
1
Copyright © 2025 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date 2024-11-21

Approval Date: <yyyy-mm-dd>

Publication Date: <yyyy-mm-dd>

External identifier of this OGC® document: <http://www.opengis.net/doc/[{doc-type/}]{standard}/{m.n}>

Internal reference number of this OGC® document: 24-059

Version: 1.0

Category: OGC® Community Standard

Editor: Matthias Mohr

openEO API Community Standard

Copyright notice

Copyright © 2025 Open Geospatial Consortium

License notice

Apache 2.0

Warning

This document is not an OGC Standard. This document is distributed for review and
comment. This document is subject to change without notice and may not be referred to
as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of
any relevant patent rights of which they are aware and to provide supporting
documentation.

Document type: OGC® Community Standard
Document subtype:
Document stage: Draft
Document language: English

http://www.opengis.net/def/%5b%7bdoc-type/%7d%5d%7bstandard%7d/%7bm.n%7d

Search...

Introduction

API Principles

Authentication

Cross-Origin Resource
Sharing (CORS)

Processes

Capabilities

Account Management

EO Data Discovery

Process Discovery

User-Defined Processes

Data Processing

Batch Jobs

Secondary Services

File Storage

OGC openEO API Community Standard (1.2.0)
Download OpenAPI specification: Download

openEO Project Steering Committee: openeo.psc@uni-muenster.de URL: https://openeo.org
License: Apache 2.0

openEO Documentation

Introduction

The OGC openEO Community Standard defines an API in support of interoperable cloud-based
processing of large Earth observation datasets.

We recommend reading the glossary before diving into this specification. The glossary explains the
most important terms used in this specification.

The OGC openEO Community Standard consists of two parts:

OGC openEO API Community Standard, this API specification
OGC openEO Processes Community Standard, a set of well-defined processes that is
recommended to be implemented by back-end providers and is offered through their openEO API

Abstract

openEO specifies an open application programming interface (API) for connecting applications and
other client software to big Earth observation cloud back-ends in a simple and unified way.

The openEO specification aims at increasing the interoperability of big EO data processing of satellite
imagery in the cloud. Implementations of openEO can be used to add an interoperability layer on top
of existing services. Its development has been driven by the need to overcome the challenges
associated with different tools, APIs, and data formats in geospatial technology. openEO has been
developed from the bottom up, with each version of the specification supported by implementations.

The primary use case for specifying openEO was to simplify and unify the data processing using a
common API and a specification for a set of pre-defined processes. As such, users can still work in
their favored programming language without worrying about data organization and pre-processing.
Users can avoid vendor lock-in as the generated process descriptions can be executed at multiple
provider endpoints, making it easier to compare and reproduce processing results between different
providers.

Source of this Document

The majority of the content in this OGC document is a direct copy of the content contained at
https://github.com/Open-EO/openeo-api. No normative changes have been made to the content. This
OGC document does contain content not in source openEO API GitHub repository. Specifically, while
derived from content on the openEO API repository, the chapters "Abstract", "Source of this
Document", "Submitting Organizations", and "Supporting Organizations" in this document are not
found on the openEO API repository.

Submitting Organizations

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

openEO Project Steering Committee

The organizations listed above have granted the Open Geospatial Consortium (OGC) a nonexclusive,
royalty-free, paid up, worldwide license to copy and distribute this document and to modify this
document and distribute copies of the modified version under a Apache License, Version 2.0 (see
below).

Supporting Organizations

The following organization (in alphabetical order) support the submission of the openEO Community
Standard to the OGC:

EOX IT Services GmbH
EUMETSAT
Eurac Research
European Space Agency (ESA)
GeoConnections - Natural Resources Canada
German Aerospace Center - DLR
Matthias Mohr - Softwareentwicklung
Planet Labs PBC
Telespazio VEGA UK Ltd
University of Münster - Institute for Geoinformatics
VITO (Flemish Institute for Technological Research)

License Agreement

The standard is licensed under the Apache License, Version 2.0. You can implement this standard in
services, clients or processing tools without restrictions.

Conformance

Conformance class: https://api.openeo.org/1.2.0

API Principles

Language

In the specification the key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”,
“SHOULD”, “SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119 and RFC 8174.

Literal Case

Unless otherwise stated the API works case sensitive.

All names SHOULD be written in snake case, i.e. words are separated with one underscore character
(_) and no spaces, with all letters lower-cased. Example: hello_world . This applies particularly to
endpoints and JSON property names. HTTP header fields are generally case-insensitive according to
RFC 7230 and their respective casing conventions are followed, e.g. Content-Type or OpenEO-
Costs , for better readability and consistency.

HTTP / REST

This specification uses HTTP REST Level 2 for communication between client and back-end server.

Public API implementations MUST be available via HTTPS only.

Endpoints are made use meaningful HTTP verbs (e.g. GET, POST, PUT, PATCH, DELETE) whenever
technically possible. If there is a need to transfer big chunks of data for a GET requests to the back-
end, POST requests MAY be used as a replacement as they support to send data via request body.
Unless otherwise stated, PATCH requests are only defined to work on direct (first level) children of the
full JSON object. Therefore, changing a property on a deeper level of the full JSON object always
requires sending the whole JSON object defined by the first-level property.

Naming rules of the API endpoints follow the REST principles. Therefore, endpoints are centered
around resources. Resource identifiers MUST be named with a noun in plural form except for single
actions that can not be modelled with the regular HTTP verbs. Single actions MUST be single
endpoints with a single HTTP verb (POST is RECOMMENDED) and no other endpoints beneath it.

The openEO API makes use of HTTP Content Negotiation, including, but not limited to, the request
headers Accept , Accept-Charset and Accept-Language .

JSON

The API uses JSON for request and response bodies whenever feasible. Services use JSON as the
default encoding. Other encodings can be requested using HTTP Content Negotiation (Accept

header). Clients and servers MUST NOT rely on the order in which properties appear in JSON. To keep
the response size small, lists of resources (e.g. the list of batch jobs) usually should not include
nested JSON objects, if this information can be requested from the individual resource endpoints (e.g.
the metadata for a single batch job).

Charset

If not negotiated otherwise with HTTP Content Negotiation (Accept-Charset header), services use
UTF-8 as the default charset.

Web Linking

The API is designed in a way that for most resources, such as collections and processes, a set of links
can be added. These can be alternate representations such as data discovery via OGC WCS or OGC
CSW, references to a license, references to actual raw data for downloading, detailed information
about pre-processing and more. Clients should allow users to follow the links.

Whenever links are utilized in the API, the description explains which relation (rel property) types
are commonly used. A list of standardized link relations types is provided by IANA and the API tries to
align whenever feasible.

Some very common relation types - usually not mentioned explicitly in the description of links
fields - are:

1. self : Refers to the location that the resource can be (permanently) found online. This is
particularly useful when the data is made available offline, so that the downstream user knows
the source of the data.

2. alternate : An alternative representation of the resource, may it be another metadata standard
the data is available in or simply a human-readable version in HTML or PDF.

3. about : A resource that is related to or further explains the resource, e.g. a user guide.

4. canonical : This relation type usually points to a publicly accessible and more long-lived URL
for a resource that otherwise often requires (Bearer) authentication with a short-lived token. This
way the exposed resources can be used by non-openEO clients without additional authentication
steps. For example, a shared user-defined process or batch job results could be exposed via a
canonical link. If a URL should be publicly available to everyone, it can simply a user-specific URL,
e.g. https://openeo.example/processes/john_doe/ndvi . For resources that should only
be accessible to a certain group of user, a signed URL could be given, e.g.
https://openeo.example/processes/81zjh1tc2pt52gbx/ndvi .

Generally, it is RECOMMENDED adding descriptive titles (property title) and media type
information (property type) for a better user experience.

Error Handling

The success of requests MUST be indicated using HTTP status codes according to RFC 7231.

If the API responds with a status code between 100 and 399 the back-end indicates that the request
has been handled successfully.

In general an error is communicated with a status code between 400 and 599. Client errors are
defined as a client passing invalid data to the service and the service correctly rejecting that data.
Examples include invalid credentials, incorrect parameters, unknown versions, or similar. These are
generally "4xx" HTTP error codes and are the result of a client passing incorrect or invalid data. Client
errors do not contribute to overall API availability.

Server errors are defined as the server failing to correctly return in response to a valid client request.
These are generally "5xx" HTTP error codes. Server errors do contribute to the overall API availability.
Calls that fail due to rate limiting or quota failures MUST NOT count as server errors.

JSON error object

A JSON error object SHOULD be sent with all responses that have a status code between 400 and
599.

 "id": "936DA01F-9ABD-4D9D-80C7-02AF85C822A8"
 "code": "SampleError"
 "message": "A sample error message."
 "url": "https://openeo.example/docs/errors/SampleError"

Sending code and message is REQUIRED.

A back-end MAY add a free-form id (unique identifier) to the error response to be able to log
and track errors with further non-disclosable details.

The code is either one of the standardized textual openEO error codes or a proprietary error
code.

The message explains the reason the server is rejecting the request. For "4xx" error codes the
message explains how the client needs to modify the request.

By default, the message MUST be in English. Content Negotiation is used to localize the error
messages: If an Accept-Language header is sent by the client and a translation is available,
the message should be translated accordingly, and the Content-Language header must be
present in the response. See "How to localize your API" for more information.

url is an OPTIONAL attribute and contains a link to a resource that is explaining the error and
potential solutions in-depth.

Standardized status codes

The openEO API usually uses the following HTTP status codes for successful requests:

200 OK: Indicates a successful request with a response body being sent.
201 Created Indicates a successful request that successfully created a new resource. Sends a
Location header to the newly created resource without a response body.

202 Accepted Indicates a successful request that successfully queued the creation of a new
resource, but it has not been created yet. The response is sent without a response body.
204 No Content: Indicates a successful request without a response body being sent.

The openEO API reuses commonly used HTTP status codes for failed requests:

400 Bad Request: The back-end responds with this error code whenever the error has its origin on
client side and no other HTTP status code in the 400 range is suitable.

401 Unauthorized: The client did not provide any authentication details for a resource requiring
authentication or the provided authentication details are not correct.

403 Forbidden: The client did provide correct authentication details, but the
privileges/permissions of the provided credentials do not allow requesting the resource.

404 Not Found: The resource specified by the path does not exist. One of the resources
belonging to the specified identifiers are not available at the back-end. Note: Unsupported
endpoints MAY also return an HTTP status code 501.

500 Internal Server Error: The error has its origin on server side and no other status code in the
500 range is suitable.

501 Not Implemented: The requested endpoint is specified by the openEO API, but is not
implemented (yet) by the back-end. Note: Unsupported endpoints MAY also return HTTP status
code 404.

If a HTTP status code in the 400 range is returned, the client SHOULD modify the request and repeat
the request. For HTTP status code in the 500 range, the client MAY repeat the same request later.

All HTTP status codes defined in RFC 7231 in the 400 and 500 ranges can be used as openEO error
code in addition to the most used status codes mentioned here. Responding with openEO error codes
400 and 500 SHOULD be avoided in favor of any more specific standardized or proprietary openEO
error code.

Temporal data

Date, time, time intervals, and durations are formatted based on ISO 8601 or its profile RFC 3339
whenever there is an appropriate encoding available in the standard. All temporal data are specified
based on the Gregorian calendar.

Authentication

The openEO API offers two forms of authentication by default:

OpenID Connect (recommended) at GET /credentials/oidc
Basic at GET /credentials/basic

After authentication with any of the methods listed above, the tokens obtained during the
authentication workflows can be sent to protected endpoints in subsequent requests.

Further authentication methods MAY be added by back-ends.

Bearer

Security Scheme Type: HTTP

HTTP Authorization Scheme: bearer

Bearer format: The Bearer Token MUST consist of the authentication method, a
provider ID (if available) and the token itself. All separated by a forward slash

`/`. Examples (replace `TOKEN` with the actual access token): (1) Basic

authentication (no provider ID available): `basic//TOKEN` (2) OpenID Connect

(provider ID is `ms`): `oidc/ms/TOKEN`. For OpenID Connect, the provider ID

corresponds to the value specified for `id` for each provider in `GET

/credentials/oidc`.

Basic

Security Scheme Type: HTTP

HTTP Authorization Scheme: basic

Note: Although it is possible to request several public endpoints for capabilities and discovery that do
not require authorization, it is RECOMMENDED that clients (re-)request the public endpoints that
support Bearer authentication with the Bearer token once available to also retrieve any private data
that is made available specifically for the authenticated user. This may require that clients clear any
cached data they retrieved from public endpoints before.

Cross-Origin Resource Sharing (CORS)

Cross-origin resource sharing (CORS) is a mechanism that allows restricted resources [...] on a
web page to be requested from another domain outside the domain from which the first
resource was served. [...] CORS defines a way in which a browser and server can interact to
determine whether it is safe to allow the cross-origin request. This allows for more freedom and
functionality than purely same-origin requests, but is more secure than simply allowing all cross-
origin requests.

Source: https://en.wikipedia.org/wiki/Cross-origin_resource_sharing

openEO-based back-ends are usually hosted on a different domain / host than the client that is
requesting data from the back-end. Therefore, most requests to the back-end are blocked by all
modern browsers. This leads to the problem that the JavaScript library and any browser-based
application can not access back-ends. Therefore, all back-end providers SHOULD support CORS to
enable browser-based applications to access back-ends. CORS is a recommendation of the W3C
organization. The following chapters explain how back-end providers can implement CORS support.

Tip: Most servers can send the required headers and the responses to the OPTIONS requests
automatically for all endpoints. Otherwise, a proxy server may be used to add the headers and
OPTIONS responses.

CORS headers

The following headers MUST be included with every response:

Name Description Example

Access-Control-Allow-Origin

Allowed origin for the request, including
protocol, host and port or * for all origins.
Returning the value * to allow requests from
browser-based implementations is
RECOMMENDED.

*

Access-Control-Expose-Headers

Some endpoints require sending additional
HTTP response headers such as OpenEO-
Identifier and Location . To make these
headers available to browser-based clients,
they MUST be white-listed with this CORS
header. The following HTTP headers are
white-listed by browsers and MUST NOT be
included: Cache-Control , Content-
Language , Content-Length , Content-
Type , Expires , Last-Modified and
Pragma . At least the following headers MUST

be listed in this version of the openEO API:
Link , Location , OpenEO-Costs and
OpenEO-Identifier .

Link,

Locati

on,

OpenEO

-

Costs,

OpenEO

-

Identi

fier

Example request and response

Request:

POST /api/v1/jobs HTTP/1.1
Host openeo.example
Origin https://company.example:8080
Authorization Bearer basic//ZXhhbXBsZTpleGFtcGxl

Response:

OPTIONS method

All endpoints defined in the API specification must additionally respond to the OPTIONS HTTP
method. This is a response for the preflight requests made by web browsers before sending the
actual request (e.g. POST /jobs). It needs to respond with a status code of 204 and no response
body. In addition to the HTTP headers shown in the table above, the following HTTP headers MUST
be included with every response to an OPTIONS request:

Name Description Example

Access-Control-Allow-Headers

Comma-separated list of HTTP headers allowed
to be sent with the actual (non-preflight)
request. MUST contain at least
Authorization if any kind of authorization is

implemented by the back-end.

Author

ization

,

Content

-Type

Access-Control-Allow-Methods

Comma-separated list of HTTP methods
allowed to be requested. Back-ends MUST list
all implemented HTTP methods for the
endpoint.

OPTION

S, GET,

POST,

PATCH,

PUT,

DELETE

Content-Type
SHOULD return the content type delivered by
the request that the permission is requested for.

applic

ation/j

son

Example request and response

Request:

OPTIONS /api/v1/jobs HTTP/1.1
Host openeo.example
Origin https://company.example:8080
Access-Control-Request-Method POST
Access-Control-Request-Headers Authorization, Content-Type

Note that the Access-Control-Request-* headers are automatically attached to the requests by
the browsers.

Response:

Processes

A process is an operation that performs a specific task on a set of parameters and returns a result. An
example is computing a statistical operation, such as mean or median, on selected EO data. A
process is similar to a function or method in programming languages. In openEO, processes are used
to build a chain of processes (process graph), which can be applied to EO data to derive your own
findings from the data.

A predefined process is a process provided by the back-end. There is a set of predefined processes
by openEO to improve interoperability between back-ends. Back-ends SHOULD follow these
specifications whenever possible. Not all processes need to be implemented by all back-ends. See the
process reference for predefined processes.

A user-defined process is a process defined by the user. It can directly be part of another process
graph or be stored as custom process on a back-end. Internally, it is a process graph with a variety of
additional metadata.

A process graph chains specific process calls from the set of predefined and user-defined processes
together. A process graph itself can be stored as a (user-defined) process again. Similarly to scripts in
the context of programming, process graphs organize and automate the execution of one or more
processes that could alternatively be executed individually. In a process graph, processes need to be
specific, i.e. concrete values or "placeholders" for input parameters need to be specified. These values
can be scalars, arrays, objects, references to parameters or previous computations or other process
graphs.

Defining Processes

Back-ends and users MAY define new proprietary processes for their domain.

Back-end providers MUST follow the schema for predefined processes as in GET /processes to
define new processes. This includes:

Choosing a intuitive process id, consisting of only letters (a-z), numbers and underscores. It
MUST be unique across the predefined processes.
Defining the parameters and their exact (JSON) schemes.
Specifying the return value of a process also with a (JSON) schema.
Providing examples or compliance tests.
Trying to make the process universally usable so that other back-end providers or openEO can
adopt it.

Users MUST follow the schema for user-defined processes as in GET
/process_graphs/{process_graph_id} to define new processes. This includes:

Choosing a intuitive name as process id, consisting of only letters (a-z), numbers and
underscores. It MUST be unique per user across the user-defined processes.
Defining the algorithm as a process graph.
Optionally, specifying the additional metadata for processes.

If new process are potentially useful for other back-ends the openEO consortium is happily accepting
pull requests to include them in the list of predefined processes.

Schemas

Each process parameter and the return values of a process define a schema that the value MUST
comply to. The schemas are based on JSON Schema draft-07.

Multiple custom keywords have been defined:

subtype for more fine-grained data-types than JSON Schema supports.
dimensions to further define the dimension types required if the subtype is datacube .
parameters to specify the parameters of a process graph if the subtype is process-
graph .
returns to describe the return value of a process graph if the subtype is process-graph .

Subtypes

JSON Schema allows to specify only a small set of native data types (string, boolean, number, integer,
array, object, null). To support more fine grained data types, a custom JSON Schema keyword has
been defined: subtype . It works similarly as the JSON Schema keyword format and standardizes
a number of openEO related data types that extend the native data types, for example: bounding-
box (object with at least west , south , east and north properties), date-time (string
representation of date and time following RFC 3339), datacube (a datacube with dimensions), etc.
The subtypes should be re-used in process schema definitions whenever suitable.

If a general data type such as string or number is used in a schema, all subtypes with the same
parent data type can be passed, too. Clients should offer make passing subtypes as easy as passing
a general data type. For example, a parameter accepting strings must also allow passing a string with
subtype date and thus clients should encourage this by also providing a date-picker.

A list of predefined subtypes is available as JSON Schema in openeo-processes.

Process Graphs

As defined above, a process graph is a chain of processes with explicit values for their parameters.
Technically, a process graph is defined to be a graph of connected processes with exactly one node
returning the final result:

<ProcessGraph> =
 "<ProcessNodeIdentifier>" <ProcessNode>

<ProcessNodeIdentifier> is a unique key within the process graph that is used to reference (the
return value of) this process in arguments of other processes. The identifier is unique only strictly
within itself, excluding any parent and child process graphs. Process node identifiers are also strictly
scoped and can not be referenced from child or parent process graphs. Circular references are not
allowed.

Note: We provide a non-binding JSON Schema for basic process graph validation.

Processes (Process Nodes)

A single node in a process graph (i.e. a specific instance of a process) is defined as follows:

<ProcessNode> =
 "process_id" <string>
 "namespace" <string> / null
 "description" <string>
 "arguments" <Arguments>
 "result" true / false

A process node MUST always contain key-value-pairs named process_id and arguments . It MAY
contain a description .

One of the nodes in a map of processes (the final one) MUST have the result flag set to true , all
the other nodes can omit it as the default value is false . Having such a node is important as
multiple end nodes are possible, but in most use cases it is important to exactly specify the return
value to be used by other processes. Each child process graph must also specify a result node similar
to the "main" process graph.

process_id MUST be a valid process ID in the namespace given. Clients SHOULD warn the user if
a user-defined process is added with the same identifier as one of the predefined process.

Arguments

A process can have an arbitrary number of arguments. Their name and value are specified in the
process specification as an object of key-value pairs:

Notes:

The specified data types are the native data types supported by JSON, except for
ResultReference , UserDefinedProcess and ParameterReference .

Objects are not allowed to have keys with the following reserved names:

from_node , except for objects of type ResultReference
process_graph , except for objects of type UserDefinedProcess
from_parameter , except for objects of type ParameterReference

Arrays and objects can also contain a ResultReference , a UserDefinedProcess or a
ParameterReference . So back-ends must fully traverse the process graphs, including all

children.

Accessing results of other process nodes

A value of type <ResultReference> is an object with a key from_node and a
<ProcessNodeIdentifier> as corresponding value:

<ResultReference> =
 "from_node" "<ProcessNodeIdentifier>"

This tells the back-end that the process expects the result (i.e. the return value) from another process
node to be passed as argument. The <ProcessNodeIdentifier> is strictly scoped and can only
reference nodes from within the same process graph, not child or parent process graphs.

Child processes

Some processes can run child processes, which is similar to the concept that other programming
languages call callbacks or lambda functions. Each child process is simply a user-defined process
again and can in theory be arbritarily complex.

A very simple example would be to calculate the absolute value of each pixel in a data cube. This can
be achieved in openEO by using the apply process which gets the absolute process passed as
child process. In this example, the "child" processes consists of a single process absolute , but it
can also be a more complex computation such as an NDVI or a prediciton based on a machine
learning model.

Example:

A <UserDefinedProcess> argument MUST at least consist of an object with a key
process_graph . Optionally, it can also be described with the same additional properties available

for predefined processes such as an id, parameters, return values etc. When embedded in a process
graph, these additional properties of a user-defined process are usually not used, except for validation
purposes.

HTTP/1.1 201 Created
Access-Control-Allow-Origin *
Access-Control-Expose-Headers Location, OpenEO-Identifier, OpenEO-Costs, Link
Content-Type application/json
Location https://openeo.example/api/v1/jobs/abc123
OpenEO-Identifier abc123

HTTP/1.1 204 No Content
Access-Control-Allow-Origin *
Access-Control-Allow-Methods OPTIONS, GET, POST, PATCH, PUT, DELETE
Access-Control-Allow-Headers Authorization, Content-Type
Access-Control-Expose-Headers Location, OpenEO-Identifier, OpenEO-Costs, Link
Content-Type application/json

<Arguments> =
 "<ParameterName>" <string|number|boolean|null|array|object|ResultReference|UserDefinedProcess|ParameterReference>

|

{
,

,
,

}

:
:

:

:
:

:
:

:

:
:

:
:

:
:
:
:

:

: {
: ,

...
}

: {
: ,

: ,
: ,

: ,
:

}

: {
:

}

: {
:

}

blob:null/4c9e09b2-dd31-42ae-9a08-ce99b4f093d8
mailto:openeo.psc@uni-muenster.de
https://openeo.org/
http://www.apache.org/licenses/LICENSE-2.0.html
https://openeo.org/documentation/1.0/
https://openeo.org/documentation/1.0/glossary.html
https://github.com/Open-EO/openeo-api
https://www.apache.org/licenses/LICENSE-2.0.html
https://www.rfc-editor.org/rfc/rfc2119.html
https://www.rfc-editor.org/rfc/rfc8174.html
https://www.rfc-editor.org/rfc/rfc7230.html#section-3.2
https://en.wikipedia.org/wiki/Representational_state_transfer
https://martinfowler.com/articles/richardsonMaturityModel.html#level2
https://www.rfc-editor.org/rfc/rfc9110.html#name-content-negotiation
https://www.rfc-editor.org/rfc/rfc9110.html#name-accept
https://www.rfc-editor.org/rfc/rfc9110.html#name-accept-charset
https://en.wikipedia.org/wiki/UTF-8
https://www.iana.org/assignments/link-relations/link-relations.xhtml
https://www.rfc-editor.org/rfc/rfc7231.html#section-6
https://www.rfc-editor.org/rfc/rfc7231.html
file:///Users/scott/Downloads/errors.json
http://apiux.com/2013/04/25/how-to-localize-your-api/
https://www.iso.org/iso-8601-date-and-time-format.html
https://www.rfc-editor.org/rfc/rfc3339.html
https://en.wikipedia.org/wiki/Cross-origin_resource_sharing
https://www.w3.org/TR/2020/SPSD-cors-20200602/
https://processes.openeo.org/
https://github.com/Open-EO/openeo-processes/pulls
http://json-schema.org/
https://json-schema.org/draft-07/json-schema-core.html#rfc.section.6.4
https://json-schema.org/draft-07/json-schema-validation.html#rfc.section.7
https://github.com/Open-EO/openeo-processes
file:///Users/scott/Downloads/assets/pg-schema.json
https://en.wikipedia.org/wiki/Callback_(computer_programming)

<UserDefinedProcess> =
 "process_graph" <ProcessGraph>

Accessing process parameters

A "parent" process that works with a child process can make so called process graph parameters
available to the "child" logic. Processes in the "child" process graph can access these parameters by
passing a ParameterReference object as argument. It is an object with key from_parameter
specifying the name of the process graph parameter:

<ParameterReference> =
 "from_parameter" "<ParameterReferenceName>"

The parameter names made available for <ParameterReferenceName> are defined and passed to
the process graph by one of the parent entities. The parent could be a process (such as apply or
reduce_dimension) or something else that executes a process graph (a secondary web service for

example). If the parent is a process, the parameter are defined in the parameters property of the
corresponding JSON Schema.

In case of the example given above, the parameter process in the process apply defines two
process graph parameters: x (the value of each pixel that will be processed) and context
(additional data passed through from the user). The process absolute expects an argument with
the same name x . The process graph for the example would look as follows:

 "process_id" "apply"
 "arguments"
 "data" "from_node" "loadcollection1"
 "process"
 "process_graph"
 "abs1"
 "process_id" "absolute"
 "arguments"
 "x" "from_parameter" "x"

 "result" true

loadcollection1 would be a result from another process, which is not part of this example.

Important: <ParameterReferenceName> is less strictly scoped than
<ProcessNodeIdentifier> . <ParameterReferenceName> can be any parameter from the

process graph or any of its parents.

The value for the parameter MUST be resolved as follows:

1. In general the most specific parameter value is used. This means the parameter value is resolved
starting from the current scope and then checking each parent for a suitable parameter value
until a parameter values is found or the "root" process graph has been reached.

2. In case a parameter value is not available, the most unspecific default value from the process
graph parameter definitions are used. For example, if default values are available for the root
process graph and all children, the default value from the root process graph is used.

3. If no default values are available either, the error ProcessParameterMissing must be thrown.

Full example for an EVI computation

Deriving minimum EVI (Enhanced Vegetation Index) measurements over pixel time series of Sentinel-
2 imagery. The main process graph in blue, child process graphs in yellow:

Graph with processing instructions

The process graph for the algorithm: pg-evi-example.json

Data Processing

Processes can run in three different ways:

1. Results can be pre-computed by creating a batch job. They are submitted to the back-end's
processing system, but will remain inactive until explicitly put into the processing queue. They will
run only once and store results after execution. Results can be downloaded. Batch jobs are
typically time consuming and user interaction is not possible although log files are generated for
them. This is the only mode that allows to get an estimate about time, volume and costs
beforehand.

2. A more dynamic way of processing and accessing data is to create a secondary web service.
They allow web-based access using different protocols such as OGC WMS, OGC WCS, OGC API -
Features or XYZ tiles. Some protocols such as the OGC WMS or XYZ tiles allow users to change
the viewing extent or level of detail (zoom level). Therefore, computations often run on demand
so that the requested data is calculated during the request. Back-ends should make sure to cache
processed data to avoid additional/high costs and reduce waiting times for the user.

3. Processes can also be executed on-demand (i.e. synchronously). Results are delivered with the
request itself and no job is created. Only lightweight computations, for example previews, should
be executed using this approach as timeouts are to be expected for long-polling HTTP requests.

Validation

Process graph validation is a quite complex task. There's a JSON schema for basic process graph
validation. It checks the general structure of a process graph, but only checking against the schema is
not fully validating a process graph. Note that this JSON Schema is probably good enough for a first
version, but should be revised and improved for production. There are further steps to do:

1. Validate whether there's exactly one result: true per process graph.
2. Check whether the process names that are referenced in the field process_id are actually

available in the corresponding namespace .
3. Validate all arguments for each process against the JSON schemas that are specified in the

corresponding process specifications.
4. Check whether the values specified for from_node have a corresponding node in the same

process graph.
5. Validate whether the return value and the arguments requesting a return value with from_node

are compatible.
r. Check the content of arrays and objects. These could include parameter and result references

(from_node , from_parameter etc.).

Execution

To process the process graph on the back-end you need to go through all nodes/processes in the list
and set for each node to which node it passes data and from which it expects data. In another
iteration the back-end can find all start nodes for processing by checking for zero dependencies.

You can now start and execute the start nodes (in parallel, if possible). Results can be passed to the
nodes that were identified beforehand. For each node that depends on multiple inputs you need to
check whether all dependencies have already finished and only execute once the last dependency is
ready.

Please be aware that the result node (result set to true) is not necessarily the last node that is
executed. The author of the process graph may choose to set a non-end node to the result node!

Capabilities

General information about the API implementation and other supported capabilities provided by the
back-end.

Account Management

The following endpoints handle user profiles, accounting and authentication. See also Authentication.
In general, the openEO API only defines a minimum subset of user management and accounting
functionality. It allows to

authenticate and authorize a user, which may include user registration with OpenID Connect,
handle storage space limits (disk quota),
manage billing, which includes to

query the credit a user has available,
estimate costs for certain operations (data processing and downloading),
get information about produced costs,
limit costs of certain operations.

Therefore, the API leaves some aspects open that have to be handled by the back-ends separately,
including

credentials recovery, e.g. retrieving a forgotten password
user data management, e.g. changing the users payment details or email address
payments, i.e. topping up credits for pre-paid services or paying for post-paid services
other accounting related tasks, e.g. creating invoices,
user registration (except for user registration with OpenID Connect).

: {
: ,

...
}

: {
:

}

{
: ,

: {
: { : }

: {
: {

: {
: ,

: {
: { : }

},
:

}
}

}
}

}

Information about the back-end

Lists general information about the back-end, including which version and endpoints of the openEO
API are supported. May also include billing information.

AUTHORIZATIONS: None

Responses

200 Information about the API version and supported endpoints / features.

This endpoint MUST always be available for the API to be valid.

RESPONSE SCHEMA: application/json

string
Value: "1.2.0"
Version number of the openEO specification the back-end implements.

string
Version number of the back-end implementation. Every change on back-
end side MUST cause a change of the version number.

string (stac_version) ^(0\.9.\d+|1\.\d+.\d+)
The version of the STAC specification, which MAY not be equal to the
STAC API version. Supports versions 0.9.x and 1.x.x.

string
Value: "Catalog"
For STAC versions >= 1.0.0-rc.1 this field is required.

string
Identifier for the service. This field originates from STAC and is used as
unique identifier for the STAC catalog available at /collections .

string
The name of the service.

string <commonmark>
A description of the service, which allows the service provider to
introduce the user to its service. CommonMark 0.29 syntax MAY be used
for rich text representation.

Array of strings <uri> (conformsTo) [items <uri >]
Lists all conformance classes specified in various standards that the
implementation conforms to. Conformance classes are commonly used
in all OGC API standards and the STAC API specification.

The general openEO conformance class is
https://api.openeo.org/1.2.0 . See the individual openEO API

extensions for their conformance classes.

This property is REQUIRED for STAC API versions 1.0.0-beta.1 and later.

boolean (production)
Default: false
Specifies whether the implementation is ready to be used in production
use (true) or not (false). Clients SHOULD only connect to non-
production implementations if the user explicitly confirmed to use a non-
production implementation. This flag is part of GET /.well-
known/openeo and GET / . It MUST be used consistently in both
endpoints.

Array of objects (Endpoint)
Lists all supported endpoints. Supported are all endpoints, which are
implemented, return usually a 2XX or 3XX HTTP status code and are fully
compatible to the API specification. An entry for this endpoint (path /
with method GET) SHOULD NOT be listed. Each path MUST only be
listed once in the array.

object (Billing)
Billing related data, e.g. the currency used or available plans to process
jobs. This property MUST be specified if the back-end uses any billing
related API functionalities, e.g. budgeting or estimates. The absence of
this property does not mean the back-end is necessarily free to use for all.
Providers may choose to bill users outside of the API, e.g. with a monthly
fee that is not depending on individual API interactions.

Array of objects (Link)
Links related to this service, e.g. the homepage of the service provider or
the terms of service.

It is highly RECOMMENDED to provide links with the following rel
(relation) types:

1. version-history : A link back to the Well-Known URL (including
/.well-known/openeo , see the corresponding endpoint for

details) to allow clients to work on the most recent version.
2. terms-of-service : A link to the terms of service. If a back-end

provides a link to the terms of service, the clients MUST provide a
way to read the terms of service and only connect to the back-end
after the user agreed to them. The user interface MUST be designed
in a way that the terms of service are not agreed to by default, i.e. the
user MUST explicitly agree to them.

3. privacy-policy : A link to the privacy policy (GDPR). If a back-end
provides a link to a privacy policy, the clients MUST provide a way to
read the privacy policy and only connect to the back-end after the
user agreed to them. The user interface MUST be designed in a way
that the privacy policy is not agreed to by default, i.e. the user MUST
explicitly agree to them.

4. service-desc or service-doc : A link to the API definition. Use
service-desc for machine-readable API definition and service-
doc for human-readable API definition. Required if full OGC API
compatibility is desired.

5. conformance : A link to the Conformance declaration (see
/conformance). Required if full OGC API compatibility is desired.

r. data : A link to the collections (see /collections). Required if
full OGC API compatibility is desired.

7. create-form : A link to a user registration page.
w. recovery-form : A link to a page where a user can recover a user

account (e.g. to reset the password or send a reminder about the
username to the user's email account).

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
usually does not respond with HTTP status codes 401 and 403 due to missing authorization. HTTP status code 404 SHOULD
be used if the value of a path parameter is invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /

api_version
required

backend_version
required

stac_version
required

type

id
required

title
required

description
required

conformsTo

production

endpoints
required

billing

links
required

application/json

Expand all Collapse allCopy
{

"api_version": "1.2.0",

"backend_version": "1.1.2",

"stac_version": "1.0.0",

"type": "Catalog",

"id": "cool-eo-cloud",

"title": "Example Cloud Corp.",

"description": "This service is provided to you by [Example Cloud Corp.](https://cloud.example). It implements the full openEO API and allows to process a range of 999 EO data sets, including \n\n* Sentinel 1/2/3 and 5\n* Landsat 7/8\n\nA free plan is available to test the service. For further information please contact our customer service at support@cloud.example."

"conformsTo": - [

"https://api.openeo.org/1.2.0",

"https://api.openeo.org/extensions/commercial-data/0.1.0",

"https://api.openeo.org/extensions/federation/0.1.0",

"https://api.stacspec.org/v1.0.0/core",

"https://api.stacspec.org/v1.0.0/collections"

],

"production": false,

"endpoints": - [

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … + { }

],

"billing": - {

"currency": "USD",

"default_plan": "free",

"plans": … + []

},

"links": - [

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … + { }

]

}

Supported openEO versions

Lists all implemented openEO versions supported by the service provider. This endpoint is the Well-
Known URI (see RFC 5785) for openEO.

This allows a client to easily identify the most recent openEO implementation it supports. By default, a
client SHOULD connect to the most recent production-ready version it supports. If not available, the
most recent supported version of all versions SHOULD be connected to. Clients MAY let users choose
to connect to versions that are not production-ready or outdated. The most recent version is
determined by comparing the version numbers according to rules from Semantic Versioning,
especially §11. Any pair of API versions in this list MUST NOT be equal according to Semantic
Versioning.

The Well-Known URI is the entry point for clients and users, so make sure it is permanent and easy to
use and remember. Clients MUST NOT require the well-known path (/.well-known/openeo) in the
URL that is specified by a user to connect to the back-end.

For clients, the usual behavior SHOULD follow these steps:

1. The user provides a URI, which may consist of a scheme (protocol), an authority (host, port) and a
path.

2. The client parses the URI and appends /.well-knwon/openeo to the path. Make sure to
correctly handle leading/trailing slashes.

3. Send a request to the new URI. A. On success: Detect the most suitable API instance/version (see
above) and read the capabilities from there. B. On failure: Directly try to read the capabilities from
the original URI given by the user.

This URI MUST NOT be versioned as the other endpoints. If your API is available at
https://openeo.example/api/v1 , and you instruct your API users to use
https://openeo.example as connection URI, the Well-Known URI SHOULD be located at
https://openeo.example/.well-known/openeo . The Well-Known URI is usually directly located

at the top-level, but it is not a requirement. For example, https://openeo.example/eo/.well-
known/openeo is also allowed.

Clients MAY get additional information (e.g. title or description) about a back-end from the most
recent version that has the production flag set to true .

AUTHORIZATIONS: None

Responses

200 List of all available API instances, each with URL and the implemented openEO API version.

RESPONSE SCHEMA: application/json

Array of objects (API Instance)

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
usually does not respond with HTTP status codes 401 and 403 due to missing authorization. HTTP status code 404 SHOULD
be used if the value of a path parameter is invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /.well-known/openeo

versions
required

application/json

Expand all Collapse allCopy
{

"versions": - [

 … ,+ { }

 … ,+ { }

 … + { }

]

}

Supported file formats

Lists supported input and output file formats. Input file formats specify which file a back-end can read
from. Output file formats specify which file a back-end can write to.

The response to this request is an object listing all available input and output file formats separately
with their parameters and additional data. This endpoint does not include the supported secondary
web services.

Note: Format names and parameters MUST be fully aligned with the GDAL codes if available, see
GDAL Raster Formats and OGR Vector Formats. It is OPTIONAL to support all output format
parameters supported by GDAL. Some file formats not available through GDAL may be defined
centrally for openEO. Custom file formats or parameters MAY be defined.

The format descriptions MUST describe how the file formats relate to data cubes. Input file formats
MUST describe how the files have to be structured to be transformed into data cubes. Output file
formats MUST describe how the data cubes are stored at the back-end and how the resulting file
structure looks like.

Back-ends MUST NOT support aliases, for example it is not allowed to support geotiff instead of
gtiff . Nevertheless, openEO Clients MAY translate user input for convenience (e.g. translate
geotiff to gtiff). Also, for a better user experience the back-end can specify a title .

Format names MUST be accepted in a case insensitive manner throughout the API.

AUTHORIZATIONS: None or Bearer

Responses

200
An object with containing all input and output format separately. For each property input and output an object is
defined where the file format names are the property keys and the property values are objects that define a title, supported
parameters and related links.

RESPONSE SCHEMA: application/json

object (Input File Formats)
Map of supported input file formats, i.e. file formats a back-end can read
from. The property keys are the file format names that are used by clients
and users, for example in process graphs.

object (Output File Formats)
Map of supported output file formats, i.e. file formats a back-end can
write to. The property keys are the file format names that are used by
clients and users, for example in process graphs.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
usually does not respond with HTTP status codes 401 and 403 due to missing authorization. HTTP status code 404 SHOULD
be used if the value of a path parameter is invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /file_formats

input
required

output
required

application/json

Expand all Collapse allCopy
{

"output": - {

"GTiff": … + { },

"GPKG": … + { }

},

"input": - {

"GPKG": … + { }

}

}

Conformance classes this API implements

Lists all conformance classes specified in various standards that the implementation conforms to.
Conformance classes are commonly used in all OGC API standards and the STAC API specification.
openEO adds relatively broadly defined conformance classes, especially for the extensions.
Otherwise, the implemented functionality can usually be retrieved from the capabilities in openEO.

The general openEO conformance class is https://api.openeo.org/1.2.0 . See the individual
openEO API extensions for their conformance classes.

The conformance classes listed at this endpoint and listed in the corresponding conformsTo
property in GET / MUST be equal.

More details:

STAC API, especially the conformance class "STAC API - Collections"
OGC API standards

Responses

200 The URIs of all conformance classes supported by the server.

RESPONSE SCHEMA: application/json

Array of strings <uri> (conformsTo) [items <uri >]
Lists all conformance classes specified in various standards that the
implementation conforms to. Conformance classes are commonly used
in all OGC API standards and the STAC API specification.

The general openEO conformance class is
https://api.openeo.org/1.2.0 . See the individual openEO API

extensions for their conformance classes.

This property is REQUIRED for STAC API versions 1.0.0-beta.1 and later.

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 5XXGET /conformance

conformsTo
required

application/json

Expand all Collapse allCopy
{

"conformsTo": - [

"https://api.openeo.org/1.2.0",

"https://api.openeo.org/extensions/commercial-data/0.1.0",

"https://api.openeo.org/extensions/federation/0.1.0",

"https://api.stacspec.org/v1.0.0/core",

"https://api.stacspec.org/v1.0.0/collections"

]

}

Supported UDF runtimes

Lists the supported runtimes for user-defined functions (UDFs), which includes either the
programming languages including version numbers and available libraries including version numbers
or docker containers.

AUTHORIZATIONS: None or Bearer

Responses

200 Description of UDF runtime support

RESPONSE SCHEMA: application/json

object

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /udf_runtimes

UDF Runtime name*
additional property

application/json

Expand all Collapse allCopy
{

"PHP": - {

"title": "PHP v7.x",

"description": "Just an example how to reference a docker image."

"experimental": true,

"type": "docker",

"docker": "openeo/udf-php7",

"default": "latest",

"tags": … + [],

"links": … + []

},

"R": - {

"title": "R v3.x for Statistical Computing"

"description": "R programming language with `Rcpp` and `rmarkdown` extensions installed."

"type": "language",

"default": "3.5.2",

"versions": … + { }

}

}

Supported secondary web service protocols

Lists supported secondary web service protocols such as OGC WMS, OGC WCS, OGC API - Features
or XYZ tiles. The response is an object of all available secondary web service protocols with their
supported configuration settings and expected process parameters.

The configuration settings for the service SHOULD be defined upon creation of a service and the
service will be set up accordingly.
The process parameters SHOULD be referenced (with a from_parameter reference) in the
user-defined process that is used to compute web service results. The appropriate arguments
MUST be provided to the user-defined process, usually at runtime from the context of the web
service. For example, a map service such as a WMS would need to inject the spatial extent into
the user-defined process so that the back-end can compute the corresponding tile correctly.

To improve interoperability between back-ends common names for the services SHOULD be used,
e.g. the abbreviations used in the official OGC Schema Repository for the respective services.

Service names MUST be accepted in a case insensitive manner throughout the API.

AUTHORIZATIONS: None or Bearer

Responses

200
An object with a map containing all service names as keys and an object that defines supported configuration settings and
process parameters.

RESPONSE SCHEMA: application/json

object (Service Type)

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
usually does not respond with HTTP status codes 401 and 403 due to missing authorization. HTTP status code 404 SHOULD
be used if the value of a path parameter is invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /service_types

Service Name*
additional property

application/json

Expand all Collapse allCopy
{

"WMS": - {

"title": "OGC Web Map Service",

"configuration": … + { },

"process_parameters": … + [],

"links": … + []

},

"OGCAPI-FEATURES": - {

"title": "OGC API - Features",

"description": "Exposes a OGC API - Features in version 1.0 of the specification (successor of OGC WFS 3.0)."

"configuration": … + { },

"process_parameters": [],

"links": … + []

}

}

OpenID Connect authentication

Lists the supported OpenID Connect providers (OP). OpenID Connect Providers MUST support OpenID
Connect Discovery.

It is highly RECOMMENDED to implement OpenID Connect for public services in favor of Basic
authentication.

openEO clients MUST use the access token as part of the Bearer token for authorization in
subsequent API calls (see also the information about Bearer tokens in this document). Clients MUST
NOT use the id token or the authorization code. The access token provided by an OpenID Connect
Provider does not necessarily provide information about the issuer (i.e. the OpenID Connect provider)
and therefore a prefix MUST be added to the Bearer Token sent in subsequent API calls to protected
endpoints. The Bearer Token sent to protected endpoints MUST consist of the authentication method
(here oidc), the provider ID and the access token itself. All separated by a forward slash / . The
provider ID corresponds to the value specified for id for each provider in the response body of this
endpoint. The header in subsequent API calls for a provider with id ms would look as follows:
Authorization: Bearer oidc/ms/TOKEN (replace TOKEN with the actual access token received

from the OpenID Connect Provider).

Back-ends MAY request user information (including Claims) from the OpenID Connect Userinfo
endpoint using the access token (without the prefix described above). Therefore, both openEO client
and openEO back-end are relying parties (clients) to the OpenID Connect Provider.

AUTHORIZATIONS: None

Responses

200 Lists the OpenID Connect Providers.

RESPONSE SCHEMA: application/json

Array of objects (OpenID Connect Provider) non-empty
The first provider in this list is the default provider for authentication.
Clients can either pre-select or directly use the default provider for
authentication if the user does not specify a specific value.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /credentials/oidc

providers
required

application/json

Expand all Collapse allCopy
{

"providers": - [

 … ,+ { }

 … ,+ { }

 … + { }

]

}

HTTP Basic authentication

Checks the credentials provided through HTTP Basic Authentication according to RFC 7617 and

Response samples

200 4XX 5XXGET /credentials/basic

application/json

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

https://processes.openeo.org/#apply
file:///Users/scott/Downloads/assets/pg-evi-example.json
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs
https://www.ogc.org/standards/ogcapi-features
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
https://www.pubnub.com/guides/long-polling/
file:///Users/scott/Downloads/assets/pg-schema.json
http://www.differencebetween.net/technology/difference-between-authentication-and-authorization/
http://openid.net/specs/openid-connect-registration-1_0.html
http://openid.net/specs/openid-connect-registration-1_0.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/radiantearth/stac-spec/releases
http://commonmark.org/
https://api.openeo.org/1.2.0
https://api.openeo.org/extensions/commercial-data/0.1.0
https://api.openeo.org/extensions/federation/0.1.0
https://api.stacspec.org/v1.0.0/core
https://api.stacspec.org/v1.0.0/collections
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc5785.html
https://semver.org/
https://semver.org/#spec-item-11
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://gdal.org/drivers/raster/index.html
https://gdal.org/drivers/vector/index.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/radiantearth/stac-api-spec
https://ogcapi.ogc.org/
https://api.openeo.org/1.2.0
https://api.openeo.org/extensions/commercial-data/0.1.0
https://api.openeo.org/extensions/federation/0.1.0
https://api.stacspec.org/v1.0.0/core
https://api.stacspec.org/v1.0.0/collections
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs
https://www.ogc.org/standards/ogcapi-features
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://schemas.opengis.net/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://openid.net/connect/
http://openid.net/specs/openid-connect-discovery-1_0.html
https://openid.net/specs/openid-connect-core-1_0.html#Claims
https://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://www.rfc-editor.org/rfc/rfc7617.html

EO Data Discovery

These endpoints allow to list the collections that are available at the back-end and can be used as
data cubes for data processing.

STAC

For data discovery of Earth Observation Collections at the back-ends, openEO strives for compatibility
with the specifications SpatioTemporal Asset Catalog (STAC) and OGC API - Features - Part 1: Core
as far as possible. Implementing the data discovery endpoints of openEO also produced valid STAC
API 1.0 and OGC API - Features 1.0 responses, including (partial) compatibility with their APIs.

The data discovery endpoints GET /collections and GET /collections/{collection_id}
are compatible with OGC API - Features and STAC. Both specifications define additional endpoints
that need to be implemented to be fully compatible. The additional endpoints can easily be integrated
into an openEO API implementation. A rough list of actions for compatibility is available below, but
please refer to their specifications to find out the full details.

Important: STAC specification and STAC API are different specifications and have different version
numbers after version 0.9.0. The openEO API implements STAC API versions >= 0.9.0 (preferrably
STAC API version 1.0.0, but 0.9.0 is allowed for backward compatibility), which allows to serve all
STAC specification versions in the range of 0.9.x and 1.x.x (see the stac_version property).

Content Extensions

STAC has several extensions that can be used to better describe your data. Clients and server are not
required to implement all of them, so be aware that some clients may not be able to read all your
metadata.

Some commonly used extensions that are relevant for datasets exposed through the openEO API are:

Data Cube extension (part of the openEO API)
EO (Electro-Optical) extension
Processing extension
Raster extension
SAR extension
Satellite extension
Scientific Citation extension

Provide data for download

If you'd like to provide your data for download in addition to offering the cloud processing service, you
can implement the full STAC API. Therefore, you can implement the endpoints GET
/collections/{collection_id}/items and GET
/collections/{collection_id}/items/{feature_id} to support retrieval of individual items.
To benefit from the STAC ecosystem and allow searching for items you can also implement POST
/search and GET /search . Further information can be found in the STAC API repository.

API Extensions

STAC API has several extensions that can be implemented on top of the openEO API to enrich the API
functionality, e.g. for searching.

Process Discovery

The process discovery endpoints provide details about the predefined processes that are available at
the back-end. To list user-defined processes see 'User-Defined Processes'.

returns an access token for valid credentials.

The credentials (username and password) MUST be sent in the HTTP header Authorization with
type Basic and the Base64 encoded string consisting of username and password separated by a
double colon : . The header would look as follows for username user and password pw :
Authorization: Basic dXNlcjpwdw== .

The access token has to be used in the Bearer token for authorization in subsequent API calls (see
also the information about Bearer tokens in this document). The access token returned by this
request MUST NOT be provided with basic// prefix, but the Bearer Token sent in subsequent API
calls to protected endpoints MUST be prefixed with basic// . The header in subsequent API calls
would look as follows: Authorization: Bearer basic//TOKEN (replace TOKEN with the actual
access token).

It is RECOMMENDED to implement this authentication method for non-public services only.

AUTHORIZATIONS: Basic

Responses

200 Credentials are correct and authentication succeeded.

RESPONSE SCHEMA: application/json

string
The access token (without basic// prefix) to be used in the Bearer
token for authorization in subsequent API calls.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

access_token
required

application/json

Copy
{

"access_token": "b34ba2bdf9ac9ee1"

}

Information about the authenticated user

Lists information about the authenticated user such as the user id. The endpoint MAY return the disk
quota available to the user. The endpoint MAY also return links related to user management and the
user profile, e.g. where payments are handled or the user profile could be edited. For back-ends that
involve accounting, this service MAY also return the currently available money or credits in the
currency the back-end is working with. This endpoint MAY be extended to fulfil the specification of the
OpenID Connect UserInfo Endpoint.

AUTHORIZATIONS: Bearer

Responses

200 Information about the logged in user.

RESPONSE SCHEMA: application/json

string ^[\w\-\.~]+$
A unique user identifier specific to the back-end, which could either be
chosen by a user or is automatically generated by the back-end during the
registration process at the back-end. It is meant to be used as an
identifier in URIs (e.g. for sharing purposes), which is primarily used in
machine-to-machine communication. Preferrably use the human-readable
property name to display the user's name in user interfaces instead of
the user identifier.

string
The user name, a human-friendly displayable name. Could be the user's
real name or a nickname.

string
Name of the single plan the user is currently subscribed to if any.

object or null (User Storage)
Information about the storage space available to the user.

number or null
The remaining budget a user has available. The value MUST be specified
in the currency of the back-end. The value SHOULD be set to null if no
explicit limit applies.

Array of objects (Link)
Links related to the user profile, e.g. where payments are handled or the
user profile could be edited.

Providing links with the following rel (relation) types is
RECOMMENDED:

1. payment : A page where users can recharge their user account with
money or credits.

2. edit-form : Points to a page where the user can edit his user
profile.

3. alternate : Any other representation of these (and potentially
additional) user information, e.g. the (public) user profile page. It is
RECOMMENDED to add descriptive titles for a better user experience.

4. related : Any other user-specific links to be shown in clients, e.g.
to user-specific settings, invoices, etc. It is RECOMMENDED to add
descriptive titles for a better user experience.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /me

user_id
required

name

default_plan

storage

budget

links

application/json

Expand all Collapse allCopy
{

"user_id": "john_doe",

"name": "string",

"default_plan": "free",

"storage": - {

"free": 536870912,

"quota": 1073741824

},

"budget": 0,

"links": - [

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … + { }

]

}

Basic metadata for all datasets

Lists available collections with at least the required information.

It is strongly RECOMMENDED to keep the response size small by omitting larger optional values from
the objects in collections (e.g. the summaries and cube:dimensions properties). To get the
full metadata for a collection clients MUST request GET /collections/{collection_id} .

This endpoint is compatible with STAC API 0.9.0 and later and OGC API - Features 1.0. STAC API
extensions and STAC extensions can be implemented in addition to what is documented here.

Note: Although it is possible to request public collections without authorization, it is RECOMMENDED
that clients (re-)request the collections with the Bearer token once available to also retrieve any
private collections.

AUTHORIZATIONS: None or Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Lists of collections and related links.

RESPONSE SCHEMA: application/json

Array of objects (Collection)

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /collections

limit

collections
required

links
required

application/json

Expand all Collapse allCopy
{

"collections": - [

 … ,+ { }

 … + { }

],

"links": - [

 … + { }

]

}

Full metadata for a specific dataset

Lists all information about a specific collection specified by the identifier collection_id .

This endpoint is compatible with STAC API 0.9.0 and later and OGC API - Features 1.0. STAC API
extensions and STAC extensions can be implemented in addition to what is documented here.

Note: Providing the Bearer token is REQUIRED for private collections.

AUTHORIZATIONS: None or Bearer

PATH PARAMETERS

string (collection_id) ^[\w\-\.~\/]+$

Example: Sentinel-2A
Collection identifier

Responses

200 JSON object with the full collection metadata.

RESPONSE SCHEMA: application/json

string (stac_version) ^(0\.9.\d+|1\.\d+.\d+)
The version of the STAC specification, which MAY not be equal to the
STAC API version. Supports versions 0.9.x and 1.x.x.

Array of Reference to a JSON Schema (string) or Reference to a core
extension (STAC < 1.0.0-rc.1 only) (string) (stac_extensions) unique
A list of implemented STAC extensions. The list contains URLs to the
JSON Schema files it can be validated against. For STAC < 1.0.0-rc.1
shortcuts such as sar can be used instead of the schema URL.

string
Value: "Collection"
For STAC versions >= 1.0.0-rc.1 this field is required.

string (collection_id) ^[\w\-\.~\/]+$
A unique identifier for the collection, which MUST match the specified
pattern.

string
A short descriptive one-line title for the collection.

string <commonmark>
Detailed multi-line description to explain the collection.

CommonMark 0.29 syntax MAY be used for rich text representation.

Array of strings
List of keywords describing the collection.

string
Version of the collection.

This property REQUIRES to add version (STAC < 1.0.0-rc.1) or
https://stac-

extensions.github.io/version/v1.2.0/schema.json (STAC >=
1.0.0-rc.1) to the list of stac_extensions .

boolean
Default: false
Specifies that the collection is deprecated with the potential to be
removed. It should be transitioned out of usage as soon as possible
and users should refrain from using it in new projects.

A link with relation type latest-version SHOULD be added to the
links and MUST refer to the collection that can be used instead.

This property REQUIRES to add version (STAC < 1.0.0-rc.1) or
https://stac-

extensions.github.io/version/v1.2.0/schema.json (STAC >=
1.0.0-rc.1) to the list of stac_extensions .

string (stac_license)
License(s) of the data as a SPDX License identifier. Alternatively, use
proprietary if the license is not on the SPDX license list or
various if multiple licenses apply. In these two cases links to the

license texts SHOULD be added, see the license link relation type.

Non-SPDX licenses SHOULD add a link to the license text with the
license relation in the links section. The license text MUST NOT be

provided as a value of this field. If there is no public license URL
available, it is RECOMMENDED to host the license text and link to it.

Array of objects (stac_providers)
A list of providers, which MAY include all organizations capturing or
processing the data or the hosting provider. Providers SHOULD be
listed in chronological order with the most recent provider being the last
element of the list.

object (Collection Extent)
The extent of the data in the collection. Additional members MAY be
added to represent other extents, for example, thermal or pressure
ranges.

The first item in the array always describes the overall extent of the
data. All subsequent items describe more preciseextents, e.g. to
identify clusters of data. Clients only interested in the overall extent will
only need to access the first item in each array.

Array of objects (Link)
Links related to this collection. Could reference to licensing information,
other meta data formats with additional information or a preview
image.

Providing links with the following rel (relation) types is
RECOMMENDED:

1. root and parent : URL to the data discovery endpoint at
/collections .

2. license : A link to the license(s) SHOULD be specified if the
license field is set to proprietary or various .

3. example : Links to examples of processes that use this
collection.

4. latest-version : If a collection has been marked as deprecated,
a link SHOULD point to the latest version of the collection. The
relation types predecessor-version (link to older version) and
successor-version (link to newer version) can also be used to

show the relation between versions.
5. alternate : An alternative representation of the collection. For

example, this could be the collection available through another
catalog service such as OGC CSW, a human-readable HTML
version or a metadata document following another standard such
as ISO 19115 or DCAT.

r. http://www.opengis.net/def/rel/ogc/1.0/queryables :
URL to the queryables endpoint at
/collections/{collection_id}/queryables . For JSON

Schema documents, the type field must be set to
application/schema+json .

For additional relation types see also the lists of common relation types
in openEO and the STAC specification for Collections.

object (STAC Collection Cube Dimensions)
The named default dimensions of the data cube. Names must be
unique per collection.

The keys of the object are the dimension names. For interoperability, it
is RECOMMENDED to use the following dimension names if there is
only a single dimension with the specified criteria:

x for the dimension of type spatial with the axis set to x
y for the dimension of type spatial with the axis set to y
z for the dimension of type spatial with the axis set to z
t for the dimension of type temporal
bands for dimensions of type bands
geometry for dimensions of type geometry

This property REQUIRES to add a version of the data cube extension to
the list of stac_extensions , e.g. https://stac-
extensions.github.io/datacube/v2.2.0/schema.json .

object (STAC Summaries (Collection Properties))
Collection properties from STAC extensions (e.g. EO, SAR, Satellite or
Scientific) or even custom extensions.

Summaries are either a unique set of all available values, statistics or a
JSON Schema. Statistics only specify the range (minimum and
maximum values) by default, but can optionally be accompanied by
additional statistical values. The range can specify the potential range
of values, but it is recommended to be as precise as possible. The set
of values MUST contain at least one element and it is strongly
RECOMMENDED to list all values. It is recommended to list as many
properties as reasonable so that consumers get a full overview of the
Collection. Properties that are covered by the Collection specification
(e.g. providers and license) SHOULD NOT be repeated in the
summaries.

Potential fields for the summaries can be found here:

STAC Common Metadata: A list of commonly used fields
throughout all domains
Content Extensions: Domain-specific fields for domains such as
EO, SAR and point clouds.
Custom Properties: It is generally allowed to add custom fields.

object (Assets)
Dictionary of asset objects for data that can be downloaded, each with
a unique key. The keys MAY be used by clients as file names.

Implementing this property REQUIRES to add collection-assets to
the list of stac_extensions in STAC < 1.0.0-rc.1.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /collections/{collection_id}

collection_id
required

stac_version
required

stac_extensions

type

id
required

title

description
required

keywords

version

deprecated

license
required

providers

extent
required

links
required

cube:dimensions
required

summaries
required

assets

application/json

Expand all Collapse allCopy
{

"stac_version": "1.0.0",

"stac_extensions": - [

"https://stac-extensions.github.io/datacube/v2.2.0/schema.json"

],

"type": "Collection",

"id": "Sentinel-2",

"title": "Sentinel-2 MSI L2A",

"description": "Sentinel-2A is a wide-swath, high-resolution, multi-spectral imaging mission supporting Copernicus Land Monitoring studies."

"license": "proprietary",

"keywords": - [

"copernicus",

"esa",

"msi",

"sentinel"

],

"providers": - [

 … ,+ { }

 … + { }

],

"extent": - {

"spatial": … + { },

"temporal": … + { }

},

"links": - [

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … ,+ { }

 … + { }

],

"cube:dimensions": - {

"x": … + { },

"y": … + { },

"t": … + { },

"bands": … + { }

},

"summaries": - {

"constellation": … + [],

"platform": … + [],

"instruments": … + [],

"eo:cloud_cover": … + { },

"sat:orbit_state": … + [],

"gsd": … + [],

"eo:bands": … + [],

"proj:epsg": … + { }

},

"assets": - {

"thumbnail": … + { },

"inspire": … + { }

}

}

Metadata filters for a specific dataset

Lists all supported metadata filters (also called "queryables") for a specific collection.

This endpoint is compatible with the endpoint defined in the STAC API extension filter and OGC
API - Features - Part 3: Filtering. For a precise definition please follow those specifications.

This endpoints provides a JSON Schema for each queryable that openEO users can use in multiple
scenarios:

1. For loading data from the collection, e.g. in the process load_collection .
2. For filtering items using CQL2 on the /collections/{collection_id}/items endpoint (if

STAC API - Features is implemented in addition to the openEO API).

Note: Providing the Bearer token is REQUIRED for private collections.

AUTHORIZATIONS: None or Bearer

PATH PARAMETERS

string (collection_id) ^[\w\-\.~\/]+$

Example: Sentinel-2A
Collection identifier

Responses

200
A JSON Schema defining the queryables. It is RECOMMENDED to dereference all "$refs".

RESPONSE SCHEMA: application/schema+json

string <uri>
Default: "http://json-schema.org/draft-07/schema#"
The JSON Schema version. If not given in the context of openEO,
defaults to JSON Schema draft-07: http://json-
schema.org/draft-07/schema#

The default value for $schema property may have to be added to the
JSON Schema object before passing it to a JSON Schema validator.

string <uri>
ID of your JSON Schema.

json_schema_type (string) or Array of json_schema_type (strings)
The allowed data type(s) for a value.

If this property is not present, all data types are allowed.

string <regex>
The regular expression a string value must match against.

Array of any
An exclusive list of allowed values.

number
The minimum value (inclusive) allowed for a numerical value.

number
The maximum value (inclusive) allowed for a numerical value.

number >= 0
Default: 0
The minimum number of items required in an array.

number >= 0
The maximum number of items required in an array.

Array of JSON Schema (objects) or JSON Schema (object)
Specifies schemas for the items in an array.

any
Any other property supported by the JSON Schema version that is given
through the property $schema are allowed. Defaults to JSON Schema
draft-07, but can also be any later version of JSON Schema.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /collections/{collection_id}/queryables

collection_id
required

$schema

$id

type

pattern

enum

minimum

maximum

minItems

maxItems

items

property name*
additional property

application/schema+json

Expand all Collapse allCopy
{

"$schema": "https://json-schema.org/draft/2019-09/schema"

"$id": "https://openeo.example/api/v1/collections/Sentinel-2A/queryables"

"type": "object",

"title": "Sentinel-2A",

"properties": - {

"eo:cloud_cover": … + { },

"platform": … + { }

},

"additionalProperties": false

}

Supported predefined processes

Lists all predefined processes and returns detailed process descriptions, including parameters and
return values.

AUTHORIZATIONS: None or Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Formal specification describing the supported predefined processes.

RESPONSE SCHEMA: application/json

Array of objects (Predefined Process)

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

Response samples

200 4XX 5XXGET /processes

limit

processes
required

links
required

application/json

Expand all Collapse allCopy
{

"processes": - [

 … ,+ { }

 … + { }

],

"links": - [

 … + { }

]

}

Content type

Content type

Content type

Content type

Content type

https://stacspec.org/
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://github.com/radiantearth/stac-spec
https://github.com/radiantearth/stac-api-spec
https://github.com/radiantearth/stac-api-spec/blob/v1.0.0/README.md
https://github.com/radiantearth/stac-spec/blob/v0.9.0/api-spec/README.md
https://stac-extensions.github.io/
https://github.com/stac-extensions/eo
https://github.com/stac-extensions/processing
https://github.com/stac-extensions/raster
https://github.com/stac-extensions/sar
https://github.com/stac-extensions/sat
https://github.com/stac-extensions/scientific
https://github.com/radiantearth/stac-spec/tree/v0.9.0/api-spec
https://stac-api-extensions.github.io/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://openid.net/specs/openid-connect-core-1_0.html#UserInfo
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://stacspec.org/
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://stac-api-extensions.github.io/
https://stac-extensions.github.io/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://stacspec.org/
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://stac-api-extensions.github.io/
https://stac-extensions.github.io/
https://github.com/radiantearth/stac-spec/releases
http://commonmark.org/
https://spdx.org/licenses/
https://github.com/radiantearth/stac-spec/blob/v1.0.0/item-spec/common-metadata.md
https://github.com/radiantearth/stac-spec/blob/v1.0.0/extensions/README.md#list-of-content-extensions
https://stac-extensions.github.io/datacube/v2.2.0/schema.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/stac-api-extensions/filter#queryables
https://github.com/opengeospatial/ogcapi-features/tree/master/extensions/filtering
https://json-schema.org/draft-07/json-schema-validation.html
https://json-schema.org/draft/2019-09/schema
https://openeo.example/api/v1/collections/Sentinel-2A/queryables

User-Defined Processes

These endpoints allow to store and manage user-defined processes with their process graphs at the
back-end.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

List all user-defined processes

Lists all user-defined processes (process graphs) of the authenticated user that are stored at the
back-end.

It is strongly RECOMMENDED to keep the response size small by omitting larger optional values from
the objects in processes (e.g. the exceptions , examples and links properties). To get the
full metadata for a user-defined process clients MUST request GET
/process_graphs/{process_graph_id} .

AUTHORIZATIONS: Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 JSON array with user-defined processes.

RESPONSE SCHEMA: application/json

Array of objects (User-defined Process Metadata)
Array of user-defined processes

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /process_graphs

limit

processes
required

links
required

application/json

Expand all Collapse allCopy
{

"processes": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"links": []

}

Full metadata for a user-defined process

Lists all information about a user-defined process, including its process graph.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (process_id) ^\w+$
Example: ndvi
Per-user unique identifier for a user-defined process.

Responses

200 The user-defined process with process graph.

RESPONSE SCHEMA: application/json

string or null
A short summary of what the process does.

string or null <commonmark>
Detailed description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation. In
addition to the CommonMark syntax, clients can convert process IDs that
are formatted as in the following example into links instead of code
blocks: ``process_id()``

Array of objects or null (Process Parameter)
A list of parameters.

The order in the array corresponds to the parameter order to be used in
clients that do not support named parameters.

Note: Specifying an empty array is different from (if allowed) null or
the property being absent. An empty array means the process has no
parameters. null / property absent means that the parameters are
unknown as the user has not specified them. There could still be
parameters in the process graph, if one is specified.

object or null (Process Return Value)
Description of the data that is returned by this process.

string (process_id) ^\w+$
The identifier for the process. It MUST be unique across its namespace
(e.g. predefined processes or user-defined processes).

Clients SHOULD warn the user if a user-defined process is added with the
same identifier as one of the predefined process.

Array of strings (process_categories)
A list of categories.

boolean (deprecated)
Default: false
Declares that the specified entity is deprecated with the potential to be
removed in any of the next versions. It should be transitioned out of usage
as soon as possible and users should refrain from using it in new
implementations.

boolean (experimental)
Default: false
Declares that the specified entity is experimental, which means that it is
likely to change or may produce unpredictable behavior. Users should
refrain from using it in production, but still feel encouraged to try it out
and give feedback.

object (Process Exceptions)
Declares exceptions (errors) that might occur during execution of this
process. This list is just for informative purposes and may be incomplete.
This list MUST only contain exceptions that stop the execution of a
process and MUST NOT contain warnings, notices or debugging
messages. It is meant to primarily contain errors that have been caused
by the user. It is RECOMMENDED that exceptions are referred to and
explained in process or parameter descriptions.

The keys define the error code and MUST match the following pattern:
^\w+$

This schema follows the schema of the general openEO error list (see
errors.json).

Array of objects (Process Example)
Examples, may be used for unit tests.

Array of objects (Link)
Links related to this process, e.g. additional external documentation.

Providing links with the following rel (relation) types is
RECOMMENDED:

1. latest-version : If a process has been marked as deprecated, a
link SHOULD point to the preferred version of the process. The
relation types predecessor-version (link to older version) and
successor-version (link to newer version) can also be used to

show the relation between versions.
2. example : Links to examples of other processes that use this

process.
3. cite-as : For all DOIs associated with the process, the respective

DOI links SHOULD be added.

For additional relation types see also the lists of common relation types in
openEO.

object (Process Graph)
A process graph defines a graph-like structure as a connected set of
executable processes. Each key is a unique identifier (node ID) that is
used to refer to the process in the graph.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XX

A user-defined process that computes the Enhanced
Vegetation Index (EVI).

GET /process_graphs/{process_graph_id}

process_graph_id
required

summary

description

parameters

returns

id
required

categories

deprecated

experimental

exceptions

examples

links

process_graph
required

application/json

Expand all Collapse allCopy
{

"id": "evi",

"summary": "Enhanced Vegetation Index",

"description": "Computes the Enhanced Vegetation Index (EVI). It is computed with the following formula: `2.5 * (NIR - RED) / (1 + NIR + 6*RED + -7.5*BLUE)`."

"parameters": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"returns": - {

"description": "Computed EVI.",

"schema": … + { }

},

"process_graph": - {

"sub": … + { },

"p1": … + { },

"p2": … + { },

"sum": … + { },

"div": … + { },

"p3": … + { }

}

}

Validate a user-defined process (graph)

Validates a user-defined process without executing it. A user-defined process is considered valid
unless the errors array in the response contains at least one error.

Checks whether the process graph is schematically correct and the processes are supported by the
back-end. It MUST also check the arguments against the schema, but checking whether the
arguments are adequate in the context of data is OPTIONAL. For example, a non-existing band name
may get rejected only by a few back-ends. The validation MUST NOT throw an error for unresolvable
process parameters.

Back-ends MUST validate the process graph. Validating the corresponding metadata is OPTIONAL.

Errors that usually occur during processing MAY NOT get reported, e.g. if a referenced file is
accessible at the time of execution.

Back-ends can either report all errors at once or stop the validation once they found the first error.

Please note that a validation always returns with HTTP status code 200. Error codes in the 4xx and
5xx ranges MUST be returned only when the general validation request is invalid (e.g. server is busy or
properties in the request body are missing), but never if an error was found during validation of the
user-defined process (e.g. an unsupported process).

AUTHORIZATIONS: None or Bearer

REQUEST BODY SCHEMA: application/json
required

Specifies the user-defined process to be validated.

string or null ^\w+$
The identifier for the process. It MUST be unique across its namespace (e.g.
predefined processes or user-defined processes).

Clients SHOULD warn the user if a user-defined process is added with the
same identifier as one of the predefined process.

string or null
A short summary of what the process does.

string or null <commonmark>
Detailed description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation. In
addition to the CommonMark syntax, clients can convert process IDs that
are formatted as in the following example into links instead of code blocks:
``process_id()``

Array of objects or null (Process Parameter)
A list of parameters.

The order in the array corresponds to the parameter order to be used in
clients that do not support named parameters.

Note: Specifying an empty array is different from (if allowed) null or the
property being absent. An empty array means the process has no
parameters. null / property absent means that the parameters are
unknown as the user has not specified them. There could still be parameters
in the process graph, if one is specified.

object or null (Process Return Value)
Description of the data that is returned by this process.

Array of strings (process_categories)
A list of categories.

boolean (deprecated)
Default: false
Declares that the specified entity is deprecated with the potential to be
removed in any of the next versions. It should be transitioned out of usage
as soon as possible and users should refrain from using it in new
implementations.

boolean (experimental)
Default: false
Declares that the specified entity is experimental, which means that it is
likely to change or may produce unpredictable behavior. Users should
refrain from using it in production, but still feel encouraged to try it out and
give feedback.

object (Process Exceptions)
Declares exceptions (errors) that might occur during execution of this
process. This list is just for informative purposes and may be incomplete.
This list MUST only contain exceptions that stop the execution of a process
and MUST NOT contain warnings, notices or debugging messages. It is
meant to primarily contain errors that have been caused by the user. It is
RECOMMENDED that exceptions are referred to and explained in process or
parameter descriptions.

The keys define the error code and MUST match the following pattern:
^\w+$

This schema follows the schema of the general openEO error list (see
errors.json).

Array of objects (Process Example)
Examples, may be used for unit tests.

Array of objects (Link)
Links related to this process, e.g. additional external documentation.

Providing links with the following rel (relation) types is RECOMMENDED:

1. latest-version : If a process has been marked as deprecated, a link
SHOULD point to the preferred version of the process. The relation
types predecessor-version (link to older version) and successor-
version (link to newer version) can also be used to show the relation
between versions.

2. example : Links to examples of other processes that use this process.
3. cite-as : For all DOIs associated with the process, the respective DOI

links SHOULD be added.

For additional relation types see also the lists of common relation types in
openEO.

object (Process Graph)
A process graph defines a graph-like structure as a connected set of
executable processes. Each key is a unique identifier (node ID) that is used
to refer to the process in the graph.

Responses

200 Returns the validation result as a list of errors. An empty list indicates a successful validation.

RESPONSE SCHEMA: application/json

Array of objects (General Error)
A list of validation errors.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

A user-defined process that computes the Enhanced
Vegetation Index (EVI).

Response samples

200 4XX 5XX

POST /validation

id

summary

description

parameters

returns

categories

deprecated

experimental

exceptions

examples

links

process_graph
required

errors
required

application/json

Expand all Collapse allCopy
{

"id": "evi",

"summary": "Enhanced Vegetation Index",

"description": "Computes the Enhanced Vegetation Index (EVI). It is computed with the following formula: `2.5 * (NIR - RED) / (1 + NIR + 6*RED + -7.5*BLUE)`."

"parameters": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"returns": - {

"description": "Computed EVI.",

"schema": … + { }

},

"process_graph": - {

"sub": … + { },

"p1": … + { },

"p2": … + { },

"sum": … + { },

"div": … + { },

"p3": … + { }

}

}

application/json

Expand all Collapse allCopy
{

"errors": - [

 … + { }

]

}

List all user-defined processes

Lists all user-defined processes (process graphs) of the authenticated user that are stored at the
back-end.

It is strongly RECOMMENDED to keep the response size small by omitting larger optional values from
the objects in processes (e.g. the exceptions , examples and links properties). To get the
full metadata for a user-defined process clients MUST request GET
/process_graphs/{process_graph_id} .

AUTHORIZATIONS: Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 JSON array with user-defined processes.

RESPONSE SCHEMA: application/json

Array of objects (User-defined Process Metadata)
Array of user-defined processes

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /process_graphs

limit

processes
required

links
required

application/json

Expand all Collapse allCopy
{

"processes": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"links": []

}

Full metadata for a user-defined process

Lists all information about a user-defined process, including its process graph.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (process_id) ^\w+$
Example: ndvi
Per-user unique identifier for a user-defined process.

Responses

200 The user-defined process with process graph.

RESPONSE SCHEMA: application/json

string or null
A short summary of what the process does.

string or null <commonmark>
Detailed description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation. In
addition to the CommonMark syntax, clients can convert process IDs that
are formatted as in the following example into links instead of code
blocks: ``process_id()``

Array of objects or null (Process Parameter)
A list of parameters.

The order in the array corresponds to the parameter order to be used in
clients that do not support named parameters.

Note: Specifying an empty array is different from (if allowed) null or
the property being absent. An empty array means the process has no
parameters. null / property absent means that the parameters are
unknown as the user has not specified them. There could still be
parameters in the process graph, if one is specified.

object or null (Process Return Value)
Description of the data that is returned by this process.

string (process_id) ^\w+$
The identifier for the process. It MUST be unique across its namespace
(e.g. predefined processes or user-defined processes).

Clients SHOULD warn the user if a user-defined process is added with the
same identifier as one of the predefined process.

Array of strings (process_categories)
A list of categories.

boolean (deprecated)
Default: false
Declares that the specified entity is deprecated with the potential to be
removed in any of the next versions. It should be transitioned out of usage
as soon as possible and users should refrain from using it in new
implementations.

boolean (experimental)
Default: false
Declares that the specified entity is experimental, which means that it is
likely to change or may produce unpredictable behavior. Users should
refrain from using it in production, but still feel encouraged to try it out
and give feedback.

object (Process Exceptions)
Declares exceptions (errors) that might occur during execution of this
process. This list is just for informative purposes and may be incomplete.
This list MUST only contain exceptions that stop the execution of a
process and MUST NOT contain warnings, notices or debugging
messages. It is meant to primarily contain errors that have been caused
by the user. It is RECOMMENDED that exceptions are referred to and
explained in process or parameter descriptions.

The keys define the error code and MUST match the following pattern:
^\w+$

This schema follows the schema of the general openEO error list (see
errors.json).

Array of objects (Process Example)
Examples, may be used for unit tests.

Array of objects (Link)
Links related to this process, e.g. additional external documentation.

Providing links with the following rel (relation) types is
RECOMMENDED:

1. latest-version : If a process has been marked as deprecated, a
link SHOULD point to the preferred version of the process. The
relation types predecessor-version (link to older version) and
successor-version (link to newer version) can also be used to

show the relation between versions.
2. example : Links to examples of other processes that use this

process.
3. cite-as : For all DOIs associated with the process, the respective

DOI links SHOULD be added.

For additional relation types see also the lists of common relation types in
openEO.

object (Process Graph)
A process graph defines a graph-like structure as a connected set of
executable processes. Each key is a unique identifier (node ID) that is
used to refer to the process in the graph.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XX

A user-defined process that computes the Enhanced
Vegetation Index (EVI).

GET /process_graphs/{process_graph_id}

process_graph_id
required

summary

description

parameters

returns

id
required

categories

deprecated

experimental

exceptions

examples

links

process_graph
required

application/json

Expand all Collapse allCopy
{

"id": "evi",

"summary": "Enhanced Vegetation Index",

"description": "Computes the Enhanced Vegetation Index (EVI). It is computed with the following formula: `2.5 * (NIR - RED) / (1 + NIR + 6*RED + -7.5*BLUE)`."

"parameters": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"returns": - {

"description": "Computed EVI.",

"schema": … + { }

},

"process_graph": - {

"sub": … + { },

"p1": … + { },

"p2": … + { },

"sum": … + { },

"div": … + { },

"p3": … + { }

}

}

Store a user-defined process

Stores a provided user-defined process with process graph that can be reused in other processes.

If a process with the specified process_graph_id exists, the process is fully replaced. The id can
not be changed for existing user-defined processes. The id MUST be unique across its namespace.

Partially updating user-defined processes is not supported.

To simplify exchanging user-defined processes, the property id can be part of the request body. If
the values do not match, the value for id gets replaced with the value from the
process_graph_id parameter in the path.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (process_id) ^\w+$
Example: ndvi
Per-user unique identifier for a user-defined process.

REQUEST BODY SCHEMA: application/json
required

Specifies the process graph with its meta data.

string or null ^\w+$
The identifier for the process. It MUST be unique across its namespace (e.g.
predefined processes or user-defined processes).

Clients SHOULD warn the user if a user-defined process is added with the
same identifier as one of the predefined process.

string or null
A short summary of what the process does.

Request samples

Payload

A user-defined process that computes the Enhanced
Vegetation Index (EVI).

Response samples

PUT /process_graphs/{process_graph_id}

process_graph_id
required

id

summary

application/json

Expand all Collapse allCopy
{

"id": "evi",

"summary": "Enhanced Vegetation Index",

"description": "Computes the Enhanced Vegetation Index (EVI). It is computed with the following formula: `2.5 * (NIR - RED) / (1 + NIR + 6*RED + -7.5*BLUE)`."

"parameters": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"returns": - {

"description": "Computed EVI.",

"schema": … + { }

},

"process_graph": - {

"sub": … + { },

"p1": … + { },

"p2": … + { },

"sum": … + { },

"div": … + { },

"p3": … + { }

}

}

Content type

Content type

Content type

Content type

Content type

Content type

Content type

https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/

Data Processing

Organizes and manages data processing on the back-end, either as synchronous on-demand
computation or batch jobs.

string or null <commonmark>
Detailed description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation. In
addition to the CommonMark syntax, clients can convert process IDs that
are formatted as in the following example into links instead of code blocks:
``process_id()``

Array of objects or null (Process Parameter)
A list of parameters.

The order in the array corresponds to the parameter order to be used in
clients that do not support named parameters.

Note: Specifying an empty array is different from (if allowed) null or the
property being absent. An empty array means the process has no
parameters. null / property absent means that the parameters are
unknown as the user has not specified them. There could still be parameters
in the process graph, if one is specified.

object or null (Process Return Value)
Description of the data that is returned by this process.

Array of strings (process_categories)
A list of categories.

boolean (deprecated)
Default: false
Declares that the specified entity is deprecated with the potential to be
removed in any of the next versions. It should be transitioned out of usage
as soon as possible and users should refrain from using it in new
implementations.

boolean (experimental)
Default: false
Declares that the specified entity is experimental, which means that it is
likely to change or may produce unpredictable behavior. Users should
refrain from using it in production, but still feel encouraged to try it out and
give feedback.

object (Process Exceptions)
Declares exceptions (errors) that might occur during execution of this
process. This list is just for informative purposes and may be incomplete.
This list MUST only contain exceptions that stop the execution of a process
and MUST NOT contain warnings, notices or debugging messages. It is
meant to primarily contain errors that have been caused by the user. It is
RECOMMENDED that exceptions are referred to and explained in process or
parameter descriptions.

The keys define the error code and MUST match the following pattern:
^\w+$

This schema follows the schema of the general openEO error list (see
errors.json).

Array of objects (Process Example)
Examples, may be used for unit tests.

Array of objects (Link)
Links related to this process, e.g. additional external documentation.

Providing links with the following rel (relation) types is RECOMMENDED:

1. latest-version : If a process has been marked as deprecated, a link
SHOULD point to the preferred version of the process. The relation
types predecessor-version (link to older version) and successor-
version (link to newer version) can also be used to show the relation
between versions.

2. example : Links to examples of other processes that use this process.
3. cite-as : For all DOIs associated with the process, the respective DOI

links SHOULD be added.

For additional relation types see also the lists of common relation types in
openEO.

object (Process Graph)
A process graph defines a graph-like structure as a connected set of
executable processes. Each key is a unique identifier (node ID) that is used
to refer to the process in the graph.

Responses

— 200 The user-defined process has been stored successfully.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XX

description

parameters

returns

categories

deprecated

experimental

exceptions

examples

links

process_graph
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Delete a user-defined process

Deletes the data related to this user-defined process, including its process graph.

Does NOT delete jobs or services that reference this user-defined process.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (process_id) ^\w+$

Example: ndvi
Per-user unique identifier for a user-defined process.

Responses

— 204 The user-defined process has been successfully deleted

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXDELETE /process_graphs/{process_graph_id}

process_graph_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Supported file formats

Lists supported input and output file formats. Input file formats specify which file a back-end can read
from. Output file formats specify which file a back-end can write to.

The response to this request is an object listing all available input and output file formats separately
with their parameters and additional data. This endpoint does not include the supported secondary
web services.

Note: Format names and parameters MUST be fully aligned with the GDAL codes if available, see
GDAL Raster Formats and OGR Vector Formats. It is OPTIONAL to support all output format
parameters supported by GDAL. Some file formats not available through GDAL may be defined
centrally for openEO. Custom file formats or parameters MAY be defined.

The format descriptions MUST describe how the file formats relate to data cubes. Input file formats
MUST describe how the files have to be structured to be transformed into data cubes. Output file
formats MUST describe how the data cubes are stored at the back-end and how the resulting file
structure looks like.

Back-ends MUST NOT support aliases, for example it is not allowed to support geotiff instead of
gtiff . Nevertheless, openEO Clients MAY translate user input for convenience (e.g. translate
geotiff to gtiff). Also, for a better user experience the back-end can specify a title .

Format names MUST be accepted in a case insensitive manner throughout the API.

AUTHORIZATIONS: None or Bearer

Responses

200
An object with containing all input and output format separately. For each property input and output an object is
defined where the file format names are the property keys and the property values are objects that define a title, supported
parameters and related links.

RESPONSE SCHEMA: application/json

object (Input File Formats)
Map of supported input file formats, i.e. file formats a back-end can read
from. The property keys are the file format names that are used by clients
and users, for example in process graphs.

object (Output File Formats)
Map of supported output file formats, i.e. file formats a back-end can
write to. The property keys are the file format names that are used by
clients and users, for example in process graphs.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
usually does not respond with HTTP status codes 401 and 403 due to missing authorization. HTTP status code 404 SHOULD
be used if the value of a path parameter is invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /file_formats

input
required

output
required

application/json

Expand all Collapse allCopy
{

"output": - {

"GTiff": … + { },

"GPKG": … + { }

},

"input": - {

"GPKG": … + { }

}

}

Validate a user-defined process (graph)

Validates a user-defined process without executing it. A user-defined process is considered valid
unless the errors array in the response contains at least one error.

Checks whether the process graph is schematically correct and the processes are supported by the
back-end. It MUST also check the arguments against the schema, but checking whether the
arguments are adequate in the context of data is OPTIONAL. For example, a non-existing band name
may get rejected only by a few back-ends. The validation MUST NOT throw an error for unresolvable
process parameters.

Back-ends MUST validate the process graph. Validating the corresponding metadata is OPTIONAL.

Errors that usually occur during processing MAY NOT get reported, e.g. if a referenced file is
accessible at the time of execution.

Back-ends can either report all errors at once or stop the validation once they found the first error.

Please note that a validation always returns with HTTP status code 200. Error codes in the 4xx and
5xx ranges MUST be returned only when the general validation request is invalid (e.g. server is busy or
properties in the request body are missing), but never if an error was found during validation of the
user-defined process (e.g. an unsupported process).

AUTHORIZATIONS: None or Bearer

REQUEST BODY SCHEMA: application/json
required

Specifies the user-defined process to be validated.

string or null ^\w+$
The identifier for the process. It MUST be unique across its namespace (e.g.
predefined processes or user-defined processes).

Clients SHOULD warn the user if a user-defined process is added with the
same identifier as one of the predefined process.

string or null
A short summary of what the process does.

string or null <commonmark>
Detailed description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation. In
addition to the CommonMark syntax, clients can convert process IDs that
are formatted as in the following example into links instead of code blocks:
``process_id()``

Array of objects or null (Process Parameter)
A list of parameters.

The order in the array corresponds to the parameter order to be used in
clients that do not support named parameters.

Note: Specifying an empty array is different from (if allowed) null or the
property being absent. An empty array means the process has no
parameters. null / property absent means that the parameters are
unknown as the user has not specified them. There could still be parameters
in the process graph, if one is specified.

object or null (Process Return Value)
Description of the data that is returned by this process.

Array of strings (process_categories)
A list of categories.

boolean (deprecated)
Default: false
Declares that the specified entity is deprecated with the potential to be
removed in any of the next versions. It should be transitioned out of usage
as soon as possible and users should refrain from using it in new
implementations.

boolean (experimental)
Default: false
Declares that the specified entity is experimental, which means that it is
likely to change or may produce unpredictable behavior. Users should
refrain from using it in production, but still feel encouraged to try it out and
give feedback.

object (Process Exceptions)
Declares exceptions (errors) that might occur during execution of this
process. This list is just for informative purposes and may be incomplete.
This list MUST only contain exceptions that stop the execution of a process
and MUST NOT contain warnings, notices or debugging messages. It is
meant to primarily contain errors that have been caused by the user. It is
RECOMMENDED that exceptions are referred to and explained in process or
parameter descriptions.

The keys define the error code and MUST match the following pattern:
^\w+$

This schema follows the schema of the general openEO error list (see
errors.json).

Array of objects (Process Example)
Examples, may be used for unit tests.

Array of objects (Link)
Links related to this process, e.g. additional external documentation.

Providing links with the following rel (relation) types is RECOMMENDED:

1. latest-version : If a process has been marked as deprecated, a link
SHOULD point to the preferred version of the process. The relation
types predecessor-version (link to older version) and successor-
version (link to newer version) can also be used to show the relation
between versions.

2. example : Links to examples of other processes that use this process.
3. cite-as : For all DOIs associated with the process, the respective DOI

links SHOULD be added.

For additional relation types see also the lists of common relation types in
openEO.

object (Process Graph)
A process graph defines a graph-like structure as a connected set of
executable processes. Each key is a unique identifier (node ID) that is used
to refer to the process in the graph.

Responses

200 Returns the validation result as a list of errors. An empty list indicates a successful validation.

RESPONSE SCHEMA: application/json

Array of objects (General Error)
A list of validation errors.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

A user-defined process that computes the Enhanced
Vegetation Index (EVI).

Response samples

200 4XX 5XX

POST /validation

id

summary

description

parameters

returns

categories

deprecated

experimental

exceptions

examples

links

process_graph
required

errors
required

application/json

Expand all Collapse allCopy
{

"id": "evi",

"summary": "Enhanced Vegetation Index",

"description": "Computes the Enhanced Vegetation Index (EVI). It is computed with the following formula: `2.5 * (NIR - RED) / (1 + NIR + 6*RED + -7.5*BLUE)`."

"parameters": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"returns": - {

"description": "Computed EVI.",

"schema": … + { }

},

"process_graph": - {

"sub": … + { },

"p1": … + { },

"p2": … + { },

"sum": … + { },

"div": … + { },

"p3": … + { }

}

}

application/json

Expand all Collapse allCopy
{

"errors": - [

 … + { }

]

}

Process and download data synchronously

Executes a user-defined process directly (synchronously) and the result will be downloaded in the
format specified in the process graph. This endpoint can be used to generate small previews or test
user-defined processes before starting a batch job. Timeouts on either client-side or server-side are to
be expected for complex computations. Back-ends MAY send the openEO error
ProcessGraphComplexity immediately if the computation is expected to time out. Otherwise

requests MAY time-out after a certain amount of time by sending openEO error RequestTimeout . A
header named OpenEO-Costs MAY be sent with all responses, which MUST include the costs for
processing and downloading the data. Additionally, a link to a log file MAY be sent in the header.

AUTHORIZATIONS: Bearer

REQUEST BODY SCHEMA: application/json
required

Specifies the job details, e.g. the user-defined process and billing details.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

string or null (billing_plan_null_default)
Default: null
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way:

If a non- null value is given: Persist the plan that has been
provided in the request.
Otherwise:

1. Persist the default_plan exposed through GET /me , if
available.

2. Persist the default_plan exposed through GET / , if
available.

3. If a single plan is exposed by the back-end, persist it.
4. Otherwise, the back-end MUST throw a BillingPlanMissing

error.

The resolved plan MUST be persisted permanently, regardless of any
changes to the exposed billing plans in GET / in the future.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for the
processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set this
property to debug to capture all log entries. It is RECOMMENDED that
users set the level at least to "warning" in production workflows.

any
Aditional back-end specific properties are allowed.

Responses

200 Result data in the requested output format

RESPONSE HEADERS

string
The appropriate media (MIME) type for the requested output format
MUST be sent, if the response contains a single file.

To send multiple files at once it is RECOMMENDED to use the tar file
format (media type: application/x-tar).

To mimic the results of batch jobs, it is RECOMMENDED that

1. clients extract the tar file directly after receiving it so that users can
directly work on the contained files and

2. back-ends add STAC Items and/or Collections to the tar file so that
users can make sense of the files.

number or null (money) >= 0
Default: null
Example: "12.98"
MAY include the costs for processing and downloading the data.

string ^<[^>]+>;\s?rel="monitor"

Example: "<https://openeo.example/api/v1/logs/258489231>;
rel=\"monitor\""

The header MAY indicate a link to a log file generated by the request. If
provided, the link MUST be serialized according to RFC 8288 and MUST
use the relation type monitor . The link MUST follow the specifications
for the links GET /jobs/{job_id}/logs and GET
/services/{service_id}/logs , except that is MUST NOT accept any
parameters (limit/offset). Therefore, the link MUST be accessible with
HTTP GET, MUST be secured using a Bearer token and MUST follow the
corresponding request body schema.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

Response samples

4XX 5XX

POST /result

process
required

budget

plan

log_level

property name*
additional property

Content-Type

OpenEO-Costs

Link

application/json

Expand all Collapse allCopy
{

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"budget": 100,

"plan": "free",

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

List all batch jobs

Lists all batch jobs submitted by a user.

It is strongly RECOMMENDED to keep the response size small by omitting all optional non-scalar
values (i.e. arrays and objects) from objects in jobs (i.e. the process property). To get the full
metadata for a job clients MUST request GET /jobs/{job_id} .

AUTHORIZATIONS: Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Array of job descriptions

RESPONSE SCHEMA: application/json

Array of objects (Batch Job)

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs

limit

jobs
required

links
required

application/json

Expand all Collapse allCopy
{

"jobs": - [

 … + { }

],

"links": - [

 … + { }

]

}

Create a new batch job

Creates a new batch processing task (job) from one or more (chained) processes at the back-end.

Processing the data does not start yet. The job status gets initialized as created by default.

AUTHORIZATIONS: Bearer

REQUEST BODY SCHEMA: application/json
required

Specifies the job details, e.g. the user-defined process and billing details.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string or null (billing_plan_null_default)
Default: null
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way:

If a non- null value is given: Persist the plan that has been
provided in the request.
Otherwise:

1. Persist the default_plan exposed through GET /me , if
available.

2. Persist the default_plan exposed through GET / , if
available.

3. If a single plan is exposed by the back-end, persist it.
4. Otherwise, the back-end MUST throw a BillingPlanMissing

error.

The resolved plan MUST be persisted permanently, regardless of any
changes to the exposed billing plans in GET / in the future.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for the
processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set this
property to debug to capture all log entries. It is RECOMMENDED that
users set the level at least to "warning" in production workflows.

any
Additional back-end specific properties are allowed.

Request samples

Payload

Response samples

4XX 5XX

POST /jobs

title

description

process
required

plan

budget

log_level

property name*
additional property

application/json

Expand all Collapse allCopy
{

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"plan": "free",

"budget": 100,

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://gdal.org/drivers/raster/index.html
https://gdal.org/drivers/vector/index.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.gnu.org/software/tar/manual/html_node/Standard.html
https://www.rfc-editor.org/rfc/rfc8288.html#section-3
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/

Responses

201 The batch job has been created successfully.

RESPONSE HEADERS

string <uri>
Example: "https://openeo.example/api/v1/jobs/123"
Absolute URL to the newly created batch job.

The URL points to the metadata endpoint GET /jobs/{job_id} with
the {job_id} being the unique identifier (ID) of the created batch job.

string (job_id) ^[\w\-\.~]+$
Example: "a3cca2b2aa1e3b5b"
Per-back-end unique identifier of the batch job, generated by the back-
end during creation. MUST match the specified pattern.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Location
required

OpenEO-Identifier
required

Modify a batch job

Modifies an existing job at the back-end, but maintains the identifier. Changes can be grouped in a
single request.

The job status does not change.

Jobs can only be modified when the job is not queued and not running. Otherwise, requests to this
endpoint MUST be rejected with openEO error JobLocked .

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$
Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

REQUEST BODY SCHEMA: application/json
required

Specifies the job details to update.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string or null (billing_plan_null)
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way if billing is supported:

If a value is given and it is not null : Persist the plan that has been
provided in the request.
Otherwise, do not change the billing plan.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

number or null (budget_update) >= 0
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null .

string (min_log_level_update)
Enum: "error" "warning" "info" "debug"
Updates the minimum severity level for log entries that the back-end stores
for the processing requests.

The back-end does not need to update existing log entries.

any
Additional back-end specific properties are allowed.

Responses

— 204 Changes to the job applied successfully.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

Response samples

4XX 5XX

PATCH /jobs/{job_id}

job_id
required

title

description

process

plan

budget

log_level

property name*
additional property

application/json

Expand all Collapse allCopy
{

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"plan": "free",

"budget": 100,

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Full metadata for a batch job

Lists all information about a submitted batch job.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

200 Full job information.

RESPONSE SCHEMA: application/json

string (job_id) ^[\w\-\.~]+$
Per-back-end unique identifier of the batch job, generated by the back-
end during creation. MUST match the specified pattern.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string
Default: "created"
Enum: "created" "queued" "running" "canceled"
"finished" "error"

The current status of a batch job.

The following status changes can occur:

POST /jobs : The status is initialized as created .
POST /jobs/{job_id}/results : The status is set to queued ,

if processing does not start instantly.
Once the processing starts the status is set to running .
Once the data is available to download the status is set to
finished .

Whenever an error occurs during processing, the status MUST
be set to error .

DELETE /jobs/{job_id}/results : The status is set to
canceled if the status was running beforehand and partial or

preliminary results are available to be downloaded. Otherwise the
status is set to created .

number [0 .. 100]
Indicates the process of a running batch job, in percent. Can also be set
for a job which stopped due to an error or was canceled by the user. In
this case, the value indicates the progress at which the job stopped.
This property may not be available for the status codes created and
queued . Submitted and queued jobs only allow the value 0 , finished

jobs only allow the value 100 .

string <date-time> (created)
Date and time of creation, formatted as a RFC 3339 date-time.

string <date-time> (updated)
Date and time of the last status change, formatted as a RFC 3339 date-
time.

string (billing_plan)
The billing plan to process and charge the job or service with.

Billing plans MUST be handled in a case insensitive manner.

The plans can be retrieved from GET / , but the value returned here
may not be in the list of plans any longer.

number or null (money) >= 0
Default: null
An amount of money or credits. The value MUST be specified in the
currency the back-end is working with. The currency can be retrieved by
calling GET / . If no currency is set, this field MUST be null .

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

object (Resource usage metrics)
Metrics about the resource usage of the batch job.

Back-ends are not expected to update the metrics while processing
data, so the metrics can only be available after the job has finished or
has stopped due to an error. For usage metrics during processing,
metrics can better be added to the logs (e.g. GET
/jobs/{job_id}/logs) with the same schema.

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for
the processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-

end will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set
this property to debug to capture all log entries. It is RECOMMENDED
that users set the level at least to "warning" in production workflows.

Array of objects (Link)
Links related to this batch job such as links to invoices, log files or
results.

Providing links with the following rel (relation) types is
RECOMMENDED:

1. monitor : If logs are available, a link to the logs endpoint.
2. result : If batch job results are available, a link to the results

endpoint.

The relation types monitor and result may occur for various batch
job states:

1. created : When the batch job was executed before and has been
reset to created after an update there could still be results and
logs available until they get discarded by queueing the batch job
again.

2. finished : The full log and results are expected to be available.
3. error / canceled : Partial results and logs may be available.

For more relation types see the lists of common relation types in
openEO.

any
You can list additional back-end specific properties here.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs/{job_id}

job_id
required

id
required

title

description

process
required

status
required

progress

created
required

updated

plan

costs

budget

usage

log_level

links

property name*
additional property

application/json

Expand all Collapse allCopy
{

"property1": null,

"property2": null,

"id": "a3cca2b2aa1e3b5b",

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"status": "running",

"progress": 75.5,

"created": "2017-01-01T09:32:12Z",

"updated": "2017-01-01T09:36:18Z",

"plan": "free",

"costs": 12.98,

"budget": 100,

"usage": - {

"cpu": … + { },

"duration": … + { },

"memory": … + { },

"network": … + { },

"storage": … + { }

},

"log_level": "warning",

"links": - [

 … ,+ { }

 … + { }

]

}

Delete a batch job

Deletes all data related to a given batch job. Computations are stopped and computed results are
deleted. This job will not generate additional costs for processing.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

— 204 The job has been successfully deleted.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXDELETE /jobs/{job_id}

job_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Get an estimate for a batch job

Calculates an estimate for a batch job. Back-ends can decide to either calculate the duration, the
costs, the size or a combination of them. Back-end providers MAY specify an expiry time for the
estimate. Starting to process data afterwards MAY be charged at a higher cost. Costs do often not
include download costs. Whether download costs are included or not can be indicated explicitly with
the downloads_included flag. The estimate SHOULD be the upper limit of the costs, but back-end
are free to use the field according to their terms of service. For some batch jobs it is not (easily)
possible to estimate the costs reliably, e.g. if a UDF or ML model is part of the process. In this case,
the server SHOULD return a EstimateComplexity error with HTTP status code 500.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

200
The estimated costs with regard to money, processing time and storage capacity. At least one of costs , duration
or size MUST be provided.

RESPONSE SCHEMA: application/json

Any of Batch Job Estimate Batch Job Estimate Batch Job Estimate

number or null (money) >= 0
Default: null
An amount of money or credits. The value MUST be specified in the
currency the back-end is working with. The currency can be retrieved
by calling GET / . If no currency is set, this field MUST be null .

string
Estimated duration for the operation. Duration MUST be specified as
an ISO 8601 duration.

integer
Estimated required storage capacity, i.e. the size of the generated files.
Size MUST be specified in bytes.

integer or null
Default: null
Specifies how many full downloads of the processed data are included
in the estimate. Set to null for unlimited downloads, which is also
the default value.

string <date-time>
Time until which the estimate is valid, formatted as a RFC 3339 date-
time.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs/{job_id}/estimate

job_id
required

costs
required

duration

size

downloads_included

expires

application/json

Copy
{

"costs": 12.98,

"duration": "P1Y2M10DT2H30M",

"size": 157286400,

"downloads_included": 5,

"expires": "2020-11-01T00:00:00Z"

}

Logs for a batch job

Lists log entries for the batch job, usually for debugging purposes.

Back-ends can log any information that may be relevant for a user at any stage (status) of the batch
job. Users can log information during data processing using respective processes such as inspect .

If requested consecutively, it is RECOMMENDED that clients use the offset parameter to get only the
entries they have not received yet.

While pagination itself is OPTIONAL, the offset parameter is REQUIRED to be implemented by
back-ends.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

QUERY PARAMETERS

string
Example: offset=log1234
The last identifier (property id of a log entry) the client has received. If
provided, the back-end MUST only send the entries that occurred after the
specified identifier. If not provided or empty, the back-end MUST start with
the first entry.

string
Default: "debug"
Enum: "error" "warning" "info" "debug"
Example: level=error
The minimum severity level for log entries that the back-end returns.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only return log entries with the level warning and error .

The default minimum log level is debug , which returns all log levels.

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Lists the requested log entries.

RESPONSE SCHEMA: application/json

string
Default: "debug"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end returns. This
property MUST reflect the effective lowest level that may appear in the
document, which is (if implemented) the highest level of:

1. the log_level specified by the user for the processing request.
2. the level specified by the user for the log request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the logs will

only contain entries with the level warning and error .

Array of objects (Log Entry)
A chronological list of logs.

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs/{job_id}/logs

job_id
required

offset

level

limit

level

logs
required

links
required

application/json

Expand all Collapse allCopy
{

"level": "error",

"logs": - [

 … + { }

],

"links": - [

 … + { }

]

}

List batch job results

Lists signed URLs pointing to the processed files, usually after the batch job has finished. Back-ends
may also point to intermediate results after the job has stopped due to an error or if the partial
parameter has been set.

The response includes additional metadata. It is a valid STAC Item (if it has spatial and temporal
references included) or a valid STAC Collection (supported since openEO API version 1.1.0). The
assets to download are in both cases available in the property assets and have the same structure.
Additional metadata is not strictly required to download the files, but are helpful for users to
understand the data.

STAC Collections can either (1) add all assets as collection-level assets or (2) link to STAC Catalogs
and STAC Items with signed URLs, which will provide a full STAC catalog structure a client has to go
through. Option 2 is overall the better architectural choice and allows a fine-grained description of the
processed data, but it is not compliant with previous versions of the openEO API. To maintain
backward compatibility, it is REQUIRED to still copy all assets in the STAC catalog structure into the
collection-level assets. This requirement is planned to be removed in openEO API version 2.0.0. A
client can enforce that the server returns a GeoJSON through content negotiation with the media type
application/geo+json , but the results may not contain very meaningful metadata aside from the

assets.

Clients are RECOMMENDED to store this response and all potential sub-catalogs and items with the
assets so that the downloaded data is then a self-contained STAC catalog user could publish easily
with all the data and metadata.

URL signing is a way to protect files from unauthorized access with a key in the URL instead of HTTP
header based authorization. The URL signing key is similar to a password and its inclusion in the URL
allows to download files using simple GET requests supported by a wide range of programs, e.g. web
browsers or download managers. Back-ends are responsible to generate the URL signing keys and to
manage their appropriate expiration. The back-end MAY indicate an expiration time by setting the
expires property in the reponse. Requesting this endpoint SHOULD always return non-expired

URLs. Signed URLs that were generated for a previous request and already expired SHOULD NOT be
reused, but regenerated with new expiration time. Signed URLs that expired MAY return the openEO
error ResultLinkExpired .

Adding a link with relation type canonical to the STAC Item or STAC Collection is STRONGLY
RECOMMENDED (see the links property for details).

If processing has not finished yet and the partial parameter is not set to true requests to this
endpoint MUST be rejected with openEO error JobNotFinished .

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

QUERY PARAMETERS

boolean
Default: false
If set to true , the results endpoint returns incomplete results while still
running. Enabling this parameter requires to indicate the status of the batch
job in the STAC metadata by setting the openeo:status .

Responses

200
Valid download links have been returned. The download links does not necessarily need to be located under the API base url.

RESPONSE HEADERS

number or null (money) >= 0
Default: null
Example: "12.98"
Specifies the costs for fully downloading the data once, i.e. this header
MAY change in subsequent calls. It MUST be set to 0 if the requester is
the owner of the job and still has free downloads included in his
processing charges estimated by GET /jobs/{job_id}/estimate . If a
requester other than the owner is requesting the data of a shared job this
header indicates the costs for the requester.

RESPONSE SCHEMA:

One of Batch Job Results Response as STAC Item Batch Job Results Response as STAC Collection

string (stac_version) ^(0\.9.\d+|1\.\d+.\d+)
The version of the STAC specification, which MAY not be equal to the
STAC API version. Supports versions 0.9.x and 1.x.x.

Array of Reference to a JSON Schema (string) or Reference to a core
extension (STAC < 1.0.0-rc.1 only) (string) (stac_extensions) unique
A list of implemented STAC extensions. The list contains URLs to the
JSON Schema files it can be validated against. For STAC < 1.0.0-rc.1
shortcuts such as sar can be used instead of the schema URL.

string (job_id) ^[\w\-\.~]+$
Per-back-end unique identifier of the batch job, generated by the back-
end during creation. MUST match the specified pattern.

string
Value: "Feature"
The GeoJSON type that applies to this metadata document, which
MUST always be a "Feature" according to the STAC specification. This
type does not describe the spatial data type of the assets.

Array of 4 elements (numbers) or Array of 6 elements (numbers) (bbox)
Each bounding box is provided as four or six numbers, depending on
whether the coordinate reference system includes a vertical axis
(height or depth):

West (lower left corner, coordinate axis 1)
South (lower left corner, coordinate axis 2)
Base (optional, minimum value, coordinate axis 3)
East (upper right corner, coordinate axis 1)
North (upper right corner, coordinate axis 2)
Height (optional, maximum value, coordinate axis 3)

The coordinate reference system of the values is WGS 84
longitude/latitude (http://www.opengis.net/def/crs/OGC/1.3/CRS84).

For WGS 84 longitude/latitude the values are in most cases the

Response samples

200 424 4XX 5XXGET /jobs/{job_id}/results

job_id
required

partial

OpenEO-Costs

application/json

stac_version
required

stac_extensions

id
required

type
required

bbox

application/json

Batch Job Results Response as STAC Item

Expand all Collapse allCopy
{

"stac_version": "1.0.0",

"stac_extensions": - [

"https://openeo.example/stac/custom-extemsion/v1.0.0/schema.json"

],

"id": "a3cca2b2aa1e3b5b",

"type": "Feature",

"bbox": - [

-180,

-90,

180,

90

],

"geometry": - {

"type": "Polygon",

"coordinates": … + []

},

"properties": - {

"datetime": "2019-08-24T14:15:22Z",

"start_datetime": "2019-08-24T14:15:22Z"

"end_datetime": "2019-08-24T14:15:22Z",

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"license": "Apache-2.0",

"providers": … + [],

"created": "2017-01-01T09:32:12Z",

"updated": "2017-01-01T09:36:18Z",

"expires": "2020-11-01T00:00:00Z",

"openeo:status": "running"

},

"assets": - {

"preview.png": … + { },

"process.json": … + { },

"1.tif": … + { },

"2.tif": … + { },

"inspire.xml": … + { }

},

"links": - [

 … + { }

]

}

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Example

https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/radiantearth/stac-spec/tree/v1.0.0/item-spec
https://github.com/radiantearth/stac-spec/tree/v1.0.0/collection-spec
https://github.com/radiantearth/stac-spec/releases
http://www.opengis.net/def/crs/OGC/1.3/CRS84
https://openeo.example/stac/custom-extemsion/v1.0.0/schema.json

Batch Jobs

Management of batch processing tasks (jobs) and their results.

For WGS 84 longitude/latitude the values are in most cases the
sequence of minimum longitude, minimum latitude, maximum
longitude and maximum latitude.

However, in cases where the box spans the antimeridian the first value
(west-most box edge) is larger than the third value (east-most box
edge).

If the vertical axis is included, the third and the sixth number are the
bottom and the top of the 3-dimensional bounding box.

object or null (GeoJSON Geometry)
Defines the full footprint of the asset represented by this item as
GeoJSON Geometry.

Results without a known location can set this value to null .

object (Item Properties)
MAY contain additional properties other than the required property
datetime , e.g. custom properties or properties from the STAC

specification or STAC extensions.

object (Assets)
Dictionary of asset objects for data that can be downloaded, each with
a unique key. The keys MAY be used by clients as file names.

Array of objects (Link)
Links related to this batch job result, e.g. a link to an invoice, additional
log files or external documentation.

The links MUST NOT contain links to the processed and downloadable
data. Instead specify these in the assets property. Clients MUST NOT
download the data referenced in the links by default.

It is strongly recommended to add a link with relation type
canonical , which points to this STAC document using a signed URL.

This way the STAC metadata can be used by non-openEO clients
without additional authentication steps.

For relation types see the lists of common relation types in openEO.

424
The request can not be fulfilled as the batch job failed. This request will deliver the last error message that was produced by
the batch job.

This HTTP code MUST be sent only when the job status is error .

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

geometry
required

properties
required

assets
required

links
required

Start processing a batch job

Adds a batch job to the processing queue to compute the results.

The result will be stored in the format specified in the process. To specify the format use a process
such as save_result .

The job status is set to queued , if processing does not start instantly. The same applies if the job
status is canceled , finished , or error , which restarts the job and discards previous results if
the back-end does not reject the request with an error. Clients SHOULD warn users and ask for
confirmation if results may get discarded.

Once the processing starts the status is set to running .
Once the data is available to download the status is set to finished .
Whenever an error occurs during processing, the status MUST be set to error .

This endpoint has no effect if the job status is already queued or running . In particular, it does
not restart a running job. To restart a queued or running job, processing MUST have been canceled.

Back-ends SHOULD reject queueing jobs with openEO error PaymentRequired , if the back-end is
able to detect that the budget is too low to fully process the request. Alternatively, back-ends MAY
provide partial results once reaching the budget. If none of the alternatives is feasible, the results are
discarded. Thus, client SHOULD warn users that reaching the budget may lead to partial or no results
at all.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

— 202 The creation of the resource has been queued successfully.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXPOST /jobs/{job_id}/results

job_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Cancel processing a batch job

Cancels all related computations for this job at the back-end. It will stop generating additional costs
for processing.

A subset of processed results may be available for downloading depending on the state of the job at
the time it was canceled.

Results MUST NOT be deleted until the job processing is started again or the job is completely deleted
through a request to DELETE /jobs/{job_id} .

This endpoint only has an effect if the job status is queued or running .

The job status is set to canceled if the status was running beforehand and partial or preliminary
results are available to be downloaded. Otherwise the status is set to created .

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

— 204 Processing the job has been successfully canceled.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXDELETE /jobs/{job_id}/results

job_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

List all batch jobs

Lists all batch jobs submitted by a user.

It is strongly RECOMMENDED to keep the response size small by omitting all optional non-scalar
values (i.e. arrays and objects) from objects in jobs (i.e. the process property). To get the full
metadata for a job clients MUST request GET /jobs/{job_id} .

AUTHORIZATIONS: Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Array of job descriptions

RESPONSE SCHEMA: application/json

Array of objects (Batch Job)

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs

limit

jobs
required

links
required

application/json

Expand all Collapse allCopy
{

"jobs": - [

 … + { }

],

"links": - [

 … + { }

]

}

Create a new batch job

Creates a new batch processing task (job) from one or more (chained) processes at the back-end.

Processing the data does not start yet. The job status gets initialized as created by default.

AUTHORIZATIONS: Bearer

REQUEST BODY SCHEMA: application/json
required

Specifies the job details, e.g. the user-defined process and billing details.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string or null (billing_plan_null_default)
Default: null
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way:

If a non- null value is given: Persist the plan that has been
provided in the request.
Otherwise:

1. Persist the default_plan exposed through GET /me , if
available.

2. Persist the default_plan exposed through GET / , if
available.

3. If a single plan is exposed by the back-end, persist it.
4. Otherwise, the back-end MUST throw a BillingPlanMissing

error.

The resolved plan MUST be persisted permanently, regardless of any
changes to the exposed billing plans in GET / in the future.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for the
processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set this
property to debug to capture all log entries. It is RECOMMENDED that
users set the level at least to "warning" in production workflows.

any
Additional back-end specific properties are allowed.

Responses

201 The batch job has been created successfully.

RESPONSE HEADERS

string <uri>
Example: "https://openeo.example/api/v1/jobs/123"
Absolute URL to the newly created batch job.

The URL points to the metadata endpoint GET /jobs/{job_id} with
the {job_id} being the unique identifier (ID) of the created batch job.

string (job_id) ^[\w\-\.~]+$

Example: "a3cca2b2aa1e3b5b"
Per-back-end unique identifier of the batch job, generated by the back-
end during creation. MUST match the specified pattern.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

Response samples

4XX 5XX

POST /jobs

title

description

process
required

plan

budget

log_level

property name*
additional property

Location
required

OpenEO-Identifier
required

application/json

Expand all Collapse allCopy
{

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"plan": "free",

"budget": 100,

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Modify a batch job

Modifies an existing job at the back-end, but maintains the identifier. Changes can be grouped in a
single request.

The job status does not change.

Jobs can only be modified when the job is not queued and not running. Otherwise, requests to this
endpoint MUST be rejected with openEO error JobLocked .

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

REQUEST BODY SCHEMA: application/json
required

Specifies the job details to update.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string or null (billing_plan_null)
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way if billing is supported:

If a value is given and it is not null : Persist the plan that has been
provided in the request.
Otherwise, do not change the billing plan.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

number or null (budget_update) >= 0
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null .

string (min_log_level_update)
Enum: "error" "warning" "info" "debug"
Updates the minimum severity level for log entries that the back-end stores
for the processing requests.

The back-end does not need to update existing log entries.

any
Additional back-end specific properties are allowed.

Responses

— 204 Changes to the job applied successfully.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

Response samples

4XX 5XX

PATCH /jobs/{job_id}

job_id
required

title

description

process

plan

budget

log_level

property name*
additional property

application/json

Expand all Collapse allCopy
{

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"plan": "free",

"budget": 100,

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Full metadata for a batch job

Lists all information about a submitted batch job.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

200 Full job information.

RESPONSE SCHEMA: application/json

string (job_id) ^[\w\-\.~]+$
Per-back-end unique identifier of the batch job, generated by the back-
end during creation. MUST match the specified pattern.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string
Default: "created"
Enum: "created" "queued" "running" "canceled"
"finished" "error"

The current status of a batch job.

The following status changes can occur:

POST /jobs : The status is initialized as created .
POST /jobs/{job_id}/results : The status is set to queued ,

if processing does not start instantly.
Once the processing starts the status is set to running .
Once the data is available to download the status is set to
finished .

Whenever an error occurs during processing, the status MUST
be set to error .

DELETE /jobs/{job_id}/results : The status is set to
canceled if the status was running beforehand and partial or

preliminary results are available to be downloaded. Otherwise the
status is set to created .

number [0 .. 100]
Indicates the process of a running batch job, in percent. Can also be set
for a job which stopped due to an error or was canceled by the user. In
this case, the value indicates the progress at which the job stopped.
This property may not be available for the status codes created and
queued . Submitted and queued jobs only allow the value 0 , finished

jobs only allow the value 100 .

string <date-time> (created)
Date and time of creation, formatted as a RFC 3339 date-time.

string <date-time> (updated)
Date and time of the last status change, formatted as a RFC 3339 date-
time.

string (billing_plan)
The billing plan to process and charge the job or service with.

Billing plans MUST be handled in a case insensitive manner.

The plans can be retrieved from GET / , but the value returned here
may not be in the list of plans any longer.

number or null (money) >= 0
Default: null
An amount of money or credits. The value MUST be specified in the
currency the back-end is working with. The currency can be retrieved by
calling GET / . If no currency is set, this field MUST be null .

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

object (Resource usage metrics)
Metrics about the resource usage of the batch job.

Back-ends are not expected to update the metrics while processing
data, so the metrics can only be available after the job has finished or
has stopped due to an error. For usage metrics during processing,
metrics can better be added to the logs (e.g. GET
/jobs/{job_id}/logs) with the same schema.

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for
the processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-

end will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set
this property to debug to capture all log entries. It is RECOMMENDED
that users set the level at least to "warning" in production workflows.

Array of objects (Link)
Links related to this batch job such as links to invoices, log files or
results.

Providing links with the following rel (relation) types is
RECOMMENDED:

1. monitor : If logs are available, a link to the logs endpoint.
2. result : If batch job results are available, a link to the results

endpoint.

The relation types monitor and result may occur for various batch
job states:

1. created : When the batch job was executed before and has been
reset to created after an update there could still be results and
logs available until they get discarded by queueing the batch job
again.

2. finished : The full log and results are expected to be available.
3. error / canceled : Partial results and logs may be available.

For more relation types see the lists of common relation types in
openEO.

any
You can list additional back-end specific properties here.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs/{job_id}

job_id
required

id
required

title

description

process
required

status
required

progress

created
required

updated

plan

costs

budget

usage

log_level

links

property name*
additional property

application/json

Expand all Collapse allCopy
{

"property1": null,

"property2": null,

"id": "a3cca2b2aa1e3b5b",

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"status": "running",

"progress": 75.5,

"created": "2017-01-01T09:32:12Z",

"updated": "2017-01-01T09:36:18Z",

"plan": "free",

"costs": 12.98,

"budget": 100,

"usage": - {

"cpu": … + { },

"duration": … + { },

"memory": … + { },

"network": … + { },

"storage": … + { }

},

"log_level": "warning",

"links": - [

 … ,+ { }

 … + { }

]

}

Delete a batch job

Deletes all data related to a given batch job. Computations are stopped and computed results are
deleted. This job will not generate additional costs for processing.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

— 204 The job has been successfully deleted.

Response samples

4XX 5XXDELETE /jobs/{job_id}

job_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc3339.html

Secondary Services

On-demand access to data using other web service protocols.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Get an estimate for a batch job

Calculates an estimate for a batch job. Back-ends can decide to either calculate the duration, the
costs, the size or a combination of them. Back-end providers MAY specify an expiry time for the
estimate. Starting to process data afterwards MAY be charged at a higher cost. Costs do often not
include download costs. Whether download costs are included or not can be indicated explicitly with
the downloads_included flag. The estimate SHOULD be the upper limit of the costs, but back-end
are free to use the field according to their terms of service. For some batch jobs it is not (easily)
possible to estimate the costs reliably, e.g. if a UDF or ML model is part of the process. In this case,
the server SHOULD return a EstimateComplexity error with HTTP status code 500.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

200
The estimated costs with regard to money, processing time and storage capacity. At least one of costs , duration
or size MUST be provided.

RESPONSE SCHEMA: application/json

Any of Batch Job Estimate Batch Job Estimate Batch Job Estimate

number or null (money) >= 0
Default: null
An amount of money or credits. The value MUST be specified in the
currency the back-end is working with. The currency can be retrieved
by calling GET / . If no currency is set, this field MUST be null .

string
Estimated duration for the operation. Duration MUST be specified as
an ISO 8601 duration.

integer
Estimated required storage capacity, i.e. the size of the generated files.
Size MUST be specified in bytes.

integer or null
Default: null
Specifies how many full downloads of the processed data are included
in the estimate. Set to null for unlimited downloads, which is also
the default value.

string <date-time>
Time until which the estimate is valid, formatted as a RFC 3339 date-
time.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs/{job_id}/estimate

job_id
required

costs
required

duration

size

downloads_included

expires

application/json

Copy
{

"costs": 12.98,

"duration": "P1Y2M10DT2H30M",

"size": 157286400,

"downloads_included": 5,

"expires": "2020-11-01T00:00:00Z"

}

Logs for a batch job

Lists log entries for the batch job, usually for debugging purposes.

Back-ends can log any information that may be relevant for a user at any stage (status) of the batch
job. Users can log information during data processing using respective processes such as inspect .

If requested consecutively, it is RECOMMENDED that clients use the offset parameter to get only the
entries they have not received yet.

While pagination itself is OPTIONAL, the offset parameter is REQUIRED to be implemented by
back-ends.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

QUERY PARAMETERS

string
Example: offset=log1234
The last identifier (property id of a log entry) the client has received. If
provided, the back-end MUST only send the entries that occurred after the
specified identifier. If not provided or empty, the back-end MUST start with
the first entry.

string
Default: "debug"
Enum: "error" "warning" "info" "debug"
Example: level=error
The minimum severity level for log entries that the back-end returns.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only return log entries with the level warning and error .

The default minimum log level is debug , which returns all log levels.

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Lists the requested log entries.

RESPONSE SCHEMA: application/json

string
Default: "debug"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end returns. This
property MUST reflect the effective lowest level that may appear in the
document, which is (if implemented) the highest level of:

1. the log_level specified by the user for the processing request.
2. the level specified by the user for the log request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the logs will

only contain entries with the level warning and error .

Array of objects (Log Entry)
A chronological list of logs.

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /jobs/{job_id}/logs

job_id
required

offset

level

limit

level

logs
required

links
required

application/json

Expand all Collapse allCopy
{

"level": "error",

"logs": - [

 … + { }

],

"links": - [

 … + { }

]

}

List batch job results

Lists signed URLs pointing to the processed files, usually after the batch job has finished. Back-ends
may also point to intermediate results after the job has stopped due to an error or if the partial
parameter has been set.

The response includes additional metadata. It is a valid STAC Item (if it has spatial and temporal
references included) or a valid STAC Collection (supported since openEO API version 1.1.0). The
assets to download are in both cases available in the property assets and have the same structure.
Additional metadata is not strictly required to download the files, but are helpful for users to
understand the data.

STAC Collections can either (1) add all assets as collection-level assets or (2) link to STAC Catalogs
and STAC Items with signed URLs, which will provide a full STAC catalog structure a client has to go
through. Option 2 is overall the better architectural choice and allows a fine-grained description of the
processed data, but it is not compliant with previous versions of the openEO API. To maintain
backward compatibility, it is REQUIRED to still copy all assets in the STAC catalog structure into the
collection-level assets. This requirement is planned to be removed in openEO API version 2.0.0. A
client can enforce that the server returns a GeoJSON through content negotiation with the media type
application/geo+json , but the results may not contain very meaningful metadata aside from the

assets.

Clients are RECOMMENDED to store this response and all potential sub-catalogs and items with the
assets so that the downloaded data is then a self-contained STAC catalog user could publish easily
with all the data and metadata.

URL signing is a way to protect files from unauthorized access with a key in the URL instead of HTTP
header based authorization. The URL signing key is similar to a password and its inclusion in the URL
allows to download files using simple GET requests supported by a wide range of programs, e.g. web
browsers or download managers. Back-ends are responsible to generate the URL signing keys and to
manage their appropriate expiration. The back-end MAY indicate an expiration time by setting the
expires property in the reponse. Requesting this endpoint SHOULD always return non-expired

URLs. Signed URLs that were generated for a previous request and already expired SHOULD NOT be
reused, but regenerated with new expiration time. Signed URLs that expired MAY return the openEO
error ResultLinkExpired .

Adding a link with relation type canonical to the STAC Item or STAC Collection is STRONGLY
RECOMMENDED (see the links property for details).

If processing has not finished yet and the partial parameter is not set to true requests to this
endpoint MUST be rejected with openEO error JobNotFinished .

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$
Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

QUERY PARAMETERS

boolean
Default: false
If set to true , the results endpoint returns incomplete results while still
running. Enabling this parameter requires to indicate the status of the batch
job in the STAC metadata by setting the openeo:status .

Responses

200
Valid download links have been returned. The download links does not necessarily need to be located under the API base url.

RESPONSE HEADERS

number or null (money) >= 0
Default: null
Example: "12.98"
Specifies the costs for fully downloading the data once, i.e. this header
MAY change in subsequent calls. It MUST be set to 0 if the requester is
the owner of the job and still has free downloads included in his
processing charges estimated by GET /jobs/{job_id}/estimate . If a
requester other than the owner is requesting the data of a shared job this
header indicates the costs for the requester.

RESPONSE SCHEMA:

One of Batch Job Results Response as STAC Item Batch Job Results Response as STAC Collection

string (stac_version) ^(0\.9.\d+|1\.\d+.\d+)
The version of the STAC specification, which MAY not be equal to the
STAC API version. Supports versions 0.9.x and 1.x.x.

Array of Reference to a JSON Schema (string) or Reference to a core
extension (STAC < 1.0.0-rc.1 only) (string) (stac_extensions) unique
A list of implemented STAC extensions. The list contains URLs to the
JSON Schema files it can be validated against. For STAC < 1.0.0-rc.1
shortcuts such as sar can be used instead of the schema URL.

string (job_id) ^[\w\-\.~]+$
Per-back-end unique identifier of the batch job, generated by the back-
end during creation. MUST match the specified pattern.

string
Value: "Feature"
The GeoJSON type that applies to this metadata document, which
MUST always be a "Feature" according to the STAC specification. This
type does not describe the spatial data type of the assets.

Array of 4 elements (numbers) or Array of 6 elements (numbers) (bbox)
Each bounding box is provided as four or six numbers, depending on
whether the coordinate reference system includes a vertical axis
(height or depth):

West (lower left corner, coordinate axis 1)
South (lower left corner, coordinate axis 2)
Base (optional, minimum value, coordinate axis 3)
East (upper right corner, coordinate axis 1)
North (upper right corner, coordinate axis 2)
Height (optional, maximum value, coordinate axis 3)

The coordinate reference system of the values is WGS 84
longitude/latitude (http://www.opengis.net/def/crs/OGC/1.3/CRS84).

For WGS 84 longitude/latitude the values are in most cases the
sequence of minimum longitude, minimum latitude, maximum
longitude and maximum latitude.

However, in cases where the box spans the antimeridian the first value
(west-most box edge) is larger than the third value (east-most box
edge).

If the vertical axis is included, the third and the sixth number are the
bottom and the top of the 3-dimensional bounding box.

object or null (GeoJSON Geometry)
Defines the full footprint of the asset represented by this item as
GeoJSON Geometry.

Results without a known location can set this value to null .

object (Item Properties)
MAY contain additional properties other than the required property
datetime , e.g. custom properties or properties from the STAC

specification or STAC extensions.

object (Assets)
Dictionary of asset objects for data that can be downloaded, each with
a unique key. The keys MAY be used by clients as file names.

Array of objects (Link)
Links related to this batch job result, e.g. a link to an invoice, additional
log files or external documentation.

The links MUST NOT contain links to the processed and downloadable
data. Instead specify these in the assets property. Clients MUST NOT
download the data referenced in the links by default.

It is strongly recommended to add a link with relation type
canonical , which points to this STAC document using a signed URL.

This way the STAC metadata can be used by non-openEO clients
without additional authentication steps.

For relation types see the lists of common relation types in openEO.

424
The request can not be fulfilled as the batch job failed. This request will deliver the last error message that was produced by
the batch job.

This HTTP code MUST be sent only when the job status is error .

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 424 4XX 5XXGET /jobs/{job_id}/results

job_id
required

partial

OpenEO-Costs

application/json

stac_version
required

stac_extensions

id
required

type
required

bbox

geometry
required

properties
required

assets
required

links
required

application/json

Batch Job Results Response as STAC Item

Expand all Collapse allCopy
{

"stac_version": "1.0.0",

"stac_extensions": - [

"https://openeo.example/stac/custom-extemsion/v1.0.0/schema.json"

],

"id": "a3cca2b2aa1e3b5b",

"type": "Feature",

"bbox": - [

-180,

-90,

180,

90

],

"geometry": - {

"type": "Polygon",

"coordinates": … + []

},

"properties": - {

"datetime": "2019-08-24T14:15:22Z",

"start_datetime": "2019-08-24T14:15:22Z"

"end_datetime": "2019-08-24T14:15:22Z",

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"license": "Apache-2.0",

"providers": … + [],

"created": "2017-01-01T09:32:12Z",

"updated": "2017-01-01T09:36:18Z",

"expires": "2020-11-01T00:00:00Z",

"openeo:status": "running"

},

"assets": - {

"preview.png": … + { },

"process.json": … + { },

"1.tif": … + { },

"2.tif": … + { },

"inspire.xml": … + { }

},

"links": - [

 … + { }

]

}

Start processing a batch job

Adds a batch job to the processing queue to compute the results.

The result will be stored in the format specified in the process. To specify the format use a process
such as save_result .

The job status is set to queued , if processing does not start instantly. The same applies if the job
status is canceled , finished , or error , which restarts the job and discards previous results if
the back-end does not reject the request with an error. Clients SHOULD warn users and ask for
confirmation if results may get discarded.

Once the processing starts the status is set to running .
Once the data is available to download the status is set to finished .
Whenever an error occurs during processing, the status MUST be set to error .

This endpoint has no effect if the job status is already queued or running . In particular, it does
not restart a running job. To restart a queued or running job, processing MUST have been canceled.

Back-ends SHOULD reject queueing jobs with openEO error PaymentRequired , if the back-end is
able to detect that the budget is too low to fully process the request. Alternatively, back-ends MAY
provide partial results once reaching the budget. If none of the alternatives is feasible, the results are
discarded. Thus, client SHOULD warn users that reaching the budget may lead to partial or no results
at all.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

— 202 The creation of the resource has been queued successfully.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXPOST /jobs/{job_id}/results

job_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Cancel processing a batch job

Cancels all related computations for this job at the back-end. It will stop generating additional costs
for processing.

A subset of processed results may be available for downloading depending on the state of the job at
the time it was canceled.

Results MUST NOT be deleted until the job processing is started again or the job is completely deleted
through a request to DELETE /jobs/{job_id} .

This endpoint only has an effect if the job status is queued or running .

The job status is set to canceled if the status was running beforehand and partial or preliminary
results are available to be downloaded. Otherwise the status is set to created .

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (job_id) ^[\w\-\.~]+$

Example: a3cca2b2aa1e3b5b
Identifier of the batch job.

Responses

— 204 Processing the job has been successfully canceled.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXDELETE /jobs/{job_id}/results

job_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Supported secondary web service protocols

Lists supported secondary web service protocols such as OGC WMS, OGC WCS, OGC API - Features
or XYZ tiles. The response is an object of all available secondary web service protocols with their
supported configuration settings and expected process parameters.

The configuration settings for the service SHOULD be defined upon creation of a service and the
service will be set up accordingly.
The process parameters SHOULD be referenced (with a from_parameter reference) in the
user-defined process that is used to compute web service results. The appropriate arguments
MUST be provided to the user-defined process, usually at runtime from the context of the web
service. For example, a map service such as a WMS would need to inject the spatial extent into
the user-defined process so that the back-end can compute the corresponding tile correctly.

To improve interoperability between back-ends common names for the services SHOULD be used,
e.g. the abbreviations used in the official OGC Schema Repository for the respective services.

Service names MUST be accepted in a case insensitive manner throughout the API.

AUTHORIZATIONS: None or Bearer

Responses

200
An object with a map containing all service names as keys and an object that defines supported configuration settings and
process parameters.

RESPONSE SCHEMA: application/json

object (Service Type)

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
usually does not respond with HTTP status codes 401 and 403 due to missing authorization. HTTP status code 404 SHOULD
be used if the value of a path parameter is invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /service_types

Service Name*
additional property

application/json

Expand all Collapse allCopy
{

"WMS": - {

"title": "OGC Web Map Service",

"configuration": … + { },

"process_parameters": … + [],

"links": … + []

},

"OGCAPI-FEATURES": - {

"title": "OGC API - Features",

"description": "Exposes a OGC API - Features in version 1.0 of the specification (successor of OGC WFS 3.0)."

"configuration": … + { },

"process_parameters": [],

"links": … + []

}

}

List all web services

Lists all secondary web services submitted by a user.

It is strongly RECOMMENDED to keep the response size small by omitting all optional non-scalar
values (i.e. arrays and objects) from objects in services (i.e. the process , configuration and
attributes properties). To get the full metadata for a secondary web service clients MUST request
GET /services/{service_id} .

AUTHORIZATIONS: Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Array of secondary web service descriptions

RESPONSE SCHEMA: application/json

Array of objects (Secondary Web Service)

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request

Response samples

200 4XX 5XXGET /services

limit

services
required

links
required

application/json

Expand all Collapse allCopy
{

"services": - [

 … + { }

],

"links": - [

 … + { }

]

}

Content type

Content type

Content type

Example

Content type

Content type

Content type

Content type

https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://en.wikipedia.org/wiki/ISO_8601#Durations
https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/radiantearth/stac-spec/tree/v1.0.0/item-spec
https://github.com/radiantearth/stac-spec/tree/v1.0.0/collection-spec
https://github.com/radiantearth/stac-spec/releases
http://www.opengis.net/def/crs/OGC/1.3/CRS84
https://openeo.example/stac/custom-extemsion/v1.0.0/schema.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs
https://www.ogc.org/standards/ogcapi-features
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://schemas.opengis.net/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6

File Storage

Management of user-uploaded assets and processed data.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Publish a new service

Creates a new secondary web service such as a OGC WMS, OGC WCS, OGC API - Features or XYZ
tiles.

The secondary web service SHOULD process the underlying data on demand, based on process
parameters provided to the user-defined process (through from_parameter references) at run-time,
for example for the spatial/temporal extent, resolution, etc. The available process parameters are
specified per service type at GET /service_types .

Note: Costs incurred by shared secondary web services are usually paid by the owner, but this
depends on the service type and whether it supports charging fees or not.

AUTHORIZATIONS: Bearer

REQUEST BODY SCHEMA: application/json
required

The base data required to create the secondary web service.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

string (service_type)
Definition of the service type to access result data. All available service
types can be retrieved via GET /service_types . Service types MUST be
accepted in a case insensitive manner.

boolean
Default: true
Describes whether a secondary web service is responding to requests
(true) or not (false). Disabled services do not produce any costs.

object (Service Configuration)
Map of configuration settings, i.e. the setting names supported by the
secondary web service combined with actual values. See GET
/service_types for supported configuration settings. For example, this
could specify the required version of the service, visualization details or any
other service dependent configuration.

string or null (billing_plan_null_default)
Default: null
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way:

If a non- null value is given: Persist the plan that has been
provided in the request.
Otherwise:

1. Persist the default_plan exposed through GET /me , if
available.

2. Persist the default_plan exposed through GET / , if
available.

3. If a single plan is exposed by the back-end, persist it.
4. Otherwise, the back-end MUST throw a BillingPlanMissing

error.

The resolved plan MUST be persisted permanently, regardless of any
changes to the exposed billing plans in GET / in the future.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for the
processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set this
property to debug to capture all log entries. It is RECOMMENDED that
users set the level at least to "warning" in production workflows.

any
Additional back-end specific properties are allowed.

Responses

201 The service has been created successfully.

RESPONSE HEADERS

string <uri>
Example: "https://openeo.example/api/v1/services/123"
Absolute URL to the newly created service.

The URL points to the metadata endpoint GET
/services/{service_id} with the {service_id} being the unique
identifier (ID) of the created service. MUST NOT point to the actual
instance (e.g. WMTS base URL) of the service. The URL to the instance
is made available by the metadata endpoint in the property url .

string (service_id) ^[\w\-\.~]+$
Example: "wms-a3cca9"
A per-back-end unique identifier of the secondary web service,
generated by the back-end during creation. MUST match the specified
pattern.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

Response samples

4XX 5XX

POST /services

title

description

process
required

type
required

enabled

configuration

plan

budget

log_level

property name*
additional property

Location
required

OpenEO-Identifier
required

application/json

Expand all Collapse allCopy
{

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"type": "wms",

"enabled": true,

"configuration": - {

"version": "1.3.0"

},

"plan": "free",

"budget": 100,

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Modify a service

Modifies an existing secondary web service at the back-end, but maintains the identifier. Changes can
be grouped into a single request.

User MUST create a new service to change the service type.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (service_id) ^[\w\-\.~]+$

Example: wms-a3cca9
Identifier of the secondary web service.

REQUEST BODY SCHEMA: application/json
required

The data to change for the specified secondary web service.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

boolean (service_enabled)
Describes whether a secondary web service is responding to requests
(true) or not (false). Disabled services do not produce any costs.

object (Service Configuration)
Map of configuration settings, i.e. the setting names supported by the
secondary web service combined with actual values. See GET
/service_types for supported configuration settings. For example, this
could specify the required version of the service, visualization details or any
other service dependent configuration.

string or null (billing_plan_null)
The billing plan to process and charge the job or service with.

Billing plans MUST be accepted in a case insensitive manner. Back-ends
MUST resolve the billing plan in the following way if billing is supported:

If a value is given and it is not null : Persist the plan that has been
provided in the request.
Otherwise, do not change the billing plan.

Billing plans not on the list of available plans MUST be rejected with
openEO error BillingPlanInvalid .

number or null (budget_update) >= 0
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null .

string (min_log_level_update)
Enum: "error" "warning" "info" "debug"
Updates the minimum severity level for log entries that the back-end stores
for the processing requests.

The back-end does not need to update existing log entries.

any
Additional back-end specific properties are allowed.

Responses

— 204 Changes to the service were applied successfully.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Request samples

Payload

Response samples

4XX 5XX

PATCH /services/{service_id}

service_id
required

title

description

process

enabled

configuration

plan

budget

log_level

property name*
additional property

application/json

Expand all Collapse allCopy
{

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"enabled": true,

"configuration": - {

"version": "1.3.0"

},

"plan": "free",

"budget": 100,

"log_level": "warning",

"property1": null,

"property2": null

}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Full metadata for a service

Lists all information about a secondary web service.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (service_id) ^[\w\-\.~]+$
Example: wms-a3cca9
Identifier of the secondary web service.

Responses

200 Details of the created service

RESPONSE SCHEMA: application/json

string (service_id) ^[\w\-\.~]+$
A per-back-end unique identifier of the secondary web service,
generated by the back-end during creation. MUST match the specified
pattern.

string or null (eo_title)
A short description to easily distinguish entities.

string or null <commonmark> (eo_description)
Detailed multi-line description to explain the entity.

CommonMark 0.29 syntax MAY be used for rich text representation.

string <uri>
URL at which the secondary web service is accessible. Does not
necessarily need to be located within the API.

string (service_type)
Definition of the service type to access result data. All available service
types can be retrieved via GET /service_types . Service types MUST
be accepted in a case insensitive manner.

boolean (service_enabled)
Describes whether a secondary web service is responding to requests
(true) or not (false). Disabled services do not produce any costs.

object (Process Graph with metadata)
A process graph, optionally enriched with process metadata.

object (Service Configuration)
Map of configuration settings, i.e. the setting names supported by the
secondary web service combined with actual values. See GET
/service_types for supported configuration settings. For example,
this could specify the required version of the service, visualization
details or any other service dependent configuration.

object (Secondary Web Service Attributes)
Additional attributes of the secondary web service, e.g. available layers
for a WMS instance based on the bands in the underlying GeoTiff.

string <date-time> (created)
Date and time of creation, formatted as a RFC 3339 date-time.

string (billing_plan)
The billing plan to process and charge the job or service with.

Billing plans MUST be handled in a case insensitive manner.

The plans can be retrieved from GET / , but the value returned here
may not be in the list of plans any longer.

number or null (money) >= 0
Default: null
An amount of money or credits. The value MUST be specified in the
currency the back-end is working with. The currency can be retrieved by
calling GET / . If no currency is set, this field MUST be null .

number or null (budget) >= 0
Default: null
Maximum amount of costs the request is allowed to produce. The value
MUST be specified in the currency of the back-end. No limits apply, if the
value is null or the back-end has no currency set in GET / .

object (Resource usage metrics)
Metrics about the resource usage of the secondary web service.

Back-ends are not expected to update the metrics in real-time. For
detailed usage metrics for individual processing steps, metrics can be
added to the logs (e.g. GET /jobs/{job_id}/logs) with the same
schema.

string (min_log_level_default)
Default: "info"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end stores for
the processing request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-

end will only store log entries with the level warning and error .

The default minimum log level is info . Users need to specifically set
this property to debug to capture all log entries. It is RECOMMENDED
that users set the level at least to "warning" in production workflows.

any
You can list additional back-end specific properties here.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /services/{service_id}

service_id
required

id
required

title

description

url
required

type
required

enabled
required

process
required

configuration
required

attributes
required

created

plan

costs

budget

usage

log_level

property name*
additional property

application/json

Expand all Collapse allCopy
{

"property1": null,

"property2": null,

"id": "wms-a3cca9",

"title": "NDVI based on Sentinel-2",

"description": "Deriving minimum NDVI measurements over pixel time series of Sentinel-2"

"url": "https://openeo.example/wms/wms-a3cca9"

"type": "wms",

"enabled": true,

"process": - {

"id": "ndvi",

"summary": "string",

"description": "string",

"parameters": … + [],

"returns": … + { },

"categories": … + [],

"deprecated": false,

"experimental": false,

"exceptions": … + { },

"examples": … + [],

"links": … + [],

"process_graph": … + { }

},

"configuration": - {

"version": "1.3.0"

},

"attributes": - {

"layers": … + []

},

"created": "2017-01-01T09:32:12Z",

"plan": "free",

"costs": 12.98,

"budget": 100,

"usage": - {

"cpu": … + { },

"duration": … + { },

"memory": … + { },

"network": … + { },

"storage": … + { }

},

"log_level": "warning"

}

Delete a service

Deletes all data related to this secondary web service. Computations are stopped, computed results
are deleted, and access to this service is no longer possible. This service will not generate additional
costs.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (service_id) ^[\w\-\.~]+$
Example: wms-a3cca9
Identifier of the secondary web service.

Responses

— 204 The service has been successfully deleted.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXDELETE /services/{service_id}

service_id
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Logs for a secondary service

Lists log entries for the secondary service, usually for debugging purposes. Back-ends can log any
information that may be relevant for a user. Users can log information during data processing using
respective processes such as inspect . If requested consecutively while the secondary service is
enabled, it is RECOMMENDED that clients use the offset parameter to get only the entries they have
not received yet. While pagination itself is OPTIONAL, the offset parameter is REQUIRED to be
implemented by back-ends.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string (service_id) ^[\w\-\.~]+$
Example: wms-a3cca9
Identifier of the secondary web service.

QUERY PARAMETERS

string
Example: offset=log1234
The last identifier (property id of a log entry) the client has received. If
provided, the back-end MUST only send the entries that occurred after the
specified identifier. If not provided or empty, the back-end MUST start with
the first entry.

string
Default: "debug"
Enum: "error" "warning" "info" "debug"
Example: level=error
The minimum severity level for log entries that the back-end returns.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the back-end

will only return log entries with the level warning and error .

The default minimum log level is debug , which returns all log levels.

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200 Lists the requested log entries.

RESPONSE SCHEMA: application/json

string
Default: "debug"
Enum: "error" "warning" "info" "debug"
The minimum severity level for log entries that the back-end returns. This
property MUST reflect the effective lowest level that may appear in the
document, which is (if implemented) the highest level of:

1. the log_level specified by the user for the processing request.
2. the level specified by the user for the log request.

The order of the levels is as follows (from low to high severity): debug ,
info , warning , error . That means if warning is set, the logs will

only contain entries with the level warning and error .

Array of objects (Log Entry)
A chronological list of logs.

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /services/{service_id}/logs

service_id
required

offset

level

limit

level

logs
required

links
required

application/json

Expand all Collapse allCopy
{

"level": "error",

"logs": - [

 … + { }

],

"links": - [

 … + { }

]

}

List all files in the workspace

Lists all user-uploaded files that are stored at the back-end.

AUTHORIZATIONS: Bearer

QUERY PARAMETERS

integer >= 1
Example: limit=10
This parameter enables pagination for the endpoint and specifies the
maximum number of elements that arrays in the top-level object (e.g.
collections, processes, batch jobs, secondary services, log entries, etc.) are
allowed to contain. The links array MUST NOT be paginated like the
resources, but instead contain links related to the paginated resources or
the pagination itself (e.g. a link to the next page). If the parameter is not
provided or empty, all elements are returned.

Pagination is OPTIONAL: back-ends or clients may not support it. Therefore,
it MUST be implemented in a way that clients not supporting pagination get
all resources regardless. Back-ends not supporting pagination MUST return
all resources.

If the response is paginated, the links array MUST be used to
communicate the links for browsing the pagination with predefined rel
types. See the links array schema for supported rel types. Back-end
implementations can, unless specified otherwise, use any kind of pagination
technique, depending on what is supported best by their infrastructure:
page-based, offset-based, token-based or something else. The clients
SHOULD use whatever is specified in the links with the corresponding rel
types.

Responses

200
Flattened file tree with path relative to the user's root directory and some basic properties such as the file size and the
timestamp of the last modification. All properties except the name are optional. Folders MUST NOT be listed separately so
each element in the list MUST be a downloadable file.

RESPONSE SCHEMA: application/json

Array of objects (Workspace File)

Array of objects (links_pagination)
Links related to this list of resources, for example links for pagination or
alternative formats such as a human-readable HTML version. The links
array MUST NOT be paginated.

If pagination is implemented, the following rel (relation) types apply:

1. next (REQUIRED): A link to the next page, except on the last page.
2. prev (OPTIONAL): A link to the previous page, except on the first

page.
3. first (OPTIONAL): A link to the first page, except on the first page.
4. last (OPTIONAL): A link to the last page, except on the last page.

For additional relation types see also the lists of common relation types in
openEO.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXGET /files

limit

files
required

links
required

application/json

Expand all Collapse allCopy
{

"files": - [

 … ,+ { }

 … ,+ { }

 … + { }

],

"links": []

}

Download a file from the workspace

Offers a file from the user workspace for download. The file is identified by its path relative to the
user's root directory. If a folder is specified as path a FileOperationUnsupported error MUST be
sent as response.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

Response samples

4XX 5XXGET /files/{path}

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

Content type

https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://www.opengeospatial.org/standards/wms
http://www.opengeospatial.org/standards/wcs
https://www.ogc.org/standards/ogcapi-features
https://wiki.openstreetmap.org/wiki/Slippy_map_tilenames
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
http://commonmark.org/
https://www.rfc-editor.org/rfc/rfc3339.html
https://openeo.example/wms/wms-a3cca9
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json

API docs by Redocly

string
Examples:

borders/europe.geojson - A path without special chars. It
describes a file `europe.geojson` in a folder called `borders`.
europe/%C3%B6sterreich/m%C3%BCnster.shp - A path with

special chars. It describes a file `münster.shp` in folders called
`europe` and `österreich`.

Path of the file, relative to the user's root directory. MAY include folders, but
MUST not include relative references such as . and .. .

Folder and file names in the path MUST be url-encoded. The path separator
/ and the file extension separator . MUST NOT be url-encoded.

The URL-encoding may be shown incorrectly in rendered versions due to
OpenAPI 3 not supporting path parameters which contain slashes. This may
also lead to OpenAPI validators not validating paths containing folders
correctly.

Responses

200 A file from the workspace.

RESPONSE SCHEMA: application/octet-stream

string <binary>

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

path
required

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Upload a file to the workspace

Uploads a new file to the given path or updates an existing file if a file at the path exists.

Folders are created once required by a file upload. Empty folders can not be created.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string
Examples:

borders/europe.geojson - A path without special chars. It
describes a file `europe.geojson` in a folder called `borders`.
europe/%C3%B6sterreich/m%C3%BCnster.shp - A path with

special chars. It describes a file `münster.shp` in folders called
`europe` and `österreich`.

Path of the file, relative to the user's root directory. MAY include folders, but
MUST not include relative references such as . and .. .

Folder and file names in the path MUST be url-encoded. The path separator
/ and the file extension separator . MUST NOT be url-encoded.

The URL-encoding may be shown incorrectly in rendered versions due to
OpenAPI 3 not supporting path parameters which contain slashes. This may
also lead to OpenAPI validators not validating paths containing folders
correctly.

REQUEST BODY SCHEMA: application/octet-stream
required

string <binary>

Responses

200 The file has been uploaded successfully.

RESPONSE SCHEMA: application/json

string ^[^/ \:'"][^ \:'"]*$
Path of the file, relative to the root directory of the user's server-side
workspace. MUST NOT start with a slash / and MUST NOT be url-
encoded.

The Windows-style path name component separator \ is not supported,
always use / instead.

Note: The pattern only specifies a minimal subset of invalid characters.
The back-ends MAY enforce additional restrictions depending on their
OS/environment.

integer
File size in bytes.

string <date-time>
Date and time the file has lastly been modified, formatted as a RFC 3339
date-time.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

200 4XX 5XXPUT /files/{path}

path
required

path
required

size

modified

application/json

Copy
{

"path": "folder/file.txt",

"size": 1024,

"modified": "2018-01-03T10:55:29Z"

}

Delete a file from the workspace

Deletes an existing user-uploaded file specified by its path. Resulting empty folders MUST be deleted
automatically.

Back-ends MAY support deleting folders including its files and sub-folders. If not supported by the
back-end a FileOperationUnsupported error MUST be sent as response.

AUTHORIZATIONS: Bearer

PATH PARAMETERS

string
Examples:

borders/europe.geojson - A path without special chars. It
describes a file `europe.geojson` in a folder called `borders`.
europe/%C3%B6sterreich/m%C3%BCnster.shp - A path with

special chars. It describes a file `münster.shp` in folders called
`europe` and `österreich`.

Path of the file, relative to the user's root directory. MAY include folders, but
MUST not include relative references such as . and .. .

Folder and file names in the path MUST be url-encoded. The path separator
/ and the file extension separator . MUST NOT be url-encoded.

The URL-encoding may be shown incorrectly in rendered versions due to
OpenAPI 3 not supporting path parameters which contain slashes. This may
also lead to OpenAPI validators not validating paths containing folders
correctly.

Responses

— 204 The file has been successfully deleted at the back-end.

4XX
The request can not be fulfilled due to an error on client-side, i.e. the request is invalid. The client SHOULD NOT repeat the
request without modifications.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. This request
MUST respond with HTTP status codes 401 if authorization is required or 403 if the authorization failed or access is
forbidden in general to the authenticated user. HTTP status code 404 SHOULD be used if the value of a path parameter is
invalid.

See also:

Error Handling in the API in general.
Common Error Codes

5XX
The request can not be fulfilled due to an error at the back-end. The error is never the client’s fault and therefore it is
reasonable for the client to retry the exact same request that triggered this response.

The response body SHOULD contain a JSON error object. MUST be any HTTP status code specified in RFC 7231. See also:

Error Handling in the API in general.
Common Error Codes

Response samples

4XX 5XXDELETE /files/{path}

path
required

application/json

Expand all Collapse allCopy
{

"id": "550e8400-e29b-11d4-a716-446655440000"

"code": "SampleError",

"message": "Parameter 'sample' is missing."

"links": - [

 … + { }

]

}

Content type

Content type

https://redocly.com/redoc/
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/OAI/OpenAPI-Specification/issues/892
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/OAI/OpenAPI-Specification/issues/892
https://www.rfc-editor.org/rfc/rfc3339.html
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://www.rfc-editor.org/rfc/rfc7231.html#section-6.6
file:///Users/scott/Downloads/errors.json
https://github.com/OAI/OpenAPI-Specification/issues/892

