
as computing and(gte(x, min), lte(x, max)). Therefore, all definitions from and, gte and 1te apply here as well.

If exclude_max is setto true the upper bound is excluded so that the process checks whether x is greater than or equal to
min and lower than max. In this case, the process works the same as computing and(gte(x, min), 1lt(x, max)).

Lower and upper bounds are not allowed to be swapped. So min MUST be lower than or equal to max or otherwise the
process always returns false.

https://bok.eo4geo.eu/IP1-7-1

Parameters

X*
The value to check.
Any data type is allowed.
Data type: any
min*
Lower boundary (inclusive) to check against.
Data Types:
Data type: number
Data type: date-time:string
Data type: date:string
Data type: time:string
max*

Upper boundary (inclusive) to check against.

Data Types:

Data type: number

Data type: date-time:string

Data type: date:string

Data type: time:string

exclude_max = false
Exclude the upper boundary max if setto true. Defaults to false.

Data type: boolean

Return Value
true if x is between the specified bounds, otherwise false.

Data type: boolean, null

Examples

Example #1

between(x = null, min = @, max = 1) => null

Example #2

between(x = 1, min = @, max = 1) => true
Example #3

between(x = 1, min = @, max = 1, exclude_max = true) => false
Example #4

Swapped bounds (min is greater than max) MUST always return false.

between(x = 0.5, min = 1, max = 8) => false
Example #5

between(x = -0.5, min = -1, max = @) => true
Example #6

between(x = "00:59:59Z", min = "01:00:00+01:00", max = "01:00:00Z") => true
Example #7

between(x = "2018-07-23T17:22:45Z", min = "2018-01-01T00:00:00Z", max = "2018-12-
31723:59:597") => true

Example #8

between(x = "2000-01-01", min = "2018-01-081", max = "2020-01-01") => false
Example #9

between(x = "2018-12-31T17:22:45Z", min = "2018-81-01", max = "2018-12-31") => true
Example #10

between(x = "2018-12-31T17:22:45Z", min
exclude_max = true) => false

"2018-01-01", max "2018-12-31",

ceil @

Round fractions up

Download JSON

Description

ceil(number|null x) : integer|null

The least integer greater than or equal to the number x.

The no-data value null is passed through and therefore gets propagated.
Parameters

X*
A number to round up.

Data type: number, null

Return Value
The number rounded up.

Data type: integer, null

Examples

Example #1
ceil(x = 0) => 0

Example #2

ceil(x

I
w
13

p—

I
v
N

Example #3
ceil(x = -8.4) => 0

Example #4
ceil(x = -3.5) => -3

See Also

» Ceiling explained by Wolfram MathWorld

climatological_normal @

Compute climatology normals

Download JSON

Description

climatological_normal(raster-cube data, string period, ?temporal-interval:array<year:string>
climatology_period = ["1981","20818"]) : raster-cube

Climatological normal period is a usually 30 year average of a weather variable. Climatological normals are used as an
average or baseline to evaluate climate events and provide context for yearly, monthly, daily or seasonal variability. The default
climatology period is from 1981 until 2010 (both inclusive).

Parameters

data*

A data cube with exactly one temporal dimension. The data cube must span at least the temporal interval specified in
the parameter climatology-period.

Seasonal periods may span two consecutive years, e.g. temporal winter that includes months December, January and
February. If the required months before the actual climate period are available, the season is taken into account. If not
available, the first season is not taken into account and the seasonal mean is based on one year less than the other
seasonal normals. The incomplete season at the end of the last year is never taken into account.

Data type: raster-cube

period*
The time intervals to aggregate the average value for. The following pre-defined frequencies are supported:

« day: Day of the year

« month: Month of the year

e climatology-period: The period specified in the climatology-period.

« season: Three month periods of the calendar seasons (December - February, March - May, June - August,
September - November).

o tropical-season: Six month periods of the tropical seasons (November - April, May - October).

Data type: string

Allowed values: day, month, season, tropical-season, climatology-period

climatology_period = ["1981", "2010"]

The climatology period as a closed temporal interval. The first element of the array is the first year to be fully included in
the temporal interval. The second element is the last year to be fully included in the temporal interval. The default period
is from 1981 until 2010 (both inclusive).

http://mathworld.wolfram.com/CeilingFunction.html

Data type: temporal-interval:array<year:string>
Min. number of items: 2

Max. number of items: 2

Data type: year:string
Min Length: 4

Array items:
Max Length: 4

Pattern: Md{4}$

Return Value

A data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution) remain
unchanged, except for the resolution and dimension labels of the temporal dimension. The temporal dimension has the
following dimension labels:

o day: 001 - 365

« month: @01 -12

o climatology-period: climatology-period

» season: djf (December - February), mam (March - May), jja (June - August), son (September - November)
» tropical-season: ndjfma (November - April), mjjaso (May - October)

Data type: raster-cube

See Also

» Background information on climatology normal by Wikipedia

clip @

Clip a value between a minimum and a maximum

Download JSON

Description

clip(number|null x, number min, number max) : number|null

Clips a number between specified minimum and maximum values. A value larger than the maximum value is set to the
maximum value, a value lower than the minimum value is set to the minimum value.

The no-data value null is passed through and therefore gets propagated.

Parameters

https://en.wikipedia.org/wiki/Climatological_normal

X*
A number.

Data type: number, null

min*
Minimum value. If the value is lower than this value, the process will return the value of this parameter.

Data type: number

max*
Maximum value. If the value is greater than this value, the process will return the value of this parameter.

Data type: number

Return Value
The value clipped to the specified range.

Data type: number, null

Examples

Example #1

clip(x -5, min = -1, max = 1) => -1

Example #2

clip(x 10.001, min = 1, max = 18) => 10

Example #3

clip(x = 0.000001, min = @, max = 0.02) => 0.000001

Example #4

clip(x null

1
=}
c
=
=
3
M.
=)

1
()
3
Q
X

1
-

N

1

\4

cloud_detection @

Create cloud masks — experimental

Download JSON

Description

cloud_detection(raster-cube data, string|null method, ?object options = {}) : raster-cube

Detects atmospheric disturbances such as clouds, cloud shadows, aerosols, haze, ozone and/or water vapour in optical
imagery.

It creates a data cube with the spatial and temporal dimensions compatible to the source data cube and a dimension that
contains a dimension label for each of the supported/considered atmospheric disturbances. The naming of the bands follows
these pre-defined values:

» cloud

o shadow

o aerosol

e haze

e oOzone

o water_vapor

All bands have values between 0 (clear) and 1, which describes the probability that it is an atmospheric disturbance.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

The source data cube containing multi-spectral optical top of the atmosphere (TOA) reflectances on which to perform
cloud detection.

Data type: raster-cube

method*

The cloud detection method to use. To get reproducible results, you have to set a specific method.

Set to null to allow the back-end to choose, which will improve portability, but reduce reproducibility as you may get
different results if you run the processes multiple times.

Data Types:
Data type: string

Allowed values: Fmask, s2cloudless, Sen2Cor

Data type: null

options = {}
Proprietary options for the cloud detection method. Specifying proprietary options will reduce portability.

Data type: object

Each property: X No

Return Value

A data cube with bands for the atmospheric disturbances. Each of the masks contains values between 0 and 1. The data cube
has the same spatial and temporal dimensions as the source data cube and a dimension that contains a dimension label for
each of the supported/considered atmospheric disturbance.

Data type: raster-cube

See Also

» Cloud mask explained by EO4GEO body of knowledge.

constant @

Define a constant value

Download JSON

Description

constant(any x) : any

Defines a constant value that can be reused in multiple places of a process.
Parameters

X*
The value of the constant.

Any data type.

Data type: any

Return Value
The value of the constant.

Any data type.

Data type: any

https://bok.eo4geo.eu/TA14-2-2-1-3

cos B

Cosine

Download JSON

Description

cos(number|null x) : number|null

Computes the cosine of x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.
Parameters

X*
An angle in radians.

Data type: number, null

Return Value
The computed cosine of Xx.

Data type: number, null

Examples

Example #1

cos(x = 0) =>1

See Also

» Cosine explained by Wolfram MathWorld

cosh @

Hyperbolic cosine

Download JSON

http://mathworld.wolfram.com/Cosine.html

Description

cosh(number |null x) : number|null

Computes the hyperbolic cosine of x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.
Parameters

X*
An angle in radians.

Data type: number, null

Return Value
The computed hyperbolic cosine of x.

Data type: number, null

Examples

Example #1

cosh(x = @) => 1

See Also

» Hyperbolic cosine explained by Wolfram MathWorld

count @

Count the number of elements

Download JSON

Description

count(array data, ?process-graph:object|boolean|null condition = null, ?any context = null)
number

Gives the number of elements in an array that matches the specified condition.

Remarks:

http://mathworld.wolfram.com/HyperbolicCosine.html

» Counts the number of valid elements by default (condition is setto null). A valid element is every element for which
is_valid returns true.
» To count all elements in a list set the condition parameter to boolean true.

Parameters

data*

An array with elements of any data type.

Data type: array

Any data type is allowed.
Array items:
Data type: any

condition = null

A condition consists of one or more processes, which in the end return a boolean value. It is evaluated against each
element in the array. An element is counted only if the condition returns true. Defaults to count valid elements in a list
(see is_valid). Setting this parameter to boolean true counts all elements in the list.

Data Types:
Data type: User-defined Process (process-graph:object)
Parameters:

X*
The value of the current element being processed.

Any data type.

Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:

true if the element should increase the counter, otherwise false.

Data type: boolean

All elements

Boolean true counts all elements in the list.

Data type: boolean

Allowed value: true

Valid elements

null counts valid elements in the list.

Data type: null

context = null
Additional data to be passed to the condition.

Any data type.

Data type: any

Return Value
The counted number of elements.

Data type: number

Examples

Example #1
[]) => @

count(data

Example #2

count(data = [1,0,3,2]) => 4

Example #3

count(data ["ABC",null]) => 1

Example #4

count(data [false,null], condition = true) => 2

Example #5

count(data = [0,1,2,3,4,5,null], condition = {"gt":{"process_id":"gt", "arguments":
"x":{"from_parameter":"element"},"y":2}, "result" :true}}) => 3

create_raster cube @

Create an empty raster data cube

Download JSON

Description

create_raster_cube() : raster-cube

Creates a new raster data cube without dimensions. Dimensions can be added with add_dimension.

Parameters

This process has no parameters.

Return Value
An empty raster data cube with zero dimensions.

Data type: raster-cube

See Also

« Data Cubes explained in the openEO documentation

cummax @

Cumulative maxima — experimental

Download JSON

Description

cummax (array<number|null> data, ?boolean ignore_nodata = true) : array<number|null>

Finds cumulative maxima of an array of numbers. Every computed element is equal to the bigger one between the current
element and the previously computed element. The returned array and the input array have always the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag to true makes that once a
no-data value (null) is reached all following elements are set to null in the result.

https://openeo.org/documentation/1.0/datacubes.html

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not and ignores them by default. Setting this flag to false considers
no-data values so that null is set for all the following elements.

Data type: boolean

Return Value
An array with the computed cumulative maxima.

Data type: array<numberinull>

Examples

Example #1

cummax(data [1,3,5,3,1]) => [1,3,5,5,5]

Example #2

cummax(data [1,3,null,5,1]) => [1,3,null,5,5]

Example #3
[1,3,null,5,1], ignore_nodata = false) => [1,3,null,null,null]

cummax (data

cummin @

Cumulative minima — experimental

Download JSON

Description

cummin(array<number|null> data, ?boolean ignore_nodata = true) : array<number|null>

Finds cumulative minima of an array of numbers. Every computed element is equal to the smaller one between the current
element and the previously computed element. The returned array and the input array have always the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag to true makes that once a
no-data value (null) is reached all following elements are set to null in the result.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

An array of numbers.

Data type: array<numberlinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not and ignores them by default. Setting this flag to false considers
no-data values so that null is set for all the following elements.

Data type: boolean

Return Value
An array with the computed cumulative minima.
Data type: array<numberlinull>

Examples

Example #1

cummin(data [5,3,1,3,5]) => [5,3,1,1,1]

Example #2
[5,3,null,1,5]) => [5,3,null,1,1]

cummin(data

Example #3
[5,3,null,1,5], ignore_nodata = false) => [5,3,null,null,null]

cummin(data

cumproduct @

Cumulative products — experimental

Download JSON

Description

cumproduct(array<number |null> data, ?boolean ignore_nodata = true) : array<number|null>

Computes cumulative products of an array of numbers. Every computed element is equal to the product of the current and all
previous values. The returned array and the input array have always the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag to true makes that once a
no-data value (null) is reached all following elements are set to null in the result.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
An array of numbers.

Data type: array<numberinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not and ignores them by default. Setting this flag to false considers
no-data values so that null is set for all the following elements.

Data type: boolean

Return Value
An array with the computed cumulative products.

Data type: array<numberinull>

Examples

Example #1
cumproduct(data = [1,3,5,3,1]) => [1,3,15,45,45]

Example #2

cumproduct(data [1,2,3,null,3,1]) => [1,2,6,null,18,18]

Example #3

cumproduct(data [1,2,3,null,3,1], ignore_nodata = false) => [1,2,6,null,null,null]

cumsum [

Cumulative sums — experimental

Download JSON

Description

cumsum(array<number|null> data, ?boolean ignore_nodata = true) : array<number|null>

Computes cumulative sums of an array of numbers. Every computed element is equal to the sum of current and all previous
values. The returned array and the input array have always the same length.

By default, no-data values are skipped, but stay in the result. Setting the ignore_nodata flag to true makes that once a
no-data value (null) is reached all following elements are set to null in the result.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
An array of numbers.

Data type: array<numberinull>

ignore_nodata = true

Indicates whether no-data values are ignored or not and ignores them by default. Setting this flag to false considers
no-data values so that null is set for all the following elements.

Data type: boolean

Return Value
An array with the computed cumulative sums.

Data type: array<numberinull>

Examples

Example #1
cumsum(data = [1,3,5,3,1]) => [1,4,9,12,13]
Example #2
cumsum(data = [1,3,null,3,1]) => [1,4,null,7,8]
Example #3
cumsum(data = [1,3,null,3,1], ignore_nodata = false) => [1,4,null,null,null]

date_shift @

Manipulates dates and times by addition or subtraction — experimental

Download JSON

Description

date_shift(string date, integer value, string unit) : date-time:string|date:string

Based on a given date (and optionally time), calculates a new date (and time if given) by adding or subtracting a given
temporal period.

Some specifics about dates and times need to be taken into account:

» This process doesn't have any effect on the time zone.

» It doesn't take daylight saving time (DST) into account as only dates and time in UTC (with potential numerical time zone
modifier) are supported.

» Leap years are implemented in a way that computations handle them gracefully (see parameter unit for details).

» Leap seconds are mostly ignored in manipulations as they don't follow a regular pattern. Leap seconds can be passed to
the process, but will never be returned.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

date*

The date (and optionally time) to manipulate.

If the given date doesn't include the time, the process assumes that the time component is 80 :00:00Z (i.e. midnight,
in UTC). The millisecond part of the time is optional and defaults to @ if not given.

Data Types:

Data type: date-time:string

Data type: date:string

value*

The period of time in the unit given that is added (positive numbers) or subtracted (negative numbers). The value 6
doesn't have any effect.

Data type: integer

unit*
The unit for the value given. The following pre-defined units are available:

« millisecond: Milliseconds

» second: Seconds - leap seconds are ignored in computations.
e minute: Minutes

» hour: Hours

« day: Days - changes only the the day part of a date

» week: Weeks (equivalent to 7 days)

« month: Months

e year: Years

Manipulations with the unit year, month, week or day do never change the time. If any of the manipulations result in
an invalid date or time, the corresponding part is rounded down to the next valid date or time respectively. For example,
adding a month to 2020-01-31 would result in 2020-02-29.

Data type: string

Allowed values: millisecond, second, minute, hour, day, week, month, year

Return Value

The manipulated date. If a time component was given in the parameter date, the time component is returned with the date.

Data Types:

Data type: date-time:string

Data type: date:string

Examples

Example #1

date_shift(date = "2020-02-81T17:22:45Z", value = 6, unit = "month") => "2020-08-
01T17:22:452"

Example #2

date_shift(date = "2021-03-31700:00:00+02:00", value = -7, unit = "day") => "2021-03-
24T00:00:00+02 :00"

Example #3

Adding a year to February 29th in a leap year will result in February 28th in the next (non-leap) year.

date_shift(date = "2020-02-29T17:22:45Z7", value = 1, unit = "year") => "2021-02-
28T17:22:45Z2"

Example #4

Adding a month to January 31th will result in February 29th in leap years.

date_shift(date = "2020-01-31", value = 1, unit = "month") => "20206-02-29"

Example #5
The process skips over the leap second 2016-12-31T23:59:60Z.

date_shift(date = "2016-12-31723:59:59Z", value = 1, unit = "second") => "2017-01-
01T00:00:00Z"

Example #6

Milliseconds can be added or subtracted. If not given, the default value is 0.

date_shift(date = "2018-12-31T17:22:45Z2", value = 1150, unit = "millisecond") =>
"2018-12-31T17:22:46.150Z2"

Example #7

date_shift(date

"2018-081-01", value = 25, unit = "hour") => "20818-01-02"

Example #8

date_shift(date

"2018-01-01", value = -1, unit

"hour") => "20817-12-31"

dimension_labels @

Get the dimension labels

Download JSON

Description

dimension_labels(raster-cube data, string dimension)

Gives all labels for a dimension in the data cube. The labels have the same order as in the data cube.

: array<number |string>

If a dimension with the specified name does not exist, the process fails with a DimensionNotAvailable exception.

Parameters

data*

The data cube.

Data type: raster-cube

dimension*
The name of the dimension to get the labels for.

Data type: string

Return Value
The labels as an array.

Data type: array<numberlstring>

Errors/Exceptions

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

divide @

Division of two numbers

Description

divide(number|null x, number|null y) : number|null

Divides argument x by the argument y (x / y) and returns the computed result.

No-data values are taken into account so that null is returned if any element is such a value.

Download JSON

The computations follow IEEE Standard 754 whenever the processing environment supports it. Therefore, a division by zero
results in infinity if the processing environment supports it. Otherwise, a DivisionByZero exception must the thrown.

https://ieeexplore.ieee.org/document/8766229

Parameters

X*
The dividend.

Data type: number, null

y*

The divisor.

Data type: number, null

Return Value
The computed result.

Data type: number, null

Errors/Exceptions

« DivisionByZero
Message: Division by zero is not supported.

Examples

Example #1

I
o
<
I
N
3
NS
I
v
N

divide(x

Example #2

divide(x = -2, y = 4) => -8.5

Example #3

divide(x = 1, y = null) => null

See Also

« Division explained by Wolfram MathWorld
» |EEE Standard 754-2019 for Floating-Point Arithmetic

drop_dimension @

http://mathworld.wolfram.com/Division.html
https://ieeexplore.ieee.org/document/8766229

Remove a dimension

Download JSON

Description

drop_dimension(raster-cube data, string name) : raster-cube

Drops a dimension from the data cube.

Dropping a dimension only works on dimensions with a single dimension label left, otherwise the process fails with a
DimensionLabelCountMismatch exception. Dimension values can be reduced to a single value with a filter such as
filter_bands orthe reduce_dimension process. If a dimension with the specified name does not exist, the process fails
with a DimensionNotAvailable exception.

Parameters
data*

The data cube to drop a dimension from.

Data type: raster-cube

name*
Name of the dimension to drop.

Data type: string

Return Value

A data cube without the specified dimension. The number of dimensions decreases by one, but the dimension properties
(name, type, labels, reference system and resolution) for all other dimensions remain unchanged.

Data type: raster-cube

Errors/Exceptions

« DimensionLabelCountMismatch

Message: The number of dimension labels exceeds one, which requires a reducer.

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

el

Euler's number (e)

Download JSON

Description

e() : number

The real number e is a mathematical constant that is the base of the natural logarithm such that 1n(e) = 7. The numerical
value is approximately 2.71828.
Parameters

This process has no parameters.

Return Value
The numerical value of Euler's number.

Data type: number

See Also

» Mathematical constant e explained by Wolfram MathWorld

eq @

Equal to comparison

Download JSON

Description

eq(any x, any y, ?number|null delta = null, ?boolean case_sensitive = true) : boolean|null

Compares whether x is strictly equal to y.

Remarks:

» Data types MUST be checked strictly. For example, a string with the content 7 is not equal to the number 7.
Nevertheless, an integer 1 is equal to a floating-point number 7.0 as integer is a sub-type of number.

« If any operand is null, the return value is null. Therefore, eq(null, null) returns null instead of true.

« If any operand is an array or object, the return value is false.

» Strings are expected to be encoded in UTF-8 by default.

» Temporal strings MUST be compared differently than other strings and MUST NOT be compared based on their string
representation due to different possible representations. For example, the time zone representation Z (for UTC) has the
same meaning as +00:00.

Parameters

X*

http://mathworld.wolfram.com/e.html

First operand.

Any data type is allowed.

Data type: any

y*
Second operand.
Any data type is allowed.
Data type: any
delta = null

Only applicable for comparing two numbers. If this optional parameter is set to a positive non-zero number the equality
of two numbers is checked against a delta value. This is especially useful to circumvent problems with floating-point
inaccuracy in machine-based computation.

This option is basically an alias for the following computation: 1te(abs(minus([x, y]), delta)

Data type: number, null

case_sensitive = true
Only applicable for comparing two strings. Case sensitive comparison can be disabled by setting this parameter to
false.

Data type: boolean

Return Value
true if x is equal to y, null if any operand is null, otherwise false.

Data type: boolean, null

Examples

Example #1
eq(x =1, y = null) => null

Example #2
eq(x = null, y = null) => null

Example #3
eq(x =1, y = 1) => true

Example #4
eq(x =1, y = "1") => false

Example #5

eq(x = 0, y = false) => false

Example #6
eq(x = 1.02, y =1, delta = 8.01) => false

Example #7
eq(x = -1, y = -1.001, delta = 0.01) => true

Example #8
eq(x = 115, y = 110, delta

10) => true

Example #9

eq(x = "Test", y = "test") => false

Example #10

eq(x = "Test", y = "test", case_sensitive = false) => true
Example #11

eq(x = "A", y = "&", case_sensitive = false) => true
Example #12

eq(x = "00:00:00+00:00", y = "00:00:00Z") => true

Example #13

y is not a valid date-time representation and therefore will be treated as a string so that the provided values are not
equal.

eq(x = "2018-01-01T712:00:00Z", y = "2018-01-01T712:00:00") => false

Example #14
01:00 in the time zone +1 is equal to 00:00 in UTC.

eq(x = "2018-01-01T00:00:00Z", y = "2018-01-01T01:00:00+01:00") => true

Example #15
eq(x = [1,2,3], yv = [1,2,3]) => false

exp

Exponentiation to the base e

Description

exp(number|null p) : number|null

Exponential function to the base e raised to the power of p.

The no-data value null is passed through and therefore gets propagated.

Parameters
p*
The numerical exponent.

Data type: number, null

Return Value

The computed value for e raised to the power of p.

Data type: number, null

Examples

Example #1

1]
[av]
~

1

\%
—_

exp(p

Example #2
exp(p = null) => null

See Also

» Exponential function explained by Wolfram MathWorld

extrema @

Minimum and maximum values

Download JSON

http://mathworld.wolfram.com/ExponentialFunction.html

Download JSON

Description

extrema(array<number|null> data, ?boolean ignore_nodata = true) : array<number>|array<null>

Two element array containing the minimum and the maximum values of data.

This process is basically an alias for calling both min and max, but may be implemented more performant by back-ends as it
only needs to iterate over the data once instead of twice.

Parameters
data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that an array with two null values is returned if any value is such a value.

Data type: boolean

Return Value

An array containing the minimum and maximum values for the specified numbers. The first element is the minimum, the
second element is the maximum. If the input array is empty both elements are set to null.

Data Types:

Data type: array<number>
Min. number of items: 2

Max. number of items: 2

Array items: Data type: number

Data type: array<null>
Min. number of items: 2

Max. number of items: 2

Array items: Data type: null

Examples

Example #1

extrema(data [1,0,3,2]) => [0,3]

Example #2
[5,2.5,null,-0.7]) => [-0.7,5]

extrema(data

Example #3

extrema(data [1,0,3,null,2], ignore_nodata = false) => [null,null]

Example #4

The input array is empty: return two null values.

extrema(data = []) => [null,null]

filter_bands @

Filter the bands by names

Download JSON

Description

filter_bands(raster-cube data, ?array<band-name:string> bands = [], ?array<array<number>>
wavelengths = []) : raster-cube

Filters the bands in the data cube so that bands that don't match any of the criteria are dropped from the data cube. The data
cube is expected to have only one dimension of type bands. Fails with a DimensionMissing exception if no such
dimension exists.

The following criteria can be used to select bands:

« bands: band name or common band name (e.g. B81, B8A, red or nir)
« wavelengths: ranges of wavelengths in micrometers (um) (e.g. 0.5 - 0.6)

All these information are exposed in the band metadata of the collection. To keep algorithms interoperable it is recommended
to prefer the common band names or the wavelengths over band names that are specific to the collection and/or back-end.

If multiple criteria are specified, any of them must match and not all of them, i.e. they are combined with an OR-operation. If no
criteria are specified, the BandFilterParameterMissing exception must be thrown.

Important: The order of the specified array defines the order of the bands in the data cube, which can be important for
subsequent processes. If multiple bands are matched by a single criterion (e.g. a range of wavelengths), they stay in the
original order.

Parameters

data*

A data cube with bands.

Data type: raster-cube

bands = []

A list of band names. Either the unique band name (metadata field name in bands) or one of the common band names
(metadata field common_name in bands). If the unique band name and the common name conflict, the unique band

name has a higher priority.

The order of the specified array defines the order of the bands in the data cube. If multiple bands match a common

name, all matched bands are included in the original order.

Data type: array<band-name:string>

Array items: Data type: band-name:string

wavelengths = []

A list of sub-lists with each sub-list consisting of two elements. The first element is the minimum wavelength and the
second element is the maximum wavelength. Wavelengths are specified in micrometers (um).

The order of the specified array defines the order of the bands in the data cube. If multiple bands match the

wavelengths, all matched bands are included in the original order.
Data type: array<array<number>>
Data type: array<number>

Min. number of items: 2

] Max. number of items: 2
Array items:
Array items: Data type: number

Examples: [[.45, 0.5],

Return Value

[0.6, 0.7]]

A data cube limited to a subset of its original bands. The dimensions and dimension properties (name, type, labels, reference
system and resolution) remain unchanged, except that the dimension of type bands has less (or the same) dimension labels.

Data type: raster-cube

Errors/Exceptions

« BandFilterParameterMissing

Message: The process filter_bands" requires any of the parameters ‘bands’, ‘common_names" or ‘wavelengths" to be set.

o DimensionMissing
Message: A band dimension is missing.

See Also

« Filters explained in the openEO documentation
« List of common band names as specified by the STAC specification

filter bbox @

Spatial filter using a bounding box

Download JSON

Description

filter_bbox(raster-cube data, bounding-box:object extent) : raster-cube

Limits the data cube to the specified bounding box.

The filter retains a pixel in the data cube if the point at the pixel center intersects with the bounding box (as defined in the
Simple Features standard by the OGC).

Parameters

data*

A data cube.

Data type: raster-cube

extent*
A bounding box, which may include a vertical axis (see base and height).

Data type: bounding-box:object
Object Properties:

west * West (lower left corner, coordinate axis 1).

Data type: number

south * South (lower left corner, coordinate axis 2).

Data type: number

east * East (upper right corner, coordinate axis 1).

Data type: number

https://openeo.org/documentation/1.0/datacubes.html#filter
https://github.com/radiantearth/stac-spec/tree/master/extensions/eo#common-band-names

north *

base

height

crs

Return Value

North (upper right corner, coordinate axis 2).

Data type: number

Base (optional, lower left corner, coordinate axis 3).
Data type: number, null

Default value: null

Height (optional, upper right corner, coordinate axis 3).
Data type: number, null

Default value: null

Coordinate reference system of the extent, specified as as EPSG code, WKT2 (ISO
19162) string or PROJ definition (deprecated). Defaults to 4326 (EPSG code 4326)
unless the client explicitly requests a different coordinate reference system.

Data type: any

Default value: 4326

A data cube restricted to the bounding box. The dimensions and dimension properties (name, type, labels, reference system
and resolution) remain unchanged, except that the spatial dimensions have less (or the same) dimension labels.

Data type: raster-cube

See Also

« Filters explained in the openEO documentation

Official EPSG code registry

PROJ parameters for cartographic projections
Simple Features standard by the OGC
Unofficial EPSG code database

filter labels @

Filter dimension labels based on a condition — experimental

Download JSON

http://www.epsg-registry.org/
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
https://proj.org/usage/quickstart.html
https://openeo.org/documentation/1.0/datacubes.html#filter
http://www.epsg-registry.org/
https://proj.org/usage/projections.html
http://www.opengeospatial.org/standards/sfa
http://www.epsg.io/

Description

filter_labels(raster-cube data, process-graph:object condition, string dimension, ?any
context = null) : raster-cube

Filters the dimension labels in the data cube for the given dimension. Only the dimension labels that match the specified
condition are preserved, all other labels with their corresponding data get removed.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
A data cube.
Data type: raster-cube
condition*
A condition that is evaluated against each dimension label in the specified dimension. A dimension label and the

corresponding data is preserved for the given dimension, if the condition returns true.

Data type: User-defined Process (process-graph:object)

Parameters:

value*
A single dimension label to compare against. The data type of the parameter depends on the dimension
labels set for the dimension.

Data Types:

Data type: number

Data type: string

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
true if the dimension label should be kept in the data cube, otherwise false.

Data type: boolean

dimension*
The name of the dimension to filter on. Fails with a DimensionNotAvailable exception if the specified dimension
does not exist.

Data type: string

context = null
Additional data to be passed to the condition.

Any data type.

Data type: any

Return Value

A data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution) remain
unchanged, except that the given dimension has less (or the same) dimension labels.

Data type: raster-cube

Errors/Exceptions

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

Examples

Example #1

Filters the data cube to only contain data from platform Sentinel-2A. This example assumes that the data cube has a
dimension platform so that computations can distinguish between Sentinel-2A and Sentinel-2B data.

filter_labels(data = Ssentinel?_data, condition = {"process_graph":{"eq"

{"process_id":"eq", "arguments" :{"x":{"from_parameter":"value"},"y" :"Sentinel-
2A","case_sensitive" :false}, "result":true}}}, dimension = "platform")
See Also

« Filters explained in the openEO documentation

https://openeo.org/documentation/1.0/datacubes.html#filter

filter_spatial B

Spatial filter using geometries

Download JSON

Description

filter_spatial(raster-cube data, geojson:object geometries) : raster-cube
Limits the data cube over the spatial dimensions to the specified geometries.

« For polygons, the filter retains a pixel in the data cube if the point at the pixel center intersects with at least one of the
polygons (as defined in the Simple Features standard by the OGC).

» For points, the process considers the closest pixel center.

» For lines (line strings), the process considers all the pixels whose centers are closest to at least one point on the line.

More specifically, pixels outside of the bounding box of the given geometry will not be available after filtering. All pixels inside
the bounding box that are not retained will be set to null (no data).

Parameters

data*
A data cube.

Data type: raster-cube

geometries*
One or more geometries used for filtering, specified as GeoJSON.

Data type: geojson:object

Return Value

A data cube restricted to the specified geometries. The dimensions and dimension properties (name, type, labels, reference
system and resolution) remain unchanged, except that the spatial dimensions have less (or the same) dimension labels.

Data type: raster-cube

See Also

« Filters explained in the openEO documentation
« Simple Features standard by the OGC

filter_temporal @

https://openeo.org/documentation/1.0/datacubes.html#filter
http://www.opengeospatial.org/standards/sfa

Temporal filter based on temporal intervals

Download JSON

Description

filter_temporal(raster-cube data, temporal-interval:array<string|null> extent, ?string|null
dimension = null) : raster-cube

Limits the data cube to the specified interval of dates and/or times.

More precisely, the filter checks whether each of the temporal dimension labels is greater than or equal to the lower boundary
(start date/time) and less than the value of the upper boundary (end date/time). This corresponds to a left-closed interval,
which contains the lower boundary but not the upper boundary.

Parameters

data*
A data cube.

Data type: raster-cube

extent*
Left-closed temporal interval, i.e. an array with exactly two elements:

1. The first element is the start of the temporal interval. The specified instance in time is included in the interval.
2. The second element is the end of the temporal interval. The specified instance in time is excluded from the
interval.

The specified temporal strings follow RFC 3339. Also supports open intervals by setting one of the boundaries to null,
but never both.

Data type: temporal-interval:array<date-time:stringldate:stringlyear:stringlnull>
Min. number of items: 2

Max. number of items: 2

Array items: Data type: any
e ["2015-01-01T00:00:00Z", "2016-01-01T00:00:00Z"]
Examples: e ["2015-801-01", "2016-01-01"]

dimension = null

The name of the temporal dimension to filter on. If no specific dimension is specified or it is set to null, the filter
applies to all temporal dimensions. Fails with a DimensionNotAvailable exception if the specified dimension does
not exist.

Data type: string, null

https://www.rfc-editor.org/rfc/rfc3339.html

Return Value

A data cube restricted to the specified temporal extent. The dimensions and dimension properties (name, type, labels,
reference system and resolution) remain unchanged, except that the temporal dimensions (determined by dimensions

parameter) may have less dimension labels.

Data type: raster-cube

Errors/Exceptions

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

See Also

« Filters explained in the openEO documentation

first @

First element

Description

first(array data, ?boolean ignore_nodata = true)

Gives the first element of an array.

An array without non-null elements resolves always with null.

Parameters

data*

An array with elements of any data type.

Data type: array

Any data type is allowed.
Array items:
Data type: any

ignore_nodata = true

: any

Download JSON

https://openeo.org/documentation/1.0/datacubes.html#filter

Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if the first value is such a value.

Data type: boolean

Return Value
The first element of the input array.

Any data type is allowed.

Data type: any

Examples

Example #1

first(data = [1,0,3,2]) => 1

Example #2
first(data = [null,"A","B"]) => "A"

Example #3

first(data = [null,2,3], ignore_nodata = false) => null

Example #4

The input array is empty: return null.

first(data = []) => null

fit curve @

Curve fitting — experimental

Download JSON

Description

fit_curve(raster-cube data, array<number>|raster-cube parameters, process-graph:object
function, string dimension) : raster-cube

Use non-linear least squares to fit a model function y = f(x, parameters) to data.

The process throws an InvalidValues exception if invalid values are encountered. Invalid values are finite numbers (see
also is_valid).

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*
A data cube.

Data type: raster-cube

pa rameters*
Defined the number of parameters for the model function and provides an initial guess for them. At least one parameter
is required.
Data Types:
Data type: array<number>

Min. number of items: 1

Array items: Data type: number

Data Cube with optimal values from a previous result of this process.

Data type: raster-cube

function*

The model function. It must take the parameters to fit as array through the first argument and the independent variable
x as the second argument.

It is recommended to store the model function as a user-defined process on the back-end to be able to re-use the
model function with the computed optimal values for the parameters afterwards.

Data type: User-defined Process (process-graph:object)

Parameters:

X*
The value for the independent variable x.

Data type: number

parameters*
The parameters for the model function, contains at least one parameter.

Data type: array<number>

Min. number of items: 1

Array items: Data type: number

Expected Return Value:
The computed value y value for the given independent variable x and the parameters.

Data type: number

dimension*
The name of the dimension for curve fitting. Must be a dimension with labels that have a order (i.e. numerical labels or a
temporal dimension). Fails with a DimensionNotAvailable exception if the specified dimension does not exist.

Data type: string

Return Value
A data cube with the optimal values for the parameters.

Data type: raster-cube

Errors/Exceptions

e InvalidValues

Message: At least one of the values is not a finite number.

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

floor B

Round fractions down

Download JSON

Description

floor(number|null x) : integer|null

The greatest integer less than or equal to the number x.

This process is not an alias for the int process as defined by some mathematicians, see the examples for negative numbers
in both processes for differences.

The no-data value null is passed through and therefore gets propagated.

Parameters

X*
A number to round down.

Data type: number, null

Return Value
The number rounded down.

Data type: integer, null

Examples

Example #1
floor(x = @) => 0

Example #2
floor(x

1
w
[$)]

N

1

\'%
w

Example #3
floor(x = -0.4) => -1

Example #4
floor(x = -3.5) => -4

See Also

» Floor explained by Wolfram MathWorld

gt

Greater than comparison

Download JSON

Description

gt(any x, any y) : boolean|null

http://mathworld.wolfram.com/FloorFunction.html

Compares whether x is strictly greater than y.

Remarks:

« If any operand is null, the return value is null.

« If any operand is an array or object, the return value is false.

« If any operand is not a number or temporal string (date, time or date-time), the process returns false.

» Temporal strings can not be compared based on their string representation due to the time zone / time-offset
representations.

Parameters

X*
First operand.

Any data type is allowed.

Data type: any

y*
Second operand.

Any data type is allowed.

Data type: any

Return Value
true if x is strictly greater than y or null if any operand is null, otherwise false.
Data type: boolean, null

Examples

Example #1

gt(x =1, y = null) => null

Example #2

gt(x = @8, y = 8) => false

Example #3

gt(x =2, y =1) => true

Example #4

gt(x = -0.5, y = -0.6) => true

Example #5
gt(x = "00:00:00Z", y = "00:00:00+01:00") => true

Example #6
gt(x = "1950-01-01T00:00:00Z", y = "2018-01-81T712:00:80Z") => false

Example #7
gt(x = "2018-01-01T712:00:00+00:00", y = "20818-01-81T12:00:00Z") => false

Example #8

gt(x = true, y = 0) => false

Example #9

gt(x = true, y = false) => false

gte ®

Greater than or equal to comparison

Download JSON

Description

gte(any x, any y) : boolean|null

Compares whether x is greater than or equal to y.

Remarks:

« If any operand is null, the return value is null. Therefore, gte(null, null) returns null instead of true.

« If any operand is an array or object, the return value is false.

« If the operands are not equal (see process eq) and any of them is not a number or temporal string (date, time or
date-time), the process returns false.

» Temporal strings can not be compared based on their string representation due to the time zone / time-offset
representations.

Parameters

X*
First operand.

Any data type is allowed.

Data type: any

y*

Second operand.

Any data type is allowed.

Data type: any

Return Value

true if x is greater than or equal to y, null if any operand is null, otherwise false.

Data type:

Examples

Example #1

gte(x

Example #2

gte(x

Example #3

gte(x

Example #4

gte(x

Example #5

gte(x

Example #6

gte(x

Example #7

gte(x

boolean, null

null) => null

—_
<
1]

0, vy = 0) => true

2) => false

—_
<
1

-0.5, y = -0.6) => true

"00:00:002", y = "00:00:00+01:00") => true

"1950-01-01T00:00:00Z", y = "2018-81-01T12:00:00Z") => false

"2018-01-01T712:00:00+00:00", y = "2018-01-01T712:00:00Z") => true

Example #8

gte(x = true, y = false) => false
Example #9
gte(x = [1,2,3], y = [1,2,3]) => false

if
If-Then-Else conditional

Download JSON

Description

if(boolean|null value, any accept, ?any reject = null) : any

If the value passed is true, returns the value of the accept parameter, otherwise returns the value of the reject
parameter.

This is basically an if-then-else construct as in other programming languages.
Parameters

value*
A boolean value.

Data type: boolean, null

accept*
A value that is returned if the boolean value is true.

Any data type is allowed.

Data type: any

reject = null
A value that is returned if the boolean value is not true. Defaults to null.

Any data type is allowed.

Data type: any

Return Value

Either the accept or reject argument depending on the given boolean value.

Any data type is allowed.

Data type: any

Examples

Example #1

if(value = true, accept = "A", reject "B") => "A"

Example #2

if(value = null, accept = "A", reject "B") => "B"

Example #3
if(value = false, accept = [1,2,3], reject = [4,5,6]) => [4,5,6]

Example #4

if(value = true, accept = 123) => 123

Example #5

if(value = false, accept = 1) => null

inspect @

Add information to the logs — experimental

Download JSON

Description

inspect(any data, ?string code = "User", ?string level = "info", ?string message = "") : any

This process can be used to add runtime information to the logs, e.g. for debugging purposes. This process should be used
with caution and it is recommended to remove the process in production workflows. For example, logging each pixel or array
individually in a process such as apply or reduce_dimension could lead to a (too) large number of log entries. Several
data structures (e.g. data cubes) are too large to log and will only return summaries of their contents.

The data provided in the parameter data is returned without changes.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and

give feedback, but refrain from using it in production.

Parameters

data*
Data to log.

Any data type is allowed.

Data type: any

code = "User"

A label to help identify one or more log entries originating from this process in the list of all log entries. It can help to

group or filter log entries and is usually not unique.

Data type: string

level = "info"
The severity level of this message, defaults to info.

Data type: string

Allowed values: error, warning, info, debug

message =
A message to send in addition to the data.

Data type: string

Return Value

The data as passed to the data parameter without any modification.

Any data type is allowed.

Data type: any

int @

Integer part of a number

Download JSON

Description

int(number|null x) : integer|null

The integer part of the real number x.

This process is not an alias for the floor process as defined by some mathematicians, see the examples for negative
numbers in both processes for differences.

The no-data value null is passed through and therefore gets propagated.

Parameters

X*
A number.

Data type: number, null

Return Value
Integer part of the number.

Data type: integer, null

Examples

Example #1

int(x = 8) => 0

Example #2
int(x = 3.5) => 3

Example #3

int(x = -0.4) => 0

Example #4
int(x = -3.5) => -3

See Also

« Integer Part explained by Wolfram MathWorld

http://mathworld.wolfram.com/IntegerPart.html

is_infinite

Value is an infinite number — experimental

Description

is_infinite(any x) : boolean

Download JSON

Checks whether the specified value x is an infinite number. The definition of infinite numbers follows the IEEE Standard 754.
The special numerical value NaN (not a number) as defined by the IEEE Standard 754 is not an infinite number and must

return false.

Experimental

give feedback, but refrain from using it in production.

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and

Parameters

X*
The data to check.

Any data type is allowed.

Data type: any

Return Value
true if the data is an infinite number, otherwise false.

Data type: boolean

See Also

» |EEE Standard 754-2008 for Floating-Point Arithmetic

is nan @

Value is not a number

Download JSON

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

Description

is_nan(any x) : boolean

Checks whether the specified value x is not a number. Returns true for numeric values (integers and floating-point
numbers), except for the special value NaN as defined by the IEEE Standard 754. All non-numeric data types MUST also
return true, including arrays that contain NaN values.

Parameters

X*
The data to check.

Any data type is allowed.

Data type: any

Return Value

true if the data is not a number, otherwise false.

Data type: boolean

Examples

Example #1

is_nan(x = 1) => false

Example #2

is_nan(x = "Test") => true
Example #3

is_nan(x = null) => true
See Also

« |EEE Standard 754-2008 for Floating-Point Arithmetic
» NaN explained by Wolfram MathWorld

is_nodata @

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/NaN.html

Value is a no-data value

Download JSON

Description

is_nodata(any x) : boolean

Checks whether the specified data is missing data, i.e. equals to null or any of the no-data values specified in the metadata.
The special numerical value NaN (not a number) as defined by the IEEE Standard 754 is not considered no-data and must
return false.

Parameters

X*
The data to check.

Any data type is allowed.

Data type: any

Return Value
true if the data is a no-data value, otherwise false.
Data type: boolean

Examples

Example #1

is_nodata(x = 1) => false

Example #2

is_nodata(x "Test") => false

Example #3

is_nodata(x = null) => true

Example #4

is_nodata(x [null, null]) => false

https://ieeexplore.ieee.org/document/4610935

is_valid @

Value is valid data

Download JSON

Description

is_valid(any x) : boolean
Checks whether the specified value x is valid. The following values are considered valid:

« Any finite numerical value (integers and floating-point numbers). The definition of finite numbers follows the IEEE
Standard 754 and excludes the special value NaN (not a number).

» Any other value that is not a no-data value according to ““is_nodata()". Thus all arrays, objects and strings are valid,
regardless of their content.

Parameters

X*
The data to check.

Any data type is allowed.

Data type: any

Return Value
true if the data is valid, otherwise false.
Data type: boolean

Examples

Example #1

is_valid(x = 1) => true

Example #2

is_valid(x "Test") => true

Example #3

is_valid(x = null) => false

Example #4

https://ieeexplore.ieee.org/document/4610935
https://ieeexplore.ieee.org/document/4610935

is_valid(x = [null,null]) => true

See Also

« |EEE Standard 754-2008 for Floating-Point Arithmetic

last @

Last element

Download JSON

Description

last(array data, ?boolean ignore_nodata = true) : any

Gives the last element of an array.

An array without non-null elements resolves always with null.
Parameters
data*

An array with elements of any data type.

Data type: array

Any data type is allowed.
Array items:
Data type: any

ignore_nodata = true
Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if the last value is such a value.

Data type: boolean

Return Value

The last element of the input array.

Any data type is allowed.

https://ieeexplore.ieee.org/document/4610935

Data type: any

Examples

Example #1

last(data [1,0,3,2]) => 2

Example #2

last(data

["A","B",null]) => "B"

Example #3

last(data [6,1,null], ignore_nodata = false) => null

Example #4

The input array is empty: return null.

last(data = []) => null

linear_scale_range @

Linear transformation between two ranges

Download JSON

Description

linear_scale_range(number|null x, number inputMin, number inputMax, ?number outputMin = @, ?
number outputMax = 1) : number|null

Performs a linear transformation between the input and output range.

The given number in x is clipped to the bounds specified in inputMin and inputMax so that the underlying formula
((x - inputMin) / (inputMax - inputMin)) * (outputMax - outputMin) + outputMin never returns any
value lower than outputMin or greater than outputMax.

Potential use case include

» scaling values to the 8-bit range (0 - 255) often used for numeric representation of values in one of the channels of the
RGB colour model or
« calculating percentages (0 - 100).

The no-data value null is passed through and therefore gets propagated.

Parameters

https://en.wikipedia.org/wiki/RGB_color_model#Numeric_representations

X*
A number to transform. The number gets clipped to the bounds specified in inputMin and inputMax.

Data type: number, null
inputMin*
Minimum value the input can obtain.
Data type: number
inputMax*
Maximum value the input can obtain.
Data type: number
outputMin = @
Minimum value of the desired output range.

Data type: number

outputMax = 1

Maximum value of the desired output range.

Data type: number

Return Value
The transformed number.
Data type: number, null

Examples

Example #1

linear_scale_range(x = 0.3, inputMin = -1, inputMax
255) => 165.75

1, outputMin = 0, outputMax =

Example #2

linear_scale_range(x 25.5, inputMin = @, inputMax 255) => 0.1

Example #3

linear_scale_range(x = null, inputMin = @, inputMax

100) => null

Example #4

Shows that the input data is clipped.

linear_scale_range(x

255) => 255

In @

Natural logarithm

Description

= 1.12, inputMin = @, inputMax = 1, outputMin = 0, outputMax =

Download JSON

In(number|null x) : number|null

The natural logarithm is the logarithm to the base e of the number x, which equals to using the log process with the base set
to e. The natural logarithm is the inverse function of taking e to the power x.

The no-data value null is passed through.

The computations follow IEEE Standard 754 whenever the processing environment supports it. Therefore, 1n(8) results in
+infinity if the processing environment supports it or otherwise an exception is thrown.

Parameters

X*

A number to compute the natural logarithm for.

Data type: number, null

Return Value

The computed natural logarithm.

Data type: number, null

Examples

Example #1
In(x = 1) => 9

See Also

https://ieeexplore.ieee.org/document/8766229

» |EEE Standard 754-2019 for Floating-Point Arithmetic
» Natural logarithm explained by Wolfram MathWorld

load_collection @

Load a collection

Download JSON

Description

load_collection(collection-id:string id, object|null spatial_extent, temporal-
interval:array<string|null>|null temporal_extent, ?array<band-name:string>|null bands = null,
?metadata-filter:object|null properties = null) : raster-cube

Loads a collection from the current back-end by its id and returns it as a processable data cube. The data that is added to the
data cube can be restricted with the parameters spatial_extent, temporal_extent, bands and properties.

Remarks:

» The bands (and all dimensions that specify nominal dimension labels) are expected to be ordered as specified in the
metadata if the bands parameter is setto null.

- If no additional parameter is specified this would imply that the whole data set is expected to be loaded. Due to the large
size of many data sets, this is not recommended and may be optimized by back-ends to only load the data that is
actually required after evaluating subsequent processes such as filters. This means that the pixel values should be
processed only after the data has been limited to the required extent and as a consequence also to a manageable size.

Parameters

id*

The collection id.

Data type: collection-id:string

Pattern: ATAWN-\ .~/]+8

spatial_extent*
Limits the data to load from the collection to the specified bounding box or polygons.

The process puts a pixel into the data cube if the point at the pixel center intersects with the bounding box or any of the
polygons (as defined in the Simple Features standard by the OGC).

The GeoJSON can be one of the following feature types:

e A Polygon or MultiPolygon geometry,

« a Feature with a Polygon or MultiPolygon geometry,

o a FeatureCollection containing at least one Feature with Polygon or MultiPolygon geometries, or

« a GeometryCollection containing Polygon or MultiPolygon geometries. To maximize interoperability,
GeometryCollection should be avoided in favour of one of the alternatives above.

Set this parameter to null to set no limit for the spatial extent. Be careful with this when loading large datasets! It is
recommended to use this parameter instead of using filter_bbox or filter_spatial directly after loading

https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/NaturalLogarithm.html

unbounded data.

Data Types:

Bounding Box

Data type: bounding-box:object
Object Properties:

west * West (lower left corner, coordinate axis 1).
Data type: number

south * South (lower left corner, coordinate axis 2).

Data type: number

east * East (upper right corner, coordinate axis 1).

Data type: number

north * North (upper right corner, coordinate axis 2).

Data type: number

base Base (optional, lower left corner, coordinate axis 3).

Data type: number, null

Default value: null

height Height (optional, upper right corner, coordinate axis 3).

Data type: number, null

Default value: null

crs Coordinate reference system of the extent, specified as as EPSG code, WKT2 (ISO
19162) string or PROJ definition (deprecated). Defaults to 4326 (EPSG code 4326)
unless the client explicitly requests a different coordinate reference system.

Data type: any

Default value: 4326

GeoJSON

http://www.epsg-registry.org/
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
https://proj.org/usage/quickstart.html

Limits the data cube to the bounding box of the given geometry. All pixels inside the bounding box
that do not intersect with any of the polygons will be set to no data (null).

Data type: geojson:object

No filter

Don't filter spatially. All data is included in the data cube.

Data type: null

temporal_extent*

Limits the data to load from the collection to the specified left-closed temporal interval. Applies to all temporal
dimensions. The interval has to be specified as an array with exactly two elements:

1. The first element is the start of the temporal interval. The specified instance in time is included in the interval.
2. The second element is the end of the temporal interval. The specified instance in time is excluded from the
interval.

The specified temporal strings follow RFC 3339. Also supports open intervals by setting one of the boundaries to null,
but never both.

Set this parameter to null to set no limit for the temporal extent. Be careful with this when loading large datasets! It is
recommended to use this parameter instead of using filter_temporal directly after loading unbounded data.

Data Types:

Data type: temporal-interval:array<date-time:stringldate:stringlyear:stringlnull>
Min. number of items: 2

Max. number of items: 2

Array items: Data type: any

e ["2015-01-01T00:00:00Z", "2016-01-01T00:00:00Z"]
Examples: e ["2015-01-01", "2016-01-01"]
No filter

Don't filter temporally. All data is included in the data cube.

Data type: null

bands = null

Only adds the specified bands into the data cube so that bands that don't match the list of band names are not
available. Applies to all dimensions of type bands.

https://www.rfc-editor.org/rfc/rfc3339.html

Either the unique band name (metadata field name in bands) or one of the common band names (metadata field
common_name in bands) can be specified. If the unique band name and the common name conflict, the unique band
name has a higher priority.

The order of the specified array defines the order of the bands in the data cube. If multiple bands match a common
name, all matched bands are included in the original order.

It is recommended to use this parameter instead of using filter_bands directly after loading unbounded data.

Data Types:
Data type: array<band-name:string>

Array items: Data type: band-name:string

No filter

Don't filter bands. All bands are included in the data cube.

Data type: null

properties = null
Limits the data by metadata properties to include only data in the data cube which all given conditions return true for
(AND operation).

Specify key-value-pairs with the key being the name of the metadata property, which can be retrieved with the openEO
Data Discovery for Collections. The value must be a condition (user-defined process) to be evaluated against the
collection metadata, see the example.

Data Types:

Filters

A list of filters to check against. Specify key-value-pairs with the key being the name of the
metadata property name and the value being a process evaluated against the metadata values.
Data type: metadata-filter:object

Each property:
Data type: User-defined Process (process-graph:object)

Parameters:

value*
The property value to be checked against.

Any data type.

Data type: any

Expected Return Value:
true if the data should be loaded into the data cube, otherwise false.

Data type: boolean

No filter

Don't filter by metadata properties.

Data type: null

Return Value

A data cube for further processing. The dimensions and dimension properties (name, type, labels, reference system and
resolution) correspond to the collection's metadata, but the dimension labels are restricted as specified in the parameters.

Data type: raster-cube

Examples

Example #1

Loading Sentinel-2B data from a Sentinel-2 collection for 2018, but only with cloud cover between 0 and
50%.

load_collection(id = "Sentinel-2", spatial_extent =
{"west":16.1,"east":16.6, "north":48.6, "south" :47.2}, temporal_extent = ["2018-01-
01","2019-01-01"], properties = {"eo:cloud_cover":{"process_graph":{"cc"

{"process_id" :"between", "arguments":{"x":
{"from_parameter":"value"}, "min":0, "max" :50}, "result" :true}}}, "platform":
{"process_graph":{"pf":{"process_id":"eq", "arguments" :{"x":

{"from_parameter":"value"},"y":"Sentinel-
2B", "case_sensitive" :false}, "result":true}}}})

See Also

Data Cubes explained in the openEO documentation

List of common band names as specified by the STAC specification
Official EPSG code registry

PROJ parameters for cartographic projections

Simple Features standard by the OGC

Unofficial EPSG code database

load_result @

Load batch job results — experimental

https://openeo.org/documentation/1.0/datacubes.html
https://github.com/radiantearth/stac-spec/tree/master/extensions/eo#common-band-names
http://www.epsg-registry.org/
https://proj.org/usage/projections.html
http://www.opengeospatial.org/standards/sfa
http://www.epsg.io/

Download JSON

Description

load_result(string id, ?object|null spatial_extent = null, ?temporal-
interval:array<string|null>|null temporal_extent = null, ?array<band-name:string>|null bands
= null) : raster-cube

Loads batch job results and returns them as a processable data cube. A batch job result can be loaded by ID or URL:

 ID: The identifier for a finished batch job. The job must have been submitted by the authenticated user on the back-end
currently connected to.

« URL: The URL to the STAC metadata for a batch job result. This is usually a signed URL that is provided by some back-
ends since openEO API version 1.1.0 through the canonical link relation in the batch job result metadata.

If supported by the underlying metadata and file format, the data that is added to the data cube can be restricted with the
parameters spatial_extent, temporal_extent and bands.

Remarks:

« The bands (and all dimensions that specify nominal dimension labels) are expected to be ordered as specified in the
metadata if the bands parameter is set to null.

« If no additional parameter is specified this would imply that the whole data set is expected to be loaded. Due to the large
size of many data sets, this is not recommended and may be optimized by back-ends to only load the data that is
actually required after evaluating subsequent processes such as filters. This means that the pixel values should be
processed only after the data has been limited to the required extent and as a consequence also to a manageable size.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
id*
The id of a batch job with results.
Data Types:
ID
Data type: job-id:string

Pattern: AT\WN -\ . ~]+8

URL
Data type: uri:string

Pattern: Mhttps?://

spatial_extent = null

Limits the data to load from the batch job result to the specified bounding box or polygons.

The process puts a pixel into the data cube if the point at the pixel center intersects with the bounding box or any of the
polygons (as defined in the Simple Features standard by the OGC).

The GeoJSON can be one of the following feature types:

e« A Polygon or MultiPolygon geometry,

» a Feature with a Polygon or MultiPolygon geometry,

e a FeatureCollection containing at least one Feature with Polygon or MultiPolygon geometries, or

« a GeometryCollection containing Polygon or MultiPolygon geometries. To maximize interoperability,
GeometryCollection should be avoided in favour of one of the alternatives above.

Set this parameter to null to set no limit for the spatial extent. Be careful with this when loading large datasets! It is
recommended to use this parameter instead of using filter_bbox or filter_spatial directly after loading
unbounded data.

Data Types:

Bounding Box

Data type: bounding-box:object
Object Properties:

west * West (lower left corner, coordinate axis 1).
Data type: number

south * South (lower left corner, coordinate axis 2).

Data type: number

east * East (upper right corner, coordinate axis 1).

Data type: number

north * North (upper right corner, coordinate axis 2).

Data type: number

base Base (optional, lower left corner, coordinate axis 3).

Data type: number, null

Default value: null

height Height (optional, upper right corner, coordinate axis 3).

Data type: number, null

Default value: null

crs Coordinate reference system of the extent, specified as as EPSG code, WKT2 (ISO
19162) string or PROJ definition (deprecated). Defaults to 4326 (EPSG code 4326)
unless the client explicitly requests a different coordinate reference system.

Data type: any

Default value: 4326

GeoJSON

Limits the data cube to the bounding box of the given geometry. All pixels inside the bounding box
that do not intersect with any of the polygons will be set to no data (null).

Data type: geojson:object

No filter

Don't filter spatially. All data is included in the data cube.

Data type: null

temporal_extent = null

Limits the data to load from the batch job result to the specified left-closed temporal interval. Applies to all temporal
dimensions. The interval has to be specified as an array with exactly two elements:

1. The first element is the start of the temporal interval. The specified instance in time is included in the interval.

2. The second element is the end of the temporal interval. The specified instance in time is excluded from the
interval.

The specified temporal strings follow RFC 3339. Also supports open intervals by setting one of the boundaries to null,
but never both.

Set this parameter to null to set no limit for the temporal extent. Be careful with this when loading large datasets! It is
recommended to use this parameter instead of using filter_temporal directly after loading unbounded data.

Data Types:
Data type: temporal-interval:array<date-time:stringldate:stringlyear:stringlnull>

Min. number of items: 2

Max. number of items: 2

Array items: Data type: any

e ["2015-01-01T00:00:00Z", "2016-01-01T00:00:00Z" |
o [

Examples: "2015-01-01", "2016-01-01"]

http://www.epsg-registry.org/
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
https://proj.org/usage/quickstart.html
https://www.rfc-editor.org/rfc/rfc3339.html

No filter

Don't filter temporally. All data is included in the data cube.

Data type: null

bands = null

Only adds the specified bands into the data cube so that bands that don't match the list of band names are not
available. Applies to all dimensions of type bands.

Either the unique band name (metadata field name in bands) or one of the common band names (metadata field
common_name in bands) can be specified. If the unique band name and the common name conflict, the unique band
name has a higher priority.

The order of the specified array defines the order of the bands in the data cube. If multiple bands match a common
name, all matched bands are included in the original order.

It is recommended to use this parameter instead of using filter_bands directly after loading unbounded data.

Data Types:
Datatype: array<band-name:string>

Array items: Data type: band-name:string

No filter

Don't filter bands. All bands are included in the data cube.

Data type: null

Return Value
A data cube for further processing.

Data type: raster-cube

load_uploaded_files @

Load files from the user workspace — experimental

Download JSON

Description

load_uploaded_files(file-paths:array<file-path:string> paths, input-format:string format, ?
input-format-options:object options = {}) : raster-cube

Loads one or more user-uploaded files from the server-side workspace of the authenticated user and returns them as a single
data cube. The files must have been stored by the authenticated user on the back-end currently connected to.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
paths*
The files to read. Folders can't be specified, specify all files instead. An exception is thrown if a file can't be read.

Data type: file-paths:array<file-path:string>

Data type: file-path:string
Array items:
Pattern: A[A\r\n\:"'"]+$

format*

The file format to read from. It must be one of the values that the server reports as supported input file formats, which
usually correspond to the short GDAL/OGR codes. If the format is not suitable for loading the data, a
FormatUnsuitable exception will be thrown. This parameter is case insensitive.

Data type: input-format:string
options = {}
The file format parameters to be used to read the files. Must correspond to the parameters that the server reports as

supported parameters for the chosen format. The parameter names and valid values usually correspond to the
GDAL/OGR format options.

Data type: input-format-options:object

Return Value
A data cube for further processing.

Data type: raster-cube

Errors/Exceptions

 FormatUnsuitable

Message: Data can't be loaded with the requested input format.

log @

Logarithm to a base

Download JSON

Description

log(number|null x, number|null base) : number|null

Logarithm to the base base of the number x is defined to be the inverse function of taking b to the power of x.
The no-data value null is passed through and therefore gets propagated if any of the arguments is null.

The computations follow IEEE Standard 754 whenever the processing environment supports it. Therefore, 1og(8, 2) results
in xinfinity if the processing environment supports it or otherwise an exception is thrown.

Parameters
X*
A number to compute the logarithm for.
Data type: number, null

base*
The numerical base.

Data type: number, null

Return Value
The computed logarithm.

Data type: number, null

Examples
Example #1

log(x = 18, base = 10) => 1
Example #2

log(x = 2, base = 2) => 1

Example #3

https://ieeexplore.ieee.org/document/8766229

log(x = 4, base = 2) => 2
Example #4

log(x = 1, base = 16) => 0
See Also

« |EEE Standard 754-2019 for Floating-Point Arithmetic
» Logarithm explained by Wolfram MathWorld

Iite

Less than comparison

Download JSON

Description

lt(any x, any y) : boolean|null

Compares whether X is strictly less than y.

Remarks:

 If any operand is null, the return value is null.

« If any operand is an array or object, the return value is false.

« If any operand is not a number or temporal string (date, time or date-time), the process returns false.
» Temporal strings can not be compared based on their string representation due to the time zone / time-offset

representations.
Parameters
X*
First operand.
Any data type is allowed.
Data type: any
y*

Second operand.

Any data type is allowed.

Data type: any

https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/Logarithm.html

Return Value
true if x is strictly less than y, null if any operand is null, otherwise false.
Data type: boolean, null

Examples

Example #1

lt(x = 1, y = null) => null

Example #2
lt(x = 08, y = 9) => false

Example #3

lt(x =1, y = 2) => true

Example #4
lt(x = -8.5, y = -0.6) => false

Example #5
lt(x = "00:00:00+01:00", y = "00:00:00Z") => true

Example #6
1t(x = "1950-01-01T00:00:00Z", y = "2018-01-01T12:00:002") => true

Example #7
1t(x = "2018-01-01T712:00:004+00:00", y = "2018-01-01T712:00:00Z") => false

Example #8

lt(x = @, y = true) => false

Example #9

1lt(x = false, y = true) => false

Ite @

Less than or equal to comparison

Download JSON

Description

lte(any x, any y) : boolean|null

Compares whether x is less than or equal to y.

Remarks:

« If any operand is null, the return value is null. Therefore, 1te(null, null) returns null instead of true.

« If any operand is an array or object, the return value is false.

« If the operands are not equal (see process eq) and any of them is not a number or temporal string (date, time or
date-time), the process returns false.

» Temporal strings can not be compared based on their string representation due to the time zone / time-offset

representations.
Parameters
X*
First operand.
Any data type is allowed.
Data type: any
y*

Second operand.

Any data type is allowed.

Data type: any

Return Value
true if x is less than or equal to y, null if any operand is null, otherwise false.

Data type: boolean, null

Examples

Example #1
lte(x =1, y = null) => null

Example #2

lte(x = 0, y = 0) => true
Example #3

lte(x =1, y = 2) => true
Example #4

lte(x = -0.5, y = -0.6) => false

Example #5
lte(x = "00:00:00+01:00", y = "00:00:00Z") => true

Example #6
lte(x = "1950-01-01T00:00:00Z", y = "2018-01-81T712:00:80Z") => true

Example #7
lte(x = "2018-081-01T12:00:00+00:00", y = "2018-01-01T712:00:80Z") => true

Example #8

lte(x = false, y = true) => false

Example #9
lte(x = [1,2,3], v = [1,2,3]) => false

mask

Apply a raster mask

Download JSON

Description

mask(raster-cube data, raster-cube mask, ?number|boolean|string|null replacement = null)
raster-cube

Applies a mask to a raster data cube. To apply a vector mask use mask_polygon.

A mask is a raster data cube for which corresponding pixels among data and mask are compared and those pixels in data
are replaced whose pixels in mask are non-zero (for numbers) or true (for boolean values). The pixel values are replaced
with the value specified for replacement, which defaults to null (no data).

The data cubes have to be compatible so that each dimension in the mask must also be available in the raster data cube with
the same name, type, reference system, resolution and labels. Dimensions can be missing in the mask with the result that the

mask is applied for each label of the missing dimension in the data cube. The process fails if there's an incompatibility found
between the raster data cube and the mask.

Parameters
data*

A raster data cube.

Data type: raster-cube

mask*
A mask as a raster data cube. Every pixel in data must have a corresponding element in mask.

Data type: raster-cube

replacement = null
The value used to replace masked values with.

Data type: number, boolean, string, null

Return Value

A masked raster data cube with the same dimensions. The dimension properties (name, type, labels, reference system and
resolution) remain unchanged.

Data type: raster-cube

mask_polygon @

Apply a polygon mask

Download JSON

Description

mask_polygon(raster-cube data, geojson:object mask, ?number|boolean|string|null replacement =
null, ?boolean inside = false) : raster-cube

Applies a (multi) polygon mask to a raster data cube. To apply a raster mask use mask.

All pixels for which the point at the pixel center does not intersect with any polygon (as defined in the Simple Features
standard by the OGC) are replaced. This behavior can be inverted by setting the parameter inside to true.

The pixel values are replaced with the value specified for replacement, which defaults to null (no data). No data values in
data will be left untouched by the masking operation.

Parameters
data*
A raster data cube.

Data type: raster-cube

mask*
A GeoJSON object containing at least one polygon. The provided feature types can be one of the following:

e A Polygon or MultiPolygon geometry,

e a Feature with a Polygon or MultiPolygon geometry,

« a FeatureCollection containing at least one Feature with Polygon or MultiPolygon geometries, or

« a GeometryCollection containing Polygon or MultiPolygon geometries. To maximize interoperability,
GeometryCollection should be avoided in favour of one of the alternatives above.

Data type: geojson:object

replacement = null
The value used to replace masked values with.

Data Types:

Data type: number

Data type: boolean

Data type: string

Data type: null

inside = false
If setto true all pixels for which the point at the pixel center does intersect with any polygon are replaced.

Data type: boolean

Return Value

A masked raster data cube with the same dimensions. The dimension properties (name, type, labels, reference system and
resolution) remain unchanged.

Data type: raster-cube

See Also

« Simple Features standard by the OGC

max [

Maximum value

Download JSON

Description

max(array<number |null> data, ?boolean ignore_nodata = true) : number|null

Computes the largest value of an array of numbers, which is equal to the first element of a sorted (i.e., ordered) version of the
array.

An array without non-null elements resolves always with null.
Parameters

data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

Return Value
The maximum value.

Data type: number, null

Examples

Example #1
max(data = [1,0,3,2]) => 3

http://www.opengeospatial.org/standards/sfa

Example #2
max(data = [5,2.5,null,-0.7]) => 5

Example #3

max(data [1,0,3,null,2], ignore_nodata = false) => null

Example #4

The input array is empty: return null.

max(data = []) => null

See Also

» Maximum explained by Wolfram MathWorld

mean §

Arithmetic mean (average)

Download JSON

Description

mean(array<number|null> data, ?boolean ignore_nodata = true) : number|null

The arithmetic mean of an array of numbers is the quantity commonly called the average. It is defined as the sum of all
elements divided by the number of elements.

An array without non-null elements resolves always with null.
Parameters
data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true

Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

http://mathworld.wolfram.com/Maximum.html

Return Value
The computed arithmetic mean.
Data type: number, null

Examples

Example #1

mean(data [1,0,3,2]) => 1.5

Example #2
mean(data = [9,2.5,null,-2.5]) => 3

Example #3

mean(data = [1,null], ignore_nodata = false) => null

Example #4

The input array is empty: return null.

mean(data = []) => null

Example #5

The input array has only null elements: return null.

mean(data = [null,null]) => null

See Also

 Arithmetic mean explained by Wolfram MathWorld

median @

Statistical median

Download JSON

Description

median(array<number|null> data, ?boolean ignore_nodata = true) : number|null

The statistical median of an array of numbers is the value separating the higher half from the lower half of the data.

http://mathworld.wolfram.com/ArithmeticMean.html

An array without non-null elements resolves always with null.

Remarks:

» For symmetric arrays, the result is equal to the mean.
« The median can also be calculated by computing the quantiles with a probability of 0.5.

Parameters
data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

Return Value
The computed statistical median.

Data type: number, null

Examples

Example #1
[1,3,3,6,7,8,9]) => 6

median(data

Example #2

median(data = [1,2,3,4,5,6,8,9]) => 4.5

Example #3

median(data = [-1,-0.5,null,1]) => -0.5

Example #4

median(data [-1,08,null, 1], ignore_nodata = false) => null

Example #5

The input array is empty: return null.

median(data = []) => null

Example #6

The input array has only null elements: return null.

median(data = [null,null]) => null

See Also

« Statistical Median explained by Wolfram MathWorld

merge_cubes @

Merge two data cubes

Download JSON

Description

merge_cubes(raster-cube cubel, raster-cube cube2, ?process-graph:object overlap_resolver =
null, ?any context = null) : raster-cube

The data cubes have to be compatible. A merge operation without overlap should be reversible with (a set of) filter operations
for each of the two cubes. The process performs the join on overlapping dimensions, with the same name and type.

An overlapping dimension has the same name, type, reference system and resolution in both dimensions, but can have
different labels. One of the dimensions can have different labels, for all other dimensions the labels must be equal. If data
overlaps, the parameter overlap_resolver must be specified to resolve the overlap.

Examples for merging two data cubes:

1. Data cubes with the dimensions (x, y, t, bands) have the same dimension labels in x, y and t, but the labels for the
dimension bands are B1 and B2 for the first cube and B3 and B4. An overlap resolver is not needed. The merged data
cube has the dimensions x, y, t and bands and the dimension bands has four dimension labels: B1, B2, B3, B4.

2. Data cubes with the dimensions (X, y, t, bands) have the same dimension labels in x, y and t, but the labels for the
dimension bands are B1 and B2 for the first data cube and B2 and B3 for the second. An overlap resolver is required
to resolve overlap in band B2. The merged data cube has the dimensions x, y, t and bands and the dimension
bands has three dimension labels: B1, B2, B3.

3. Data cubes with the dimensions (x, y, t) have the same dimension labels in x, y and t. There are two options:

1. Keep the overlapping values separately in the merged data cube: An overlap resolver is not needed, but for each
data cube you need to add a new dimension using add_dimension. The new dimensions must be equal, except
that the labels for the new dimensions must differ by name. The merged data cube has the same dimensions and
labels as the original data cubes, plus the dimension added with add_dimension, which has the two dimension
labels after the merge.

2. Combine the overlapping values into a single value: An overlap resolver is required to resolve the overlap for all
pixels. The merged data cube has the same dimensions and labels as the original data cubes, but all pixel values
have been processed by the overlap resolver.

4. A data cube with dimensions (x, y, t / bands) or (x, y, t, bands) and another data cube with dimensions (x, y)
have the same dimension labels in x and y. Merging them will join dimensions x and y, so the lower dimension cube is
merged with each time step and band available in the higher dimensional cube. This can for instance be used to apply a
digital elevation model to a spatio-temporal data cube. An overlap resolver is required to resolve the overlap for all
pixels.

After the merge, the dimensions with a natural/inherent label order (with a reference system this is each spatial and temporal
dimensions) still have all dimension labels sorted. For other dimensions where there is no inherent order, including bands, the

http://mathworld.wolfram.com/StatisticalMedian.html

dimension labels keep the order in which they are present in the original data cubes and the dimension labels of cube2 are
appended to the dimension labels of cube.

Parameters
cube1*
The first data cube.
Data type: raster-cube
cube2*

The second data cube.

Data type: raster-cube

overlap_resolver = null

A reduction operator that resolves the conflict if the data overlaps. The reducer must return a value of the same data
type as the input values are. The reduction operator may be a single process such as multiply or consist of multiple
sub-processes. null (the default) can be specified if no overlap resolver is required.

Data type: User-defined Process (process-graph:object)

Parameters:

X*
The overlapping value from the first data cube cube1.

Any data type.

Data type: any

y*

The overlapping value from the second data cube cube?2.

Any data type.
Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the merged data cube.

Any data type.

Data type: any

context = null
Additional data to be passed to the overlap resolver.

Any data type.

Data type: any

Return Value

The merged data cube. See the process description for details regarding the dimensions and dimension properties (name,
type, labels, reference system and resolution).

Data type: raster-cube

Errors/Exceptions

» OverlapResolverMissing

Message: Overlapping data cubes, but no overlap resolver has been specified.

See Also

« Background information on reduction operators (binary reducers) by Wikipedia

min @
Minimum value

Download JSON

Description

min(array<number|null> data, ?boolean ignore_nodata = true) : number|null

Computes the smallest value of an array of numbers, which is equal to the last element of a sorted (i.e., ordered) version of the
array.

An array without non-null elements resolves always with null.

Parameters

https://en.wikipedia.org/wiki/Reduction_Operator

data*

An array of numbers.
Data type: array<numberinull>
ignore_nodata = true
Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-

data values so that null is returned if any value is such a value.

Data type: boolean

Return Value
The minimum value.

Data type: number, null

Examples

Example #1

min(data [1,0,3,2]) => 0

Example #2

min(data [5,2.5,null,-0.7]) => -0.7

Example #3

min(data [1,0,3,null,2], ignore_nodata = false) => null

Example #4

min(data = []) => null

See Also

» Minimum explained by Wolfram MathWorld

mod B

Modulo

Download JSON

http://mathworld.wolfram.com/Minimum.html

Description

mod(number |null x, number|null y) : number|null

Remainder after a division of x by y for both integers and floating-point numbers.

The result of a modulo operation has the sign of the divisor. The handling regarding the sign of the result differs between
programming languages and needs careful consideration to avoid unexpected results.

The no-data value null is passed through and therefore gets propagated if any of the arguments is null. A modulo by zero
results in infinity if the processing environment supports it. Otherwise, a DivisionByZero exception must the thrown.

Parameters

X*
A number to be used as the dividend.

Data type: number, null

y*

A number to be used as the divisor.

Data type: number, null

Return Value
The remainder after division.

Data type: number, null

Errors/Exceptions

o DivisionByZero

Message: Division by zero is not supported.

Examples

Example #1
mod(x = 27, y = 5) => 2

Example #2

mod(x = -27, y = 5) => 3

Example #3

mod(x = 3.14, y = -2) => -0.86

https://en.wikipedia.org/wiki/Modulo_operation#In_programming_languages
https://en.wikipedia.org/wiki/Modulo_operation#In_programming_languages

Example #4

mod(x = -27, y = -5) => -2
Example #5

mod(x = 27, y = null) => null
Example #6

mod(x = null, y = 5) => null
See Also

» Modulo explained by Wikipedia

multiply @

Multiplication of two numbers

Download JSON

Description

multiply(number|null x, number|null y) : number|null

Multiplies the two numbers x and y (x * y) and returns the computed product.
No-data values are taken into account so that null is returned if any element is such a value.

The computations follow IEEE Standard 754 whenever the processing environment supports it.
Parameters
X*

The multiplier.

Data type: number, null

y*

The multiplicand.

Data type: number, null

Return Value

https://en.wikipedia.org/wiki/Modulo_operation
https://ieeexplore.ieee.org/document/8766229

The computed product of the two numbers.

Data type: number, null

Errors/Exceptions

e MultiplicandMissing

Message: Multiplication requires at least two numbers.

Examples

Example #1

multiply(x =5, y = 2.5) => 12.5

Example #2

multiply(x -2, y=-4) => 8

Example #3

multiply(x = 1, y = null) => null

See Also

» |EEE Standard 754-2019 for Floating-Point Arithmetic
» Product explained by Wolfram MathWorld

nan @

Not a Number (NaN) — experimental

Download JSON

Description

nan() : any

NaN (not a number) is a symbolic floating-point representation which is neither a signed infinity nor a finite number.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/Product.html

This process has no parameters.

Return Value
Returns NaN.

JSON Schema can't represent NaN and thus a schema can't be specified.

Data type: any

See Also

» |EEE Standard 754-2008 for Floating-Point Arithmetic
» NaN explained by Wolfram MathWorld

ndvi @

Normalized Difference Vegetation Index

Download JSON

Description

ndvi(raster-cube data, ?band-name:string nir = "nir", ?band-name:string red = "red", ?
string|null target_band = null) : raster-cube

Computes the Normalized Difference Vegetation Index (NDVI). The NDVI is computed as (nir - red) / (nir + red).

The data parameter expects a raster data cube with a dimension of type bands or a DimensionAmbiguous exception is
thrown otherwise. By default, the dimension must have at least two bands with the common names red and nir assigned.
Otherwise, the user has to specify the parameters nir and red. If neither is the case, either the exception
NirBandAmbiguous or RedBandAmbiguous is thrown. The common names for each band are specified in the collection's
band metadata and are not equal to the band names.

By default, the dimension of type bands is dropped by this process. To keep the dimension specify a new band name in the
parameter target_band. This adds a new dimension label with the specified name to the dimension, which can be used to
access the computed values. If a band with the specified name exists, a BandExists is thrown.

This process is very similar to the process normalized_difference, but determines the bands automatically based on the
common names (red/nir) specified in the metadata.

Parameters

data*

A raster data cube with two bands that have the common names red and nir assigned.

Data type: raster-cube

https://ieeexplore.ieee.org/document/4610935
http://mathworld.wolfram.com/NaN.html

nir = "nir"
The name of the NIR band. Defaults to the band that has the common name nir assigned.

Either the unique band name (metadata field name in bands) or one of the common band names (metadata field
common_name in bands) can be specified. If the uniqgue band nhame and the common name conflict, the unique band
name has a higher priority.

Data type: band-name:string

red = "red
The name of the red band. Defaults to the band that has the common name red assigned.

Either the unique band name (metadata field name in bands) or one of the common band names (metadata field
common_name in bands) can be specified. If the unique band name and the common name conflict, the unique band
name has a higher priority.

Data type: band-name:string

target_band = null

By default, the dimension of type bands is dropped. To keep the dimension specify a new band name in this parameter
so that a new dimension label with the specified name will be added for the computed values.

Data Types:

Data type: string

Pattern: Mw+$

Data type: null

Return Value

A raster data cube containing the computed NDVI values. The structure of the data cube differs depending on the value
passed to target_band:

» target_band is null: The data cube does not contain the dimension of type bands, the number of dimensions
decreases by one. The dimension properties (name, type, labels, reference system and resolution) for all other
dimensions remain unchanged.

« target_band is a string: The data cube keeps the same dimensions. The dimension properties remain unchanged, but
the number of dimension labels for the dimension of type bands increases by one. The additional label is named as
specified in target_band.

Data type: raster-cube

Errors/Exceptions

« NirBandAmbiguous

Message: The NIR band can't be resolved, please specify the specific NIR band name.

» RedBandAmbiguous

Message: The red band can't be resolved, please specify the specific red band name.

» DimensionAmbiguous

Message: dimension of type ‘bands is not available or is ambiguous..

« BandExists
Message: A band with the specified target name exists.

See Also

« List of common band names as specified by the STAC specification
« NDVI explained by NASA
» NDVI explained by Wikipedia

neq @

Not equal to comparison

Download JSON

Description

neq(any x, any y, ?number|null delta = null, ?boolean case_sensitive = true) : boolean|null

Compares whether x is not strictly equal to y.

Remarks:

» Data types MUST be checked strictly. For example, a string with the content 7 is not equal to the number 1.
Nevertheless, an integer 1 is equal to a floating-point number 7.0 as integer is a sub-type of number.

« If any operand is null, the return value is null. Therefore, neq(null, null) returns null instead of false.

« If any operand is an array or object, the return value is false.

» Strings are expected to be encoded in UTF-8 by default.

» Temporal strings MUST be compared differently than other strings and MUST NOT be compared based on their string
representation due to different possible representations. For example, the time zone representation Z (for UTC) has the
same meaning as +00:00.

Parameters

X*
First operand.

Any data type is allowed.

Data type: any

y*

Second operand.

https://github.com/radiantearth/stac-spec/tree/master/extensions/eo#common-band-names
https://earthobservatory.nasa.gov/features/MeasuringVegetation/measuring_vegetation_2.php
https://en.wikipedia.org/wiki/Normalized_difference_vegetation_index

Any data type is allowed.

Data type: any

delta = null

Only applicable for comparing two numbers. If this optional parameter is set to a positive non-zero number the non-
equality of two numbers is checked against a delta value. This is especially useful to circumvent problems with floating-
point inaccuracy in machine-based computation.

This option is basically an alias for the following computation: gt (abs(minus([x, y]), delta)

Data type: number, null

case_sensitive = true
Only applicable for comparing two strings. Case sensitive comparison can be disabled by setting this parameter to
false.

Data type: boolean

Return Value
true if x is notequal to y, null if any operand is null, otherwise false.

Data type: boolean, null

Examples

Example #1
neq(x =1, y = null) => null

Example #2
neq(x =1, y = 1) => false

Example #3

neq(x =1, y = "1") => true
Example #4

neq(x = @, y = false) => true
Example #5

neq(x = 1.02, y = 1, delta = 8.81) => true

Example #6
neq(x = -1, y = -1.001, delta = 0.01) => false

Example #7
neq(x = 115, y = 110, delta = 10) => false

Example #8

neq(x = "Test", y = "test") => true

Example #9

neq(x = "Test", y = "test", case_sensitive = false) => false
Example #10

neq(x = "A", y = "&", case_sensitive = false) => false
Example #11

neq(x = "00:00:00+00:00", y = "00:00:00Z") => false

Example #12

y is not a valid date-time representation and therefore will be treated as a string so that the provided values are not
equal.

neq(x = "2018-01-01T12:00:00Z", y = "2018-01-081712:00:00") => true

Example #13
01:00 in the time zone +1 is equal to 00:00 in UTC.

neq(x = "2018-01-01700:00:00Z", v = "2018-01-01T01:00:00+01:00") => false

Example #14
neq(x = [1,2,3], y = [1,2,3]) => false

normalized_difference

Normalized difference

Download JSON

Description

normalized_difference(number x, number y) : number

Computes the normalized difference for two bands. The normalized difference is computed as (x - y) / (x + y).

This process could be used for a number of remote sensing indices such as:

« NDVI: x =NIR band, y =red band
« NDWI: x = NIR band, y = SWIR band
« NDSI: x =green band, y = SWIR band

Some back-ends may have native processes such as ndvi available for convenience.

Parameters
X*
The value for the first band.
Data type: number
y*
The value for the second band.

Data type: number

Return Value
The computed normalized difference.

Data type: number
Minimum value (inclusive): -1

Maximum value (inclusive): 1

See Also

» NDSI explained by EOS
« NDVI explained by EOS
« NDWI explained by EOS

not @

Inverting a boolean

Description

not(boolean|null x) : boolean|null

Download JSON

https://eos.com/ndvi/
https://eos.com/ndwi/
https://eos.com/ndsi/
https://eos.com/ndsi/
https://eos.com/ndvi/
https://eos.com/ndwi/

Inverts a single boolean so that true gets false and false gets true.

The no-data value null is passed through and therefore gets propagated.

Parameters

X*
Boolean value to invert.

Data type: boolean, null

Return Value
Inverted boolean value.
Data type: boolean, null

Examples

Example #1

not(x = null) => null

Example #2

not(x = false) => true

Example #3

not(x = true) => false

orld

Logical OR

Description

or(boolean|null x, boolean|null y)

: boolean|null

Download JSON

Checks if at least one of the values is true. Evaluates parameter x before y and stops once the outcome is unambiguous. If a

component is null, the result will be null if the outcome is ambiguous.

Truth table:

a \b || null | false | true
————— I IR IEe
null || null | null | true
false || null | false | true
true || true | true | true
Parameters
X*

A boolean value.

Data type: boolean, null

y*

A boolean value.

Data type: boolean, null

Return Value
Boolean result of the logical OR.

Data type: boolean, null

Examples

Example #1

or(x = true, y = true) => true

Example #2

or(x = false, y = false) => false

Example #3

or(x = true, y = null) => true

Example #4

or(x = null, y = true) => true

Example #5
or(x = false, y = null) => null

order @

Create a permutation

Download JSON

Description

order(array<number|null|string> data, ?boolean asc = true, ?boolean|null nodata = null)
array<integer>

Computes a permutation which allows rearranging the data into ascending or descending order. In other words, this process
computes the ranked (sorted) element positions in the original list.

Remarks:

» The positions in the result are zero-based.

« Ties will be left in their original ordering.

« Temporal strings can not be compared based on their string representation due to the time zone/time-offset
representations.

Parameters
data*

An array to compute the order for.

Datatype: array<numberinullidate-time:stringldate:stringltime:string>

Array items: Datatype: any

asc = true
The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, set this parameter
to false.

Data type: boolean

nodata = null
Controls the handling of no-data values (null). By default, they are removed. If set to true, missing values in the data
are put last; if setto false, they are put first.

Data type: boolean, null

Return Value
The computed permutation.

Data type: array<integer>

Data type: integer

Array items:
Minimum value (inclusive): 0
Examples
Example #1
order(data = [6,-1,2,null,7,4,null,8,3,9,9]) => [1,2,8,5,0,4,7,9,10]
Example #2

order(data = [6,-1,2,null,7,4,null,8,3,9,9], nodata = true) =>
[1’2'8'5'9'4,7,9,1@,3,6]

Example #3

order(data [6,-1,2,null,7,4,null,8,3,9,9], asc
[9,10,7,4,0,5,8,2,1,3,6]

false, nodata = true) =>

Example #4

order(data = [6,-1,2,null,7,4,null,8,3,9,9], asc = false, nodata = false) =>
[3’6'9'19'7,4,9,5,8,2,1]

See Also

» Permutation explained by Wolfram MathWorld

pi @
Pi (1)

Download JSON

Description

pi() : number

The real number Pi () is a mathematical constant that is the ratio of the circumference of a circle to its diameter. The
numerical value is approximately 3.74159.

Parameters

This process has no parameters.

http://mathworld.wolfram.com/Permutation.html

Return Value
The numerical value of Pi.

Data type: number

See Also

» Mathematical constant Pi explained by Wolfram MathWorld

power @

Exponentiation

Download JSON

Description

power (number |null base, number|null p) : number|null

Computes the exponentiation for the base base raised to the power of p.

The no-data value null is passed through and therefore gets propagated if any of the arguments is null.
Parameters

base*
The numerical base.
Data type: number, null
p*
The numerical exponent.

Data type: number, null

Return Value
The computed value for base raised to the power of p.

Data type: number, null

Examples

http://mathworld.wolfram.com/Pi.html

Example #1

power (base

Example #2

power (base

Example #3

power (base

Example #4

power (base

Example #5

power (base

Example #6

power (base

Example #7

power (base

See Also

0, p =
2.5, p
3, p =
5 p =
1, p =
1, p =
null, p

3) => 27

-1) => 0.2

0.5) => 1

null) => null

= 2) => null

» Power explained by Wolfram MathWorld

predict_curve @

Predict values — experimental

Description

predict_curve(raster-cube data,
dimension, ?null|array<number|string> labels

raster-cube

Download JSON

raster-cube parameters, process-graph:object function, string

Predict values using a model function and pre-computed parameters. The process is primarily intended to compute values for

new labels, but it can also fill gaps where existing labels contain no-data (null) values.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

http://mathworld.wolfram.com/Power.html

Parameters

data*

A data cube to predict values for.

Data type: raster-cube

parameters*
A data cube with optimal values from a result of e.g. fit_curve.

Data type: raster-cube

function*

The model function. It must take the parameters to fit as array through the first argument and the independent variable

x as the second argument.

It is recommended to store the model function as a user-defined process on the back-end.

Data type: User-defined Process (process-graph:object)

Parameters:

X*
The value for the independent variable x.

Data type: number

parameters*
The parameters for the model function, contains at least one parameter.

Data type: array<number>

Min. number of items: 1

Array items: Data type: number

Expected Return Value:

The computed value y value for the given independent variable x and the parameters.

Data type: number

dimension*

The name of the dimension for predictions. Fails with a DimensionNotAvailable exception if the specified

dimension does not exist.

Data type: string

labels = null

The labels to predict values for. If no labels are given, predicts values only for no-data (null) values in the data cube.

Data Types:

Data type: null

Datatype: array<numberldate:stringldate-time:string>

Array items: Datatype: any

Return Value
A data cube with the predicted values.

Data type: raster-cube

Errors/Exceptions

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

product @

Compute the product by multiplying numbers

Download JSON

Description

product(array<number|null> data, ?boolean ignore_nodata = true) : number|null

Multiplies all elements in a sequential array of numbers and returns the computed product.

By default no-data values are ignored. Setting ignore_nodata to false considers no-data values so that null is returned
if any element is such a value.

The computations follow IEEE Standard 754 whenever the processing environment supports it.
Parameters

data*

An array of numbers.

https://ieeexplore.ieee.org/document/8766229

Data type: array<numberinull>

ignore_nodata = true

Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

Return Value
The computed product of the sequence of numbers.
Data type: number, null

Examples

Example #1

product(data [5,0]) => @

Example #2

product(data = [-2,4,2.5]) => -20

Example #3

product(data [1,null], ignore_nodata = false) => null

Example #4

product(data [-1]) => -1

Example #5

product(data [null], ignore_nodata = false) => null

Example #6

product(data = []) => null

See Also

« |EEE Standard 754-2019 for Floating-Point Arithmetic
» Product explained by Wolfram MathWorld

https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/Product.html

quantiles @

Quantiles

Download JSON

Description

quantiles(array<number|null> data, ?array<number> probabilities, ?integer g, ?boolean
ignore_nodata = true) : array<number|null>

Calculates quantiles, which are cut points dividing the range of a sample distribution into either

« intervals corresponding to the given probabilities or
» equal-sized intervals (g-quantiles based on the parameter q).

Either the parameter probabilities or q must be specified, otherwise the QuantilesParameterMissing exception is
thrown. If both parameters are set the QuantilesParameterConflict exception is thrown.

Sample quantiles can be computed with several different algorithms. Hyndman and Fan (1996) have concluded on nine
different types, which are commonly implemented in statistical software packages. This process is implementing type 7, which
is implemented widely and often also the default type (e.g. in Excel, Julia, Python, R and S).

Parameters
data*

An array of numbers.

Data type: array<numberinull>

probabilities
A list of probabilities to calculate quantiles for. The probabilities must be between 0 and 1 (inclusive).

Data type: array<number>
Data type: number

Array items: Minimum value (inclusive): 0

Maximum value (inclusive): 1

Number of intervals to calculate quantiles for. Calculates g-quantiles with equal-sized intervals.

Data type: integer

Minimum value (inclusive): 2

ignore_nodata = true

Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that an array with null values is returned if any element is such a value.

Data type: boolean

Return Value

An array with the computed quantiles. The list has either

« as many elements as the given list of probabilities had or
e @-1elements.

If the input array is empty the resulting array is filled with as many null values as required according to the list above. See
the 'Empty array' example for an example.

Data type: array<numberinull>

Errors/Exceptions

e QuantilesParameterMissing

Message: The process ‘quantiles’ requires either the "probabilities” or 'q" parameter to be set.

e QuantilesParameterConflict

Message: The process ‘quantiles’ only allows that either the ‘probabilities” or the "q" parameter is set.

Examples

Example #1

quantiles(data = [2,4,4,4,5,5,7,9], probabilities = [0.005,0.01,0.02,0.05,0.1,0.5]) =>
7,3.4,4.5

[2.07,2.14,2.28,2.7,3.4,4.5]

Example #2

quantiles(data [2,4,4,4,5,5,7,9], q = 4) => [4,4.5,5.5]

Example #3

quantiles(data [-1,-0.5,null, 1], 2) => [-0.5]

0
I}

Example #4

[-1,-0.5,null, 1], q

quantiles(data 4, ignore_nodata = false) => [null,null,null]

Empty array (#5)

quantiles(data [1, probabilities [6.1,0.5]) => [null,null]

See Also

+ Hyndman and Fan (1996): Sample Quantiles in Statistical Packages

https://www.amherst.edu/media/view/129116/original/Sample+Quantiles.pdf

« Quantiles explained by Wikipedia

rearrange @

Rearrange an array based on a permutation

Download JSON

Description

rearrange(array data, array<integer> order) : array

Rearranges an array based on a permutation, i.e. a ranked list of element positions in the original list. The positions must be
zero-based.

Parameters

data*

The array to rearrange.

Data type: array

Any data type is allowed.
Array items:
Data type: any

order*
The permutation used for rearranging.

Data type: array<integer>

Data type: integer
Array items:
Minimum value (inclusive): 0

Return Value
The rearranged array.

Data type: array

Array items: .
Any data type is allowed.

https://en.wikipedia.org/wiki/Quantile

Data type: any

Examples

Reverse a list (#1)

rearrange(data = [5,4,3], order = [2,1,0]) => [3,4,5]

Remove two elements (#2)

rearrange(data = [5,4,3,2], order = [1,3]) => [4,2]

Swap two elements (#3)

rearrange(data = [5,4,3,2], order [0,2,1,3]) => [5,3,4,2]

See Also

» Permutation explained by Wolfram MathWorld

reduce_dimension §

Reduce dimensions

Download JSON

Description

reduce_dimension(raster-cube data, process-graph:object reducer, string dimension, ?any
context = null) : raster-cube

Applies a reducer to a data cube dimension by collapsing all the pixel values along the specified dimension into an output
value computed by the reducer.

The dimension is dropped. To avoid this, use apply_dimension instead.
Parameters

data*
A data cube.

Data type: raster-cube

reducer*

http://mathworld.wolfram.com/Permutation.html

A reducer to apply on the specified dimension. A reducer is a single process such as mean or a set of processes, which
computes a single value for a list of values, see the category 'reducer' for such processes.

Data type: User-defined Process (process-graph:object)

Parameters:

data*
A labeled array with elements of any type.

Datatype: labeled-array

Any data type.
Array items:
Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:

The value to be set in the new data cube.

Any data type.

Data type: any

dimension*
The name of the dimension over which to reduce. Fails with a DimensionNotAvailable exception if the specified
dimension does not exist.

Data type: string

context = null
Additional data to be passed to the reducer.

Any data type.

Data type: any

Return Value

A data cube with the newly computed values. It is missing the given dimension, the number of dimensions decreases by one.
The dimension properties (name, type, labels, reference system and resolution) for all other dimensions remain unchanged.

Data type: raster-cube

Errors/Exceptions

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

See Also

» Reducers explained in the openEO documentation

reduce_spatial @

Reduce spatial dimensions 'x' and 'y' — experimental

Download JSON

Description

reduce_spatial(raster-cube data, process-graph:object reducer, ?any context = null) : raster-
cube

Applies a reducer to a data cube by collapsing all the pixel values along the horizontal spatial dimensions (i.e. axes x and y)
into an output value computed by the reducer. The horizontal spatial dimensions are dropped.

An aggregation over certain spatial areas can be computed with the process aggregate_spatial.

This process passes a list of values to the reducer. The list of values has an undefined order, therefore processes such as
last and first that depend on the order of the values will lead to unpredictable results.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*
A data cube.

Data type: raster-cube

reducer*

A reducer to apply on the horizontal spatial dimensions. A reducer is a single process such as mean or a set of
processes, which computes a single value for a list of values, see the category 'reducer' for such processes.

Data type: User-defined Process (process-graph:object)

https://openeo.org/documentation/1.0/datacubes.html#reduce

Parameters:

data*

An array with elements of any type.

Data type: array

Any data type.
Array items:
Data type: any

context = null
Additional data passed by the user.

Any data type.

Data type: any

Expected Return Value:
The value to be set in the new data cube.

Any data type.

Data type: any

context = null
Additional data to be passed to the reducer.

Any data type.

Data type: any

Return Value

A data cube with the newly computed values. It is missing the horizontal spatial dimensions, the number of dimensions
decreases by two. The dimension properties (name, type, labels, reference system and resolution) for all other dimensions
remain unchanged.

Data type: raster-cube

See Also

» Reducers explained in the openEO documentation

https://openeo.org/documentation/1.0/datacubes.html#reduce

rename_dimension @

Rename a dimension

Download JSON

Description

rename_dimension(raster-cube data, string source, string target) : raster-cube

Renames a dimension in the data cube while preserving all other properties.
Parameters
data*

The data cube.

Data type: raster-cube

source*
The current name of the dimension. Fails with a DimensionNotAvailable exception if the specified dimension does
not exist.

Data type: string

ta rget*
A new Name for the dimension. Fails with a DimensionExists exception if a dimension with the specified name
exists.

Data type: string

Return Value

A data cube with the same dimensions, but the name of one of the dimensions changes. The old name can not be referred to
any longer. The dimension properties (name, type, labels, reference system and resolution) remain unchanged.

Data type: raster-cube

Errors/Exceptions

« DimensionNotAvailable
Message: A dimension with the specified name does not exist.

o DimensionExists

Message: A dimension with the specified name already exists.

rename_labels @

Rename dimension labels

Download JSON

Description

rename_labels(raster-cube data, string dimension, array<number|string> target, ?
array<number|string> source = []) : raster-cube

Renames the labels of the specified dimension in the data cube from source to target.

If the array for the source labels is empty (the default), the dimension labels are expected to be enumerated with zero-based
numbering (0,1,2,3,...) so that the dimension labels directly map to the indices of the array specified for the parameter target
. If the dimension labels are not enumerated and the target parameter is not specified, the LabelsNotEnumerated
exception is thrown. The number of the source and target labels must be equal. Otherwise, the exception LabelMismatch is
thrown.

This process doesn't change the order of the labels and their corresponding data.
Parameters

data*
The data cube.

Data type: raster-cube

dimension*
The name of the dimension to rename the labels for.

Data type: string

target*

The new names for the labels. The dimension labels in the data cube are expected to be enumerated if the parameter
target is not specified. If a target dimension label already exists in the data cube, a LabelExists exception is
thrown.

Data type: array<numberlstring>

source = []

The names of the labels as they are currently in the data cube. The array defines an unsorted and potentially
incomplete list of labels that should be renamed to the names available in the corresponding array elements in the
parameter target. If one of the source dimension labels doesn't exist, the LabelNotAvailable exception is thrown.
By default, the array is empty so that the dimension labels in the data cube are expected to be enumerated.

Data type: array<numberlstring>

Return Value

The data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution)
remain unchanged, except that for the given dimension the labels change. The old labels can not be referred to any longer.
The number of labels remains the same.

Data type: raster-cube

Errors/Exceptions

o LabelsNotEnumerated

Message: The dimension labels are not enumerated.

» LabelMismatch
Message: The number of labels in the parameters ‘source™ and “target™ don't match.

o LabelNotAvailable

Message: A label with the specified name does not exist.

o LabelExists

Message: A label with the specified name exists.

Examples

Rename named labels (#1)

Renaming the bands from B1 to red, from B2 to green and from B3 to blue.

rename_labels(data = Sdata, dimension = "bands", target = ["red","green", "blue"],
source = ["B1","B2","B3"])

Processes

« Rename enumerated labels

resample_cube_spatial @

Resample the spatial dimensions to match a target data cube

Download JSON

Description

resample_cube_spatial(raster-cube data, raster-cube target, ?string method = "near"
raster-cube

Resamples the spatial dimensions (x,y) from a source data cube to align with the corresponding dimensions of the given target
data cube. Returns a new data cube with the resampled dimensions.

To resample a data cube to a specific resolution or projection regardless of an existing target data cube, refer to
resample_spatial.

https://processes.openeo.org/1.2.0/examples/rename-enumerated-labels.json

Parameters

data*
A data cube.

Data type: raster-cube

target*

A data cube that describes the spatial target resolution.

Data type: raster-cube

method = "near"
Resampling method to use. The following options are available and are meant to align with gdalwarp:

» average: average (mean) resampling, computes the weighted average of all valid pixels
« bilinear: bilinear resampling

» cubic: cubic resampling

e cubicspline: cubic spline resampling

« lanczos: Lanczos windowed sinc resampling

e max: maximum resampling, selects the maximum value from all valid pixels

« med: median resampling, selects the median value of all valid pixels

e min: minimum resampling, selects the minimum value from all valid pixels

- mode: mode resampling, selects the value which appears most often of all the sampled points
« near: nearest neighbour resampling (default)

« q1: first quartile resampling, selects the first quartile value of all valid pixels

» Q3: third quartile resampling, selects the third quartile value of all valid pixels

e rms root mean square (quadratic mean) of all valid pixels

» sum: compute the weighted sum of all valid pixels

Valid pixels are determined based on the function is_valid.

Data type: string

average, bilinear, cubic, cubicspline, lanczos, max, med, min, mode, near, g1, g3,

Allowed values:
rms, sum

Return Value

A data cube with the same dimensions. The dimension properties (name, type, labels, reference system and resolution) remain
unchanged, except for the resolution and dimension labels of the spatial dimensions.

Data type: raster-cube

See Also

» Resampling explained in the openEO documentation

https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
https://openeo.org/documentation/1.0/datacubes.html#resample

resample_cube_temporal @

Resample temporal dimensions to match a target data cube — experimental

Download JSON

Description

resample_cube_temporal(raster-cube data, raster-cube target, ?string|null dimension = null, ?
number |null valid_within = null) : raster-cube

Resamples one or more given temporal dimensions from a source data cube to align with the corresponding dimensions of the
given target data cube using the nearest neighbor method. Returns a new data cube with the resampled dimensions.

By default, this process simply takes the nearest neighbor independent of the value (including values such as no-data / null).
Depending on the data cubes this may lead to values being assigned to two target timestamps. To only consider valid values in
a specific range around the target timestamps, use the parameter valid_within.

The rare case of ties is resolved by choosing the earlier timestamps.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

A data cube with one or more temporal dimensions.

Data type: raster-cube

target*

A data cube that describes the temporal target resolution.

Data type: raster-cube

dimension = null

The name of the temporal dimension to resample, which must exist with this name in both data cubes. If the dimension
is not set or is set to null, the process resamples all temporal dimensions that exist with the same names in both data
cubes.

The following exceptions may occur:
« Adimension is given, but it does not exist in any of the data cubes: DimensionNotAvailable

« Adimension is given, but one of them is not temporal: DimensionMismatch

» No specific dimension name is given and there are no temporal dimensions with the same name in the data:
DimensionMismatch

Data type: string, null

valid_within = null

Setting this parameter to a numerical value enables that the process searches for valid values within the given period of
days before and after the target timestamps. Valid values are determined based on the function is_valid. For
example, the limit of 7 for the target timestamps 2020-01-15 12 :00:00 looks for a nearest neighbor after
2020-01-08 12:00:00 and before 2020-01-22 12:00:00. If no valid value is found within the given period, the
value will be set to no-data (null).

Data type: number, null

Return Value

A raster data cube with the same dimensions and the same dimension properties (name, type, labels, reference system and
resolution) for all non-temporal dimensions. For the temporal dimension, the name and type remain unchanged, but the
dimension labels, resolution and reference system may change.

Data type: raster-cube

Errors/Exceptions

« DimensionMismatch
Message: The temporal dimensions for resampling don't match.

« DimensionNotAvailable

Message: A dimension with the specified name does not exist.

See Also

« Resampling explained in the openEO documentation

resample_spatial @

Resample and warp the spatial dimensions

Download JSON

Description

resample_spatial(raster-cube data, ?number|array<number> resolution = @, ?epsg-
code:integer|string|null projection = null, ?string method = "near", ?string align = "upper-
left") : raster-cube

Resamples the spatial dimensions (x,y) of the data cube to a specified resolution and/or warps the data cube to the target
projection. At least resolution or projection must be specified.

Related processes:

« Use filter_bbox to set the target spatial extent.
 To spatially align two data cubes with each other (e.g. for merging), better use the process resample_cube_spatial.

https://openeo.org/documentation/1.0/datacubes.html#resample

Parameters

data*

A raster data cube.

Data type: raster-cube

resolution = 0

Resamples the data cube to the target resolution, which can be specified either as separate values for x and y or as a
single value for both axes. Specified in the units of the target projection. Doesn't change the resolution by default (9).

Data Types:

A single number used as the resolution for both x and y.

Data type: number

Minimum value (inclusive): 0

A two-element array to specify separate resolutions for x (first element) and y (second element).

Data type: array<number>
Min. number of items: 2

Max. number of items: 2

Data type: number
Array items:
Minimum value (inclusive): 0

projection = null
Warps the data cube to the target projection, specified as as EPSG code, WKT2 (ISO 19162) string, PROJ definition
(deprecated). By default (null), the projection is not changed.

Data Types:
EPSG Code
Data type: epsg-code:integer
Minimum value (inclusive): 1000

Examples: 3857

WKT2

http://www.epsg-registry.org/
http://docs.opengeospatial.org/is/18-010r7/18-010r7.html
https://proj.org/usage/quickstart.html
https://proj.org/usage/quickstart.html

Data type: wkt2-definition:string

PROJ definition
Data type: proj-definition:string

Deprecated: v Yes

Don't change projection

Data type: null

method = "near"
Resampling method to use. The following options are available and are meant to align with gdalwarp:

» average: average (mean) resampling, computes the weighted average of all valid pixels
« bilinear: bilinear resampling

« cubic: cubic resampling

« cubicspline: cubic spline resampling

« lanczos: Lanczos windowed sinc resampling

e max: maximum resampling, selects the maximum value from all valid pixels

« med: median resampling, selects the median value of all valid pixels

e min: minimum resampling, selects the minimum value from all valid pixels

- mode: mode resampling, selects the value which appears most often of all the sampled points
» near: nearest neighbour resampling (default)

» q1: first quartile resampling, selects the first quartile value of all valid pixels

» Q3: third quartile resampling, selects the third quartile value of all valid pixels

e rms root mean square (quadratic mean) of all valid pixels

» sum: compute the weighted sum of all valid pixels

Valid pixels are determined based on the function is_valid.

Data type: string

average, bilinear, cubic, cubicspline, lanczos, max, med, min, mode, near, g1, 3,

Allowed values:
rms, sum

align = "upper-left"
Specifies to which corner of the spatial extent the new resampled data is aligned to.
Data type: string

Allowed values: lower-left, upper-left, lower-right, upper-right

Return Value

A raster data cube with values warped onto the new projection. It has the same dimensions and the same dimension
properties (name, type, labels, reference system and resolution) for all non-spatial or vertical spatial dimensions. For the
horizontal spatial dimensions the name and type remain unchanged, but reference system, labels and resolution may change
depending on the given parameters.

https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r

Data type: raster-cube

See Also

gdalwarp resampling methods

Official EPSG code registry

PROJ parameters for cartographic projections
Resampling explained in the openEO documentation
Unofficial EPSG code database

round [

Round to a specified precision

Download JSON

Description

round(number |null x, ?integer p = 0) : number|null

Rounds a real number x to specified precision p.

If the fractional part of x is halfway between two integers, one of which is even and the other odd, then the even number is
returned. This behavior follows IEEE Standard 754. This kind of rounding is also called "round to nearest (even)" or "banker's
rounding". It minimizes rounding errors that result from consistently rounding a midpoint value in a single direction.

The no-data value null is passed through and therefore gets propagated.
Parameters
X*
A number to round.
Data type: number, null
p=20
A positive number specifies the number of digits after the decimal point to round to. A negative number means rounding
to a power of ten, so for example -2 rounds to the nearest hundred. Defaults to 0.

Data type: integer

Return Value
The rounded number.

Data type: number, null

https://gdal.org/programs/gdalwarp.html#cmdoption-gdalwarp-r
http://www.epsg-registry.org/
https://proj.org/usage/projections.html
https://openeo.org/documentation/1.0/datacubes.html#resample
http://www.epsg.io/
https://ieeexplore.ieee.org/document/8766229

Examples

Example #1
round(x = @) => 0

Example #2

round(x = 3.56, p = 1) => 3.6

Example #3
round(x = -0.4444444, p = 2) => -0.44

Example #4
round(x = -2.5) => -2

Example #5

round(x = -3.5) => -4

Example #6
round(x = 1234.5, p = -2) => 1200

See Also

» Absolute value explained by Wolfram MathWorld
» |EEE Standard 754-2019 for Floating-Point Arithmetic

run_udf @

Run a UDF

Download JSON

Description

run_udf(any data, string udf, udf-runtime:string runtime, ?udf-runtime-version:string|null
version = null, ?object context = {}) : any

Runs a UDF in one of the supported runtime environments.

The process can either:

1. load and run a UDF stored in a file on the server-side workspace of the authenticated user. The path to the UDF file
must be relative to the root directory of the user's workspace.
2. fetch and run a remotely stored and published UDF by absolute URI.

http://mathworld.wolfram.com/AbsoluteValue.html
https://ieeexplore.ieee.org/document/8766229

3. run the source code specified inline as string.

The loaded UDF can be executed in several processes such as aggregate_spatial, apply, apply_dimension and
reduce_dimension. The user must ensure that the data is given in a way that the UDF code can make sense of it.

Parameters
data*
The data to be passed to the UDF.
Data Types:
Array
Data type: array

Min. number of items: 1

Any data type.
Array items:
Data type: any

Single Value

A single value of any data type.

Data type: any

udf*

Either source code, an absolute URL or a path to a UDF script.

Data Types:

Absolute URL to a UDF

Data type: uri:string

Pattern: Mhttps?://

Path to a UDF uploaded to the server.

Data type: file-path:string

Pattern: AANF\N\:"'"]+$

The multi-line source code of a UDF, must contain a newline/line-break.

Data type: udf-code:string

Pattern: (\r\n|\r|\n)

runtime*
A UDF runtime identifier available at the back-end.

Data type: udf-runtime:string

version = null
An UDF runtime version. If set to null, the default runtime version specified for each runtime is used.

Data Types:

Data type: udf-runtime-version:string

Default runtime version

Data type: null

context = {}
Additional data such as configuration options to be passed to the UDF.

Data type: object

Return Value
The data processed by the UDF. The returned value can be of any data type and is exactly what the UDF code returns.

Any

Any data type.

Data type: any

Errors/Exceptions

e InvalidRuntime

Message: The specified UDF runtime is not supported.

o InvalidVersion

Message: The specified UDF runtime version is not supported.

run_udf_externally @

Run an externally hosted UDF container — experimental

Download JSON

Description

run_udf_externally(any data, uri:string url, ?object context = {}) : any

Runs a compatible UDF container that is either externally hosted by a service provider or running on a local machine of the
user. The UDF container must follow the openEO UDF specification.

The referenced UDF service can be executed in several processes such as aggregate_spatial, apply,
apply_dimension and reduce_dimension. In this case, an array is passed instead of a raster data cube. The user must
ensure that the data is given in a way that the UDF code can make sense of it.

Experimental

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters
data*
The data to be passed to the UDF.
Data Types:
Array
Data type: array

Min. number of items: 1

Any data type.
Array items:
Data type: any

Single Value

A single value of any data type.

Data type: any

url*
Absolute URL to a remote UDF service.

https://openeo.org/documentation/1.0/udfs.html

Data type: uri:string

Pattern: Ahttps?://

context = {}
Additional data such as configuration options to be passed to the UDF.

Data type: object

Return Value

The data processed by the UDF. The returned value can in principle be of any data type, but it depends on what is returned by
the UDF code. Please see the implemented UDF interface for details.

Any

Any data type.

Data type: any

See Also

» openEO UDF repository
» openEO UDF specification

sar_backscatter @

Computes backscatter from SAR input — experimental

Download JSON

Description

sar_backscatter(raster-cube data, ?string|null coefficient = "gamma®@-terrain", ?collection-
id:string|null elevation_model = null, ?boolean mask = false, ?boolean contributing_area =
false, ?boolean local_incidence_angle = false, ?boolean ellipsoid_incidence_angle = false, ?
boolean noise_removal = true, ?object options = {}) : raster-cube

Computes backscatter from SAR input.

Note that backscatter computation may require instrument specific metadata that is tightly coupled to the original SAR
products. As a result, this process may only work in combination with loading data from specific collections, not with general
data cubes.

This process uses bilinear interpolation, both for resampling the DEM and the backscatter.

Experimental

https://github.com/Open-EO/openeo-udf
https://openeo.org/documentation/1.0/udfs.html

Please note that this process is experimental with the potential for major things to change. Feel encouraged to try it out and
give feedback, but refrain from using it in production.

Parameters

data*

The source data cube containing SAR input.

Data type: raster-cube

coefficient = "gamma®-terrain”
Select the radiometric correction coefficient. The following options are available:
« beta0: radar brightness
e sigma@-ellipsoid: ground area computed with ellipsoid earth model
» sigma@-terrain: ground area computed with terrain earth model
e gamma®-ellipsoid: ground area computed with ellipsoid earth model in sensor line of sight

« gamma®-terrain: ground area computed with terrain earth model in sensor line of sight (default)
e null:non-normalized backscatter

Data Types:

Data type: string

Allowed values: beta0, sigma0-ellipsoid, sigma0-terrain, gamma0-ellipsoid, gamma0-terrain

Non-normalized backscatter

Data type: null

elevation_model = null
The digital elevation model to use. Set to null (the default) to allow the back-end to choose, which will improve
portability, but reduce reproducibility.

Data Types:

Data type: collection-id:string

Data type: null

mask = false

If setto true, a data mask is added to the bands with the name mask. It indicates which values are valid (1), invalid
(0) or contain no-data (null).

Data type: boolean

contributing_area = false
If setto true, a DEM-based local contributing area band named contributing_area is added. The values are
given in square meters.

Data type: boolean

local_incidence_angle = false

If setto true, a DEM-based local incidence angle band named local_incidence_angle is added. The values are
given in degrees.

Data type: boolean

ellipsoid_incidence_angle = false
If set to true, an ellipsoidal incidence angle band named ellipsoid_incidence_angle is added. The values are
given in degrees.

Data type: boolean

noise_removal = true
If setto false, no noise removal is applied. Defaults to true, which removes noise.

Data type: boolean
options = {}
Proprietary options for the backscatter computations. Specifying proprietary options will reduce portability.

Data type: object

Each property: X No

Return Value
Backscatter values corresponding to the chosen parametrization. The values are given in linear scale.

Data type: raster-cube

Errors/Exceptions

» DigitalElevationModelInvalid

Message: The digital elevation model specified is either not a DEM or can't be used with the data cube given.

See Also

Flattening Gamma: Radiometric Terrain Correction for SAR Imagery
Gamma nought (0) explained by EO4GEO body of knowledge.
Reasoning behind the choice of bilinear resampling

Sigma nought (0) explained by EO4GEO body of knowledge.

https://www.geo.uzh.ch/microsite/rsl-documents/research/publications/peer-reviewed-articles/201108-TGRS-Small-tcGamma-3809999360/201108-TGRS-Small-tcGamma.pdf
https://bok.eo4geo.eu/PP2-2-4-3
https://doi.org/10.3390/data4030093
https://bok.eo4geo.eu/PP2-2-4-2

save result @

Save processed data

Download JSON

Description

save_result(raster-cube|vector-cube data, output-format:string format, ?output-format-
options:object options = {}) : boolean

Makes the processed data available in the given file format to the corresponding medium that is relevant for the context this
processes is applied in:

« For batch jobs the data is stored on the back-end. STAC-compatible metadata is usually made available with the
processed data.

» For synchronous processing the data is sent to the client as a direct response to the request.

» Secondary web services are provided with the processed data so that it can make use of it (e.g., visualize it). Web
service may require the data in a certain format. Please refer to the documentation of the individual service types for
details.

Parameters
data*

The data to deliver in the given file format.

Data Types:

Data type: raster-cube

Data type: vector-cube

format*

The file format to use. It must be one of the values that the server reports as supported output file formats, which
usually correspond to the short GDAL/OGR codes. If the format is not suitable for storing the underlying data structure,
a FormatUnsuitable exception will be thrown. This parameter is case insensitive.

Data type: output-format:string

options = {}
The file format parameters to be used to create the file(s). Must correspond to the parameters that the server reports as

supported parameters for the chosen format. The parameter names and valid values usually correspond to the
GDAL/OGR format options.

Data type: output-format-options:object

Return Value
Returns false if the process failed to make the data available, true otherwise.

Data type: boolean

Errors/Exceptions

« FormatUnsuitable
Message: Data can't be transformed into the requested output format.
See Also

 GDAL Raster Formats
» OGR Vector Formats

sd @

Standard deviation

Download JSON

Description

sd(array<number|null> data, ?boolean ignore_nodata = true) : number|null

Computes the sample standard deviation, which quantifies the amount of variation of an array of numbers. It is defined to be
the square root of the corresponding variance (see variance).

A low standard deviation indicates that the values tend to be close to the expected value, while a high standard deviation
indicates that the values are spread out over a wider range.

An array without non-null elements resolves always with null.
Parameters
data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true

Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

https://www.gdal.org/formats_list.html
https://www.gdal.org/ogr_formats.html

Return Value
The computed sample standard deviation.
Data type: number, null

Examples

Example #1

sd(data [-1,1,3,null]) => 2

Example #2

sd(data [-1,1,3,null], ignore_nodata = false) => null

Example #3

The input array is empty: return null.

sd(data = []) => null

See Also

» Standard deviation explained by Wolfram MathWorld

sgn @
Signum
Description

sgn(number|null x) : number|null

The signum (also known as sign) of x is defined as:
e 1ifx>0
e Oifx=0

e -Tifx<O

The no-data value null is passed through and therefore gets propagated.

Parameters

X*

http://mathworld.wolfram.com/StandardDeviation.html

A number.

Data type: number, null

Return Value
The computed signum value of x.

Data type: number, null

Examples

Example #1

sgn(x = -2) => -1

Example #2

sgn(x

1]
w
[¢,]

N

1]

\%
—_

Example #3

sgn(x

I}
(o]
N—r

1

\%
(o]

Example #4

sgn(x = null) => null

See Also

« Sign explained by Wolfram MathWorld

Download JSON

Description

sin(number|null x) : number|null

Computes the sine of x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.

http://mathworld.wolfram.com/Sign.html

Parameters

X*
An angle in radians.

Data type: number, null

Return Value
The computed sine of x.

Data type: number, null

Examples

Example #1

sin(x = 8) => 0

See Also

» Sine explained by Wolfram MathWorld

sinh @

Hyperbolic sine

Download JSON

Description

sinh(number|null x) : number|null

Computes the hyperbolic sine of x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.
Parameters
X*

An angle in radians.

Data type: number, null

http://mathworld.wolfram.com/Sine.html

Return Value
The computed hyperbolic sine of x.

Data type: number, null

Examples

Example #1
sinh(x = @) => 0

See Also

» Hyperbolic sine explained by Wolfram MathWorld

sort
Sort data
Description

sort(array<number|null|string> data, ?boolean asc = true, ?boolean|null nodata = null)
array<number |null|string>

Sorts an array into ascending (default) or descending order.

Remarks:

« Ties will be left in their original ordering.
» Temporal strings can not be compared based on their string representation due to the time zone/time-offset
representations.

Parameters

data*

An array with data to sort.

Data type: array<numberlinullldate-time:stringldate:stringltime:string>

Array items: Datatype: any

asc = true

http://mathworld.wolfram.com/HyperbolicSine.html

The default sort order is ascending, with smallest values first. To sort in reverse (descending) order, set this parameter
to false.

Data type: boolean

nodata = null
Controls the handling of no-data values (null). By default, they are removed. If set to true, missing values in the data
are put last; if set to false, they are put first.

Data type: boolean, null

Return Value
The sorted array.

Data type: array<numberinullldate-time:stringldate:stringltime:string>

Array items: Datatype: any

Examples

Example #1
sort(data = [6,-1,2,null,7,4,null,8,3,9,9]) => [-1,2,3,4,6,7,8,9,9]

Example #2

sort(data = [6,-1,2,null,7,4,null,8,3,9,9], asc = false, nodata = true) =>
[9,9,8,7,6,4,3,2,-1,null, null]

sqrt @

Square root

Download JSON

Description

sqrt(number|null x) : number|null

Computes the square root of a real number x, which is equal to calculating x to the power of 0.5.

A square root of x is a number a such that a2 = x. Therefore, the square root is the inverse function of a to the power of 2,
but only for a >= 0.

The no-data value null is passed through and therefore gets propagated.

Parameters

X*
A number.

Data type: number, null

Return Value
The computed square root.
Data type: number, null

Examples

Example #1

I}
(o]
N

1

\
o]

sqrt(x

Example #2

1]
—_
~

1

\%
—_

sqrt(x

Example #3
sqrt(x = 9) => 3

Example #4

sqrt(x = null) => null

See Also

» Square root explained by Wolfram MathWorld

subtract @

Subtraction of two numbers

Description

subtract(number|null x, number|null y)

: number |null

Download JSON

http://mathworld.wolfram.com/SquareRoot.html

Subtracts argument y from the argument x (x - y) and returns the computed result.
No-data values are taken into account so that null is returned if any element is such a value.

The computations follow IEEE Standard 754 whenever the processing environment supports it.

Parameters

X*
The minuend.
Data type: number, null
y*
The subtrahend.

Data type: number, null

Return Value
The computed result.

Data type: number, null

Examples

Example #1

subtract(x

I
o
<
I
N
13
N
1
\"
N
o

Example #2

subtract(x = -2, y = 4) => -6

Example #3

subtract(x = 1, y = null) => null

See Also

« |EEE Standard 754-2019 for Floating-Point Arithmetic
» Subtraction explained by Wolfram MathWorld

sum @

https://ieeexplore.ieee.org/document/8766229
https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/Subtraction.html

Compute the sum by adding up numbers

Download JSON

Description

sum(array<number |null> data, ?boolean ignore_nodata = true) : number|null

Sums up all elements in a sequential array of numbers and returns the computed sum.

By default no-data values are ignored. Setting ignore_nodata to false considers no-data values so that null is returned
if any element is such a value.

The computations follow |IEEE Standard 754 whenever the processing environment supports it.
Parameters

data*

An array of numbers.

Data type: array<numberinull>

ignore_nodata = true
Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

Return Value
The computed sum of the sequence of numbers.

Data type: number, null

Examples

Example #1

sum(data [5,1]) => 6

Example #2

sum(data [-2,4,2.5]) => 4.5

Example #3

sum(data [1,null], ignore_nodata = false) => null

https://ieeexplore.ieee.org/document/8766229

Example #4

sum(data = [100]) => 100
Example #5

sum(data = [null], ignore_nodata = false) => null
Example #6

sum(data = []) => null
See Also

» |EEE Standard 754-2019 for Floating-Point Arithmetic
« Sum explained by Wolfram MathWorld

tan @
Tangent
Description

tan(number|null x) : number|null

Computes the tangent of x. The tangent is defined to be the sine of x divided by the cosine of x.

Works on radians only. The no-data value null is passed through and therefore gets propagated.
Parameters
X*

An angle in radians.

Data type: number, null

Return Value
The computed tangent of x.

Data type: number, null

Examples

https://ieeexplore.ieee.org/document/8766229
http://mathworld.wolfram.com/Sum.html

Example #1

tan(x = @) => 0

See Also

» Tangent explained by Wolfram MathWorld

tanh @

Hyperbolic tangent

Description

tanh(number |null x) : number|null

Download JSON

Computes the hyperbolic tangent of x. The tangent is defined to be the hyperbolic sine of x divided by the hyperbolic cosine of

X.

Works on radians only. The no-data value null is passed through and therefore gets propagated.

Parameters

X*
An angle in radians.

Data type: number, null

Return Value

The computed hyperbolic tangent of x.

Data type: number, null

Examples

Example #1
tanh(x = @) => 0

See Also

http://mathworld.wolfram.com/Tangent.html

» Hyperbolic tangent explained by Wolfram MathWorld

text_begins @

Text begins with another text

Download JSON

Description

text_begins(string|null data, string pattern, ?boolean case_sensitive = true) : boolean|null

Checks whether the text (also known as string) specified for data contains the text specified for pattern at the beginning.
Both are expected to be encoded in UTF-8 by default. The no-data value null is passed through and therefore gets
propagated.

Parameters

data*

Text in which to find something at the beginning.

Data type: string, null

patte rn*
Text to find at the beginning of data. Regular expressions are not supported.

Data type: string

case_sensitive = true
Case sensitive comparison can be disabled by setting this parameter to false.

Data type: boolean

Return Value
true if data begins with pattern, false” otherwise.
Data type: boolean, null

Examples

Example #1

http://mathworld.wolfram.com/HyperbolicTangent.html

text_begins(data = "Lorem ipsum dolor sit amet", pattern = "amet") => false

Example #2

text_begins(data = "Lorem ipsum dolor sit amet", pattern = "Lorem") => true
Example #3

text_begins(data = "Lorem ipsum dolor sit amet", pattern = "lorem") => false
Example #4

text_begins(data = "Lorem ipsum dolor sit amet", pattern = "lorem", case_sensitive =

false) => true

Example #5

text_begins(data = "A", pattern = "4", case_sensitive = false) => true

Example #6

text_begins(data = null, pattern = "null") => null

text_contains @

Text contains another text

Download JSON

Description

text_contains(string|null data, string pattern, ?boolean case_sensitive = true)
boolean|null

Checks whether the text (also known as string) specified for data contains the text specified for pattern. Both are expected
to be encoded in UTF-8 by default. The no-data value null is passed through and therefore gets propagated.

Parameters

data*

Text in which to find something in.

Data type: string, null

pattern*
Text to find in data. Regular expressions are not supported.

Data type: string

case_sensitive =

true

Case sensitive comparison can be disabled by setting this parameter to false.

Data type: boolean

Return Value

true if data contains the pattern, false’ otherwise.

Data type: boolean, null

Examples

Example #1

text_contains(data

Example #2

text_contains(data

Example #3

text_contains(data

Example #4

text_contains(data
false) => true

Example #5

text_contains(data

Example #6

text_contains(data

text ends @

Text ends with another text

"Lorem ipsum

"Lorem ipsum

"Lorem ipsum

"Lorem ipsum

"KOU",

null, pattern

pattern = "6",

dolor sit amet", pattern

dolor sit amet", pattern
dolor sit amet",

pattern

dolor sit amet", pattern

case_sensitive

= "null") => null

"openE0") => false

"ipsum dolor") => true

"Ipsum Dolor") => false

"SIT", case_sensitive =

false) => true

Download JSON

Description

text_ends(string|null data, string pattern, ?boolean case_sensitive = true) : boolean|null

Checks whether the text (also known as string) specified for data contains the text specified for pattern at the end. Both
are expected to be encoded in UTF-8 by default. The no-data value null is passed through and therefore gets propagated.

Parameters

data*

Text in which to find something at the end.

Data type: string, null

pattern*
Text to find at the end of data. Regular expressions are not supported.

Data type: string

case_sensitive = true
Case sensitive comparison can be disabled by setting this parameter to false.

Data type: boolean

Return Value
true if data ends with pattern, false’ otherwise.

Data type: boolean, null

Examples

Example #1

text_ends(data

"Lorem ipsum dolor sit amet", pattern "amet") => true

Example #2

text_ends(data

"Lorem ipsum dolor sit amet", pattern "AMET") => false

Example #3

text_ends(data = "Lorem ipsum dolor sit amet", pattern = "Lorem") => false

Example #4

text_ends(data = "Lorem ipsum dolor sit amet", pattern = "AMET", case_sensitive =
false) => true

Example #5
text_ends(data = "A", pattern = "4", case_sensitive = false) => true

Example #6

text_ends(data = null, pattern = "null") => null

text_merge @

Concatenate elements to a single text

Download JSON

Description

text_merge(array<string|number|boolean|null> data, ?string|number|boolean|null separator =
"") : string

Merges text representations (also known as string) of a set of elements to a single text, having the separator between each
element.

Parameters

data*

A set of elements. Numbers, boolean values and null values get converted to their (lower case) string representation.
For example: 1 (integer), -1.5 (number), true / false (boolean values)

Data type: array<stringlnumberlbooleaninull>

separator =
A separator to put between each of the individual texts. Defaults to an empty string.

Data type: string, number, boolean, null

Return Value

A string containing a string representation of all the array elements in the same order, with the separator between each
element.

Data type: string

Examples

Example #1

text_merge(data

Example #2

text_merge(data

Example #3

text_merge(data

"null\ntrue\nfalse\n1\n-1.5\nB"

Example #4

text_merge(data = [2,0], separator

Example #5

text_merge(data

trim_cube @

[1)

Remove dimension labels with no-data values

Description

trim_cube(raster-cube data)

raster-cube

1)

=>

["Hello", "World"], separator =

"210"

" ") => "Hello World"

[1,2,3,4,5,6,7,8,9,8]) => "1234567890"

[null, true, false,1,-1.5,"R"], separator = "\n") =>

Download JSON

Removes dimension labels solely containing no-data values. If the dimension is irregular categorical then dimension labels in
the middle can be removed.

Parameters

data*

A raster data cube to trim.

Data type:

Return Value

raster-cube

A trimmed raster data cube with the same dimensions. The dimension properties name, type, reference system and resolution
remain unchanged. The number of dimension labels may decrease.

Data type: raster-cube

variance

Variance

Download JSON

Description

variance(array<number|null> data, ?boolean ignore_nodata = true) : number|null

Computes the sample variance of an array of numbers by calculating the square of the standard deviation (see sd). ltis
defined to be the expectation of the squared deviation of a random variable from its expected value. Basically, it measures how
far the numbers in the array are spread out from their average value.

An array without non-null elements resolves always with null.
Parameters
data*
An array of numbers.
Data type: array<numberinull>

ignore_nodata = true

Indicates whether no-data values are ignored or not. Ignores them by default. Setting this flag to false considers no-
data values so that null is returned if any value is such a value.

Data type: boolean

Return Value
The computed sample variance.

Data type: number, null

Examples

Example #1

variance(data = [-1,1,3]) => 4

Example #2

variance(data

Example #3

variance(data

Example #4

[2,3,3,null,4,4,5]) => 1.1

[-1,1,null,3], ignore_nodata = false) => null

The input array is empty: return null.

variance(data =

See Also

[1) => null

» Variance explained by Wolfram MathWorld

xor @

Logical XOR (exclusive or)

Description

xor(boolean|null x, boolean|null y) : boolean|null

Download JSON

Checks if exactly one of the values is true. If a component is null, the result will be null if the outcome is ambiguous.

false | true

| false

Truth table:
a \b || null | false | true
————— IR i
null || null | null
false || null |
true || null | true
Parameters
X*

A boolean value.

Data type: boolean, null

y*

A boolean value.

http://mathworld.wolfram.com/Variance.html

Data type: boolean, null

Return Value

Boolean result of the logical XOR.

Data type:

Examples

Example #1

xor (x

Example #2

xor (x

Example #3

xor (x

Example #4

xor(x

Example #5

xor (X

boolean, null

true, y = true) => false

false, y = false) => false

true, y = false) => true

true, y = null) => null

false, y = null) => null

