

Open Geospatial Consortium, Inc.

Date: 2010-09-27

Reference number of this document: OGC 11-107

Version: 1.0

Category: Public Engineering Report

Editors: Rob Atkinson, James Groffen

OGC® OWS-8 Domain Modelling Cookbook

Copyright © 2011 Open Geospatial Consortium.
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is not an OGC Standard. This document presents a discussion of
technology issues considered in an initiative of the OGC Interoperability Program.
This document does not represent an official position of the OGC. It is subject to
change without notice and may not be referred to as an OGC Standard. However,
the discussions in this document could very well lead to the definition of an OGC
Standard. Recipients of this document are invited to submit, with their comments,
notification of any relevant patent rights of which they are aware and to provide
supporting documentation.

Document type: OGC® Engineering Report
Document subtype: NA
Document stage: Approved for public release
Document language: English

OGC 11-107

ii Copyright © 2011 Open Geospatial Consortium.

Preface

Use Case modeling has been undertaken to establish the scope and business requirements
for system and domain information modeling. INSPIRE has elucidated on this process
(INSPIRE, 2007) and similar approaches have been used for domain models such as
GeoSCIML (Sen and Duffy, 2005).

This document assumes formal domain modeling undertaken according to the ISO 19103
Conceptual Schema Language (ISO, 1999) and 19109 Rules for Application Schema
(ISO, 2000).

A number of additional perspectives may be added from the experience of these and other
domain modeling exercises.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. iii

Contents Page

1 Introduction ... 1
1.1 Scope .. 1
1.2 Document contributor contact points ... 2
1.3 Revision history .. 2
1.4 Future work .. 2
1.5 Forward .. 3

2 References ... 3

3 Terms and definitions ... 3

4 Conventions .. 4
4.1 Abbreviated terms .. 4
4.2 UML notation ... 4

5 A Case For Domain Modelling ... 4
5.1 Re-use of common concepts ... 5
5.2 Governance ... 6
5.3 Assumed knowledge ... 6

6 An Environment for Modelling .. 7
6.1 Abstraction ... 8
6.2 Patterns ... 9
6.3 Application Schemas .. 12
6.4 Definitions .. 12
6.5 Example Application of Modelling Practices ... 13

6.5.1 Digital NOTAM Event Specification - DNES ... 13
6.5.1.1 Abstraction ... 13
6.5.1.2 Abstraction Patterns ... 13

7 Model Hygiene .. 14
7.1 Conformance checking ... 14
7.2 Dependency Analysis ... 15
7.3 Attribute Types ... 17

8 Sustainable Model Management ... 18
8.1 Managing Dependency Associations ... 18
8.2 Model Registry ... 18

9 Appendix A - Tool Setup .. 21
9.1 Install Software ... 21

9.1.1 Enterprise Architect ... 21
9.1.2 SolidGround ... 21
9.1.3 SubVersion ... 21
9.1.4 HollowWorld ... 21
9.1.5 EA and SubVersion Authentication ... 23
9.1.6 Configuring Enterprise Architect ... 23

OGC 11-107

iv Copyright © 2011 Open Geospatial Consortium.

9.1.7 View the Learning Centre .. 26
9.1.8 View Solid Ground Toolbox .. 27
9.1.9 Integrating Enterprise Architect with subversion .. 28
9.1.10 Load HollowWorld .. 29

10 Appendix B - Starting From Scratch .. 30

11 Appendix C - Starting From a Physical Model ... 31
11.1 Physical Model vs. Conceptual Model ... 31
11.2 Supporting Tools .. 31
11.3 Example: Digital NOTAM Events XSD .. 32
11.4 Conceptual Classes based on Physical Classes .. 33

11.4.1 Model Mapping .. 33
11.4.2 Conformance Checking ... 34

11.5 Documentation ... 34
11.6 Dealing with Sequence ... 34
11.7 Dealing with Code Lists ... 35
11.8 Package Dependency Diagram ... 35

11.8.1 Get Your Stereotypes Right! .. 35

Figures Page
Figure 1 – Solid Ground Tasks in the Learning Centre ... 8

Figure 2 — Example of defining a root class for the domain. .. 10

Figure 3 – Platform specific details embedded in class ... 11

Figure 4 – Underlying concepts realised by stereotype ... 12

Figure 5 – Example results from a conformance check .. 15

Figure 6 – Package dependency diagram – dependencies between Application Schemas 16

Figure 7 – Dependencies published in the Registry Browser for the Event Model 17

Figure 8 – Registry Browser with the Event Application Schema selected 19

Figure 9 – Error when registering a model - missing dependent package 20

Figure 10 – Enterprise Architect Model Wizard ... 24

Figure 11 – Display tagged values pane .. 25

Figure 12 – Ensure duplicate tag values are shown .. 26

Figure 13 – Version control settings ... 27

Figure 14 – Loading HollowWorld ... 29

Figure 15 – Import XML Schema ... 32

Figure 16 – Conformance checking .. 34

OpenGIS® Engineering Report OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 1

OGC® OWS-8 Domain Modelling Cookbook

1 Introduction

1.1 Scope

This OGCTM document describes best practices for building and maintaining inter-related
domain models, which have dependencies upon multiple systems. It describes how to
build interoperable, maintainable domain models, the challenges and pitfalls faced in
building these models, the techniques and patterns that should be applied, and specific
tools that can be used. The theory of domain modelling is addressed, followed by
practical step-by-step instructions on how to use of the tools. Examples are provided from
Aeronautical Information Exchange Model (AIXM) and Farm Markup Language
(FarmML) as they were refined in the OGC’s OWS-8 testbed.

In line with OGC testbed principles, this document is provided in draft form. There are
areas where extra sections can be incorporated and the described tools are under rapid
development and should be revisited in future document versions.

Attention is drawn to the possibility that some of the elements of this document may be
the subject of patent rights. The Open Geospatial Consortium Inc. shall not be held
responsible for identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of
any relevant patent claims or other intellectual property rights of which they may be
aware that might be infringed by any implementation of the standard set forth in this
document, and to provide supporting documentation.

1.2 What is a Domain Model?

A domain model represents the vocabulary and key concepts of a real world system. It
identifies entities and attributes of the entities, along with the relationships between
entities. For instance, a domain model of a city may include buildings, streets, and city
furniture. A building may be broken down into a garage and house, and the house entity
may describe a roof and geometry of the building.

Domain models are important for describing, analysing, visualising, and sharing
information about all sorts of systems; from describing house plans, to analysing impacts
of climate change on river systems.

OGC 11-107

2 Copyright © 2011 Open Geospatial Consortium.

The challenge with domain modelling is that most systems are inter-related with other
systems. This leads to challenges with inter-dependency – aligning concepts between
models and stability of versions of subcomponents.

1.3 Document contributor contact points

All questions regarding this document should be directed to the editor or the contributors:

Name Organization
James Groffen (editor) LISAsoft
Rob Atkinson (editor) CSIRO
Johannes Echterhoff iGSI
Cameron Shorter LISAsoft

1.4 Revision history

Date Release Editor Primary
clauses
modified

Description

21 JUN
2011

0.1 Rob
Atkionson

throughout Document framework

26 JUN
2011

0.2 Jim Groffen throughout Expanded on framework. Draft
ready for OWS-8 Aviation thread.

27 JUN
2011

0.3 Cameron
Shorter

throughout Added Pre-Deliverable
Disclaimer

8 AUG
2011

0.4 Jim
Groffen,
Rob
Atkinson

Throughout Describe concept / apply process
approach taken. Document first
two phases of this.

15 AUG
2011

0.5 Jim Groffen throughout General review and added detail

26 SEP
2011

0.6 Cameron
Shorter

Scope, General review

1.5 Future work

tbd

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 3

1.6 Forward

This document is a deliverable of the OGC Web Services (OWS) Initiative - Phase 8
(OWS-8). It describes a recommended approach to domain modelling following ISO and
OGC standards. The approach described supports GML application profiles defined using
formal UML. Also described are tools to support the modelling process from conceptual
design (UML) to physical implementation (XML Schema).

2 References

The following documents are referenced in this document. For dated references,
subsequent amendments to, or revisions of, any of these publications do not apply. For
undated references, the latest edition of the normative document referred to applies.

● Digital NOTAM Event Specification v1.0
● INSPIRE, E., 2007. D2.6: Methodology for the development of data

specifications. INSPIRE Drafting Team "Data Specifications"
● ISO, 1999. ISO 19103 Geographic information - Part 3: Conceptual schema

language. International Organization for Standardization (ISO).
● ISO, 2000. ISO 19109.3 Geographic information - Rules for application schema.

International Organization for Standardization (ISO).
● Sen, M., Duffy, T., 2005. GeoSciML: Development of a generic GeoScience

Markup Language. Comput. Geosci., 31(9): 1095-1103.
● Solid Earth and Environment GRID (SEE GRID) community website;

https://www.seegrid.csiro.au/wiki

3 Terms and definitions

Features

Attributes

Relationships

Abstraction

Structure

Data Products

Separation of Concerns

Application Schema

Implementation Schema

OGC 11-107

4 Copyright © 2011 Open Geospatial Consortium.

Subversion

HollowWorld

Enterprise Architect

4 Conventions

4.1 Abbreviated terms

AIXM Aeronautical Information Exchange Model - A GML Application Profile
that defines feature types and standardised encoding methods for
aeronautical information.

DNES Digital NOTAM Event Specification -

GML Geographic Markup Language - as a modeling language for geographic
systems as well as an open interchange format for geographic transactions.

NOTAM Notice to Airmen - A NOTAM is filed with an aviation authority to alert
aircraft pilots of any hazards en route or at a specific location. The authority
in turn provides a means of disseminating relevant NOTAMs to pilots.

UML Unified Modelling Language - a standardized general-purpose modeling
language that includes a set of graphics for visual representation.

4.2 UML notation

Diagrams that appear in this standard are presented using the Unified Modeling Language
(UML) static structure diagram, as described in Subclause 5.2 of [OGC 06-121r3].

This document introduces the concept of formal UML notation that requires conformance
of the UML model to an ISO / OGC standardized approach. Conformance can be
checked with a provided tool – Solid Ground.

5 A Case For Domain Modelling

Domain modelling is expensive and difficult. Why are you going to do it? What are the
business requirements to be met by domain modelling and are they worth it?

Much literature exists around the purpose and value of formal information modelling in
the general “enterprise” or “development” spaces. Domain modelling is focused on being
able to share information semantics across a “universe of discourse” (ISO19101) - i.e. to
specify concepts and information organisation (schemas) between different actors,
typically operating in different enterprise and governance contexts. In the OGC context
this is further extended to imply platform independence - information models in an
interoperability context.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 5

In short, interoperable systems require formal information modes to specify the interfaces
and data structures they expose, and increasingly, the content and definitions involved in
the semantics of information exchange.

Formal domain models are required in order to be able to interpret such specifications - if
a standard approach and formalism is not used, such specifications will be harder to read
and interpret.

The underlying issue is that similar concepts occur across multiple domains - and if every
domain “reinvents the wheel” it becomes increasingly costly and difficult to decide what
the scope of a domain is, and many competing, overlapping models will arise, making it
impossible to build interoperable components.

The solution is a good formalism, methodology and infrastructure to allow re-use of
model components.

The formalism used here is ISO 19103 (Conceptual Schema Language) and ISO 19109
Rules for Application Schema (including the General Feature Model, or GFM).

5.1 Re-use of common concepts

Re-use of common concepts is a high level business concern – impacting:

● Cost of development;
● Control over lifecycle;
● Ability to interoperate with related domains;
● Availability of tools to operate on the model.

Thus the first challenge for any domain is to determine how best to re-use existing
concepts. In ISO 19100 context used by the OGC this is achieved formally through a
package import between Application Schemas.

 Choosing a package to import is however problematic, but becoming less so with the
advent of publication of libraries ISO Harmonised Model and SWE.

 In practice, one can only import modules from a context that is at least as stable, and
recognised by the domain – for example a national or international context may readily
use elements from the ISO or OGC baselines, but not an unmaintained output from an
academic project, regardless of how excellent or commonly used it is.

Even if a suitable library is not available, projects and technology-based models may
provide useful clues as to how to structure reusable components.

Rule of thumb: even if a suitable candidate is not immediately available, assume common
concepts will be available at some time in the future and partition into separate modules.

OGC 11-107

6 Copyright © 2011 Open Geospatial Consortium.

The next question, then, is how to partition models. This can be achieved by analysing
the governance and interdependencies to determine which parts belong in separate
packages. For example a domain concerned with water quality might include concepts of
chemical species, but wont “own” these concepts, therefore they should be in a separate
package.

5.2 Governance

It is critical to understand the scope of each component of a domain model. The best way
to do this is to establish the rules for maintaining a module – who are the stakeholders
and why.

Avoid including any definitions in a package that cannot be maintained by the designated
package maintainer – these can be put in separate interim packages and imports, pending
identification of a suitable candidate.

This leads to a practical problem, which has stopped people from following these
principles in practice - it is very hard with “off the shelf” modelling tools to swap in
different versions of imported packages as they become available. Fortunately, tools to
perform these functions are now available, through CSIRO’s freely available
SolidGround plugin to Enterprise Architect. Similar functions could be developed for
other modelling platforms, or provided as infrastructure services in future.

For more on Governance look at the Sustainable Model Management section.

5.3 Assumed knowledge

What is often missing from Use Case based efforts to define the scope of application
domains is a detailed analysis of what questions an information model supports, and
what knowledge the user must have to invoke such a question.

Relationships between classes should be viewed in the context of whether they are
“traversable” within the context of the Use Case.

There is thus a strong relationship between the intended deployment architecture
(services) and the information model, based on the relationships between FeatureTypes.

It may be necessary to define specialised FeatureTypes that represent denormalised views
of the concepts that may be exposed by service interfaces. This in turn raises questions
about the degree of abstraction of an information model. Implementation models are very
hard to re-use across domains, except where they represent a specific metadata-rich data
product and services that may be consumed by external domains. Simple models are safe
when an application is expceted to have access to all the relevant metadata in advance.

It is recommended that conceptual, reusable elements are modelled separately to “data
product” oriented implementation views. How these are best related is an ongoing
research topic, but pragmatism suggests using simple sharable concepts as data types
within implementation packages

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 7

Domain Modelling in Practice
Throughout this document, a working example of performing domain modelling will be
presented using two real-world examples. These examples both form small parts of
larger, complicated domains in different stages of modelling.

The first example is of progressing an existing domain modelling effort - the
Aeronautical Information Exchange Model or AIXM. A portion of this model is being
used to migrate the existing Notice to Airmen or NOTAM messaging system to a digital
process encoded using AIXM - the Digital NOTAM Event Specification. This effort is
already well underway. This document will take the existing work and apply the practices
detailed in this document to it.

The second example is of starting a new domain modelling effort - FarmML. FarmML is
being created to deal with a need of Australian Government to manage agricultural land
use across state and federal organisations.

New concepts presented in each section will be put into practice and documented along
with the concepts, based on these two examples.

6 An Environment for Modelling

To begin with we will need an environment to develop domain models. This must respect
the rules from ISO 19109, and this can be done by using a formal UML Profile and the
dta type libraries from ISO. Libraries from OGC and other domains of interest may also
be required.

While domain modelling can be done with a variety of tools, following the procedures
described in this document is best achieved by taking advantage of the tools that have
been developed for Enterprise Architect and Subversion.

Two approaches are suggested. The first is describe in Appendex A, and based on a
series of Subversion repositories, and is widely used under the label of the
“HollowWorld” recipe. The second approach is currently experimental based on a model
registry concept, and supported as part of the SolidGround toolset.

https://wiki.csiro.au/confluence/display/solidground/Solid+Ground+Toolset

Modelling taking into account all the issues discussed here can be undertaken manually
(i.e. using a generic UML editing environment), although this has been found to require a
great deal of skill and familiarity with UML. SolidGround provides a suite of tools for
automating various modelling tasks needed for domain modelling.

The tools can be applied in a step-wise process, depending on the context. Two common
contexts are:

1. build a model from a library of model components

OGC 11-107

8 Copyright © 2011 Open Geospatial Consortium.

2. reverse-engineer a data product from an implementation

Refactoring an existing model can be performed using the same tasks, and the full
extended menu of tools and manual processes, but will vary in execution depending on
the nature of the starting model.

Figure 1 – Solid Ground Tasks in the Learning Centre

6.1 Abstraction

Choosing the right level of abstraction for a model is a very challenging task. A low level
of abstraction will generate an implementation-specific model at the cost of lower general
applicability. A high level of abstraction will allow other domains to specify

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 9

interoperability at the semantic level, but may be harder for domain users familiar with
specific data products to read.

As a rule of thumb, model either data products (to be exposed via service interfaces) or
definitions of things for re-use (registers of features).

If the goal is to share identified features across multiple users, then the model needs to
reflect the requirements of the registration process – it must be focused on the needs of
the identifying party. Choose a high-level of abstraction, including only those attributes
and relationships needed to assist in distinguishing between different individuals.

For convenience, this model can be extended with additional attributes, or mapped to a
simpler structure, to assist data transfer. This will lead to related models, but a simpler
and clearer focus for each model.

Data products should be modelled around familiar and convenient packaging and
services.

This separation of concerns is commonly understood within the database design world,
with normalised databases accessed via views (or data warehouses accessed via “data
marts”).

In either case, however, modularity has a role to play.

6.2 Patterns

A number of key modelling patterns are common and have profound implications.

The first to consider is the “root class for the domain” model. In this pattern all classes in
a domain inherit from a single class, which contains common metadata.

Two examples of this are in the ESRI workspace model, where FeatureClasses are
derived from geometry objects (Point).

OGC 11-107

10 Copyright © 2011 Open Geospatial Consortium.

Figure 2 — Example of defining a root class for the domain.

The second, and related pattern, that can be seen here is to include implementation
oriented metadata into a class - such as “Created By”, “Modification Date” etc.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 11

In general, such system metadata could be included into an application schema during the
process of encoding into an implementation-specific model, in much the same way as
gml:name is added to all FeatureTypes when encoding a UML model of the feature type.

These two patterns should be confined to implementation schemas, rather than models to
express the underlying concepts and features in a domain.

In a Platform Specific Model, such as a ESRI Geodatabase specific profile, this may be
realised by a stereotype rather than direct inheritance, as in:

Figure 3 – Platform specific details embedded in class

After removing the implementation patterns, and converting to the ISO idiom this might
look like:

OGC 11-107

12 Copyright © 2011 Open Geospatial Consortium.

Figure 4 – Underlying concepts realised by stereotype

6.3 Application Schemas

Application Schemas are model packages that may be re-used. If you want to reuse a
concept, you must import the containing Application Schema, so we need to design these
carefully.

Large monolithic Application Schemas are expensive to build, difficult to test and very
fragile, and not re-usable, so should be modularised following the well-known principles
of simplifying complexity through encapsulation.

Having multiple modules creates more dependencies, but like in software development it
is easier to develop, maintain and test discrete modules.

Application Schemas should contain any mutually interdependent definitions, and may
contain:

● no FeatureTypes (i.e. just ties together other Application Schemas)
● a single FeatureType (i.e. is a container that specifies the governance of the

definition)
● many FeatureTypes
● too many FeatureTypes (that could be logically separated).

Application schemas should ideally contain in the order of 5-10 classes, or just import a
set of such application schemas.

6.4 Definitions

Models should be self-contained in terms of having documentation in the UML slots
provided.

Citations (references to the original source) should be included (using tagged values for
these to make the machine processable is being considered).

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 13

Data dictionaries should be imported if pre-existing, or maintained by automated export
processes from the model as the point of truth.

(NB SolidGround provides tools for import/export of definitions to Excel and export to
SKOS formats.)

Pay particular attention to relationships, putting notes on the target ends of UML
associations (the semantics of an association property in the General Feature model).

6.5 Example Application of Modelling Practices

Let’s take the modelling practices summaries above and apply them to our example
scenarios. First we need some background on the example scenarios.

6.5.1 Digital NOTAM Event Specification - DNES

"Digital Aeronautical Information Update (Digital NOTAM) - a data set made
available through digital services containing information concerning the
establishment, condition or change in any aeronautical facility, service,
procedure or hazard, the timely knowledge of which is essential to systems and
automated equipment used by personnel concerned with flight operations."

6.5.1.1 Abstraction

Digital NOTAM is unusual in domain modelling in that it is has truly global relevance.
This simplifies determining the appropriate level of abstraction. While pilots regularly
deal with local conditions particular to some airspace, expected conditions are not in the
scope of a NOTAM. NOTAM’s can inherently apply to any air service, as they govern
notices to a globally performed activity.

One of the primary goals of digitizing NOTAM is to improve automation of delivering
notices relevant to the recipient. Currently a great deal of effort goes into evaluating
which NOTAM’s are relevant to the recipient and which can be safely ignored. This
highlights a level of abstraction that must be catered for - all NOTAM must be filterable
at a common level.

NOTAM’s describe some event that causes an expected or unexpected effect that airmen
need to be aware of. While the effects vary based on the scenario, the concept of a
NOTAM being a message that notifies of the event and the impacts of that event is
common.

6.5.1.2 Abstraction Patterns

AIXM provides a variety of features that are directly appropriate to Digital NOTAM.
AIXM also deals with concepts pertinent to Digital NOTAM including:

● Temporality - NOTAM’s describe a temporary or sometimes permanent change to
a set of features. AIXM deals with this by allowing the definition of time slices

OGC 11-107

14 Copyright © 2011 Open Geospatial Consortium.

that describe the normal (BASELINE), temporary changes (TEMPDELTA),
permanent changes (PERMDELTA) or current state (SNAPSHOT).

The existing NOTAM system already includes a variety of specialisations such as
SNOWTAM, BIRDTAM and the various different scenarios that a NOTAM can
describe, such as an unserviceable navigational aid or a runway closure. These correlate
directly to specialisations of a NOTAM message.

AIXM provides the bulk of implementation necessary for Digital NOTAM. Digital
NOTAM introduces an Event schema and defines scenarios represented in specialised
AIXMBasicMessage structures.

7 Model Hygiene

Why does it matter that a model is accurate and void of idiosyncratic detail? Remember
that the goal of a model is documenting an agreement, but formal models are designed for
processability - they need to be consistently interpretable by tools, and most likely will be
transformed into XML (GML) schemas. Tools are emerging for creating ontology
viewpoints, database schemas and documentation views based on formal models. [ref
SolidGround]

Maintaining the internal integrity of a model is challenging, and tools and the nature of
UML make some aspects particularly challenging.

 The model is not the diagram – the diagram is a view of the model, but may not show all
aspects. Hidden relationships may exist in the model, which change its meaning. Names
may appear, for instance on attribute types, that are not connected by id to the definitions
they are intended to.

 Certain processes can be automated, such as the utilities provided by the SolidGround
toolset.

7.1 Conformance checking

SolidGround and Fullmoon provide conformance checking functions that will catch most
technical issues. An example of a report generated by SolidGround conformance
checking is below:

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 15

Figure 5 – Example results from a conformance check

In SolidGround’s case, the report can generate errors that indicate an invalid model, or
warnings that indicate breaks from best practice or potentially idiosyncratic model
details.

Entries in the SolidGround report have context of the model element that is the cause of
the error or warning. Clicking on the row will select the related element in the project
browser.

7.2 Dependency Analysis

Identifying dependencies can capture potential problems such as mutual dependencies –
these may be simple errors or logic problems that will make a model impossible to
maintain.

Dependency cycles are not legal under the ISO rules for Application Schema. They also
create significant problems generating implementations – for example GML schema.

Discrete packaging of classes that have well defined package dependencies is
encouraged. These package dependencies are automatically modelled by the SolidGround
tool, which will generate a UML Package diagram that includes dependency information
that can be interpreted as normative.

OGC 11-107

16 Copyright © 2011 Open Geospatial Consortium.

Figure 6 – Package dependency diagram – dependencies between Application
Schemas

By enforcing no circular references between packages they can be safely, individually
consumed by external parties. Tools such as the Model Registry Browser can use
formally defined dependency information to publish the dependency information.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 17

Figure 7 – Dependencies published in the Registry Browser for the Event Model

This dependency information can be taken advantage of when importing models, in this
case all dependent models can be imported from the registry.

7.3 Attribute Types

Names may be misleading, and a named attribute type may not actually refer to a base
class (for example typing “GM_Point” into a datatype field is not the same as selecting it
from the ISO 19107 base model).

This may not matter in some instances, such as name matching during GML schema
generation, but the model is in fact incorrect, and automated dependency checking and
other ways of processing the model (for example to create a Feature Type Catalogue)
would be compromised.

It is also possible to have links to older versions – these may be batch updated if required
using the SolidGround toolset.

OGC 11-107

18 Copyright © 2011 Open Geospatial Consortium.

8 Sustainable Model Management

Some of the practices presented here seem like a lot of work, and they are, but the trade-
off is the potential failure of systems to survive through change without this process in
place. Improved robustness, interoperability and efficiency of creating new systems.

Making models is comparatively cheap in comparison to maintaining models in the long
term, especially as more complexity is introduced. Complexity is inherent because we are
modelling the world and it’s a complex place. Complicated is what we want to avoid.

One of the aims of the CSIRO effort is to introduce a sustainable approach to model
management. Here is an outline of that approach:

● Introducing a Model Registry - Solid Ground
○ For managing libraries and getting the work of others
○ Benefits from Registry concepts such as automatic harvesting between

registries.
○ Interpret the XML for the users
○ Keep the model up to date
○ Share a model within an organisation or between organisations

● Managing My Models - Subversion
○ Any version control system really, but SolidGround has some subversion

interaction built-in
○ Version history, concurrent development of models.

8.1 Managing Dependency Associations

Dependencies are a two way street. Someone else is using my model and I want to update
it. These updates may break their use of my model. They may also ask for changes to my
model to support their use of it.

HollowWorld has a helper for managing version progression which helps enforcement of
best practice for handling change to ensure those dependent on your model can work out
what’s going on.

(Rob has a good set of slides on this topic)

8.2 Model Registry

By formalising the model it can participate in a broader community of domain models.
Extensive work on the Registry Browser has been performed to provide a register of
domain models that can be imported, extended and provide publishing services for
models.

The image to the right is of the tasks available in the Solid Ground plugin for Enterprise
Architect. This plugin interacts directly with the model registry in a few ways;

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 19

● Open Model Registry Browser: authenticates to and opens the model registry
browser window.

● Update Dependencies Using Model Registry: All packages the selected package
depends on will be updated from the model registry, picking up any changes that
have been submitted to the registry.

● Register Model: initial registration or update of the selected model to the model
registry.

Figure 8 – Registry Browser with the Event Application Schema selected

The registry browser supports version tracking features. When a model is registered the
version number recorded in the Application Schema package of the model being
registered is used to identify a model version. This is used to notify custodians of models
that are dependant of your of the change, including the nature of the change by following
a common Major.Minor.Revision approach.

Solid Ground will check dependencies when registering models. If the application
schema you are registering references other application schemas that are not available in
the model registry then the model register will fail. Also, circular dependencies will be
discovered during this process, which will also cause the model registration to fail.

OGC 11-107

20 Copyright © 2011 Open Geospatial Consortium.

Figure 9 – Error when registering a model - missing dependent package

The relationship between version control systems like subversion and the Model Registry
is an interesting one. The model registry manages releases of a model that may be
referenced by external parties whereas subversion or similar provides concurrent
development and version control over development of the model.

While both can be used to manage and distribute domain models, the model registry is
preferred for distribution because of the formal release management and dependency
management features.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 21

9 Appendix A - Tool Setup

9.1 Install Software

While using these tools is not required, this document will provide practical descriptions
of using these tools. The modelling practices covered can be applied using any tools,
though most likely with more manual intervention.

9.1.1 Enterprise Architect

Install Enterprise Architect (EA), preferably the latest version (9, build 908), but at least
v7.5, build 850. A free trial version is available at:

● http://www.sparxsystems.com/products/ea/downloads.html

9.1.2 SolidGround

CSIRO have developed an EA plugin that automates some of the routine tasks, such as

● assigning sequenceNumber tagged values
● generating a context diagram for every class
● generating the package dependency diagram

This installer is available directly from the CSIRO at the moment by contacting:

● solidground-support@csiro.au

SolidGround should be installed at this point.

9.1.3 SubVersion

Install the latest SubVersion client, currently available from:

● http://subversion.apache.org

We will configure Enterprise Architect to link directly to packages managed in
subversion.

9.1.4 HollowWorld

HollowWorld is a template for building GML Application Schemas. Using HollowWorld
to build a domain model ensures the models will be easily transformed into a GML-
conformant XML Schema which specifies the document format for transfer of domain
data as a standard XML document, compatible with OGC WFS.

OGC 11-107

22 Copyright © 2011 Open Geospatial Consortium.

HollowWorld is a UML template that includes consistently pre-loaded a variety of
geospatial standards including the ISO 19100 framework, which in turn are primarily
from the ISO/TC 211 Harmonized Model.

To add HollowWorld to your domain modelling development environment, use
SubVersion to checkout a local copy; either the trunk:

● https://www.seegrid.csiro.au/subversion/HollowWorld/trunk/

… or one of the stable branches:

● https://www.seegrid.csiro.au/subversion/HollowWorld/branches/release_1/
2006 version of ISO/TC 211 Harmonized model

● https://www.seegrid.csiro.au/subversion/HollowWorld/branches/release_2/
2009 version of ISO/TC 211 Harmonized model

● https://www.seegrid.csiro.au/subversion/HollowWorld/branches/release_3/
2009 version of ISO/TC 211 Harmonized model + OGC SWE v1.0

To do this, run the following commands from a command prompt, replacing
“your_workspace” with the location on disk where you want to store your local files, and
the trunk or branch of your choice:

1. cd c:\your_workspace
2. mkdir hollowworld
3. cd hollowworld
4. svn co https://www.seegrid.csiro.au/subversion/HollowWorld/branches/release_3/

A copy of the ISO Harmonized Model will also be needed:

● https://www.seegrid.csiro.au/mirrors/iso-harmonized-
model/isotc211/ISO%20TC211.xml

The full repository path which can be used to check out all trunk and branches is:

● https://www.seegrid.csiro.au/mirrors/iso-harmonized-model

To do this, run the following commands from a command prompt, replacing
“your_workspace” with the location on disk where you want to store your local files:

1. cd c:\your_workspace
2. mkdir ISO Harmonized Model
3. cd ISO Harmonized Model
4. svn co https://www.seegrid.csiro.au/mirrors/iso-harmonized-model isotc211

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 23

There may be other models you will want to reference in your model, such as GeoSciML,
EarthResourceML, MOLES, GWML. CSIRO make a variety of these available:

● https://www.seegrid.csiro.au/wiki/AppSchemas/AvailableModels

9.1.5 EA and SubVersion Authentication

Enterprise Architect piggy-backs on your local machine's authentication arrangements.
You can accomplish this by following this procedure:

1. open a CMD window,
2. cd to the directory containing your local copy of a subversion you intend to access

from Enterprise Architect
3. run svn update
4. when it asks, accept the cert (p)ermanently.
5. repeat for every other model

For every repository you intend to commit changes to, you will need to also perform the
following:

1. open a CMD window,
2. cd to the directory containing your local copy of a subversion you intend to access

from Enterprise Architect
3. run svn --username fred.bloggs lock file.ext (use your own

uid and touch a file that actually exists)
a. when it asks, enter your password

4. run svn unlock file.ext to undo what you just did

Note that you can instead manually maintain your models and update models you are
using directly with SubVersion. In this case you won’t need to link Enterprise Architect
with subversion.

9.1.6 Configuring Enterprise Architect

For the rest of this document we will set a couple of parameters:

● the path where the local copy of your selected version of HollowWorld is stored
will be designated $HollowWorldLocal

● the path where your local copy of the ISO Harmonized Model is stored will be
designated $ISOLocal

● the path where the local copy of our new project will be designated $NewProject.
This folder should not clash with either $HollowWorldLocal or $ISOLocal

OGC 11-107

24 Copyright © 2011 Open Geospatial Consortium.

Start Enterprise Architect and create a new project, choosing a name related to your
application. We will choose ‘AIXM Digital NOTAM Events’. Create this new project in
the $NewProject folder.

During project creation you will be asked what mode you want to be in, select ‘Domain
Model’:

Figure 10 – Enterprise Architect Model Wizard

Make sure the Tagged Values pane is open:

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 25

Figure 11 – Display tagged values pane

OGC 11-107

26 Copyright © 2011 Open Geospatial Consortium.

Make sure that you see duplicate tagged values: use the 'tagged value options' button at
the top of the tagged value pane, or from the menu select: Tools->Options->Objects:

Figure 12 – Ensure duplicate tag values are shown

9.1.7 View the Learning Centre

Solid Ground adds tasks to the learning centre in
Enterprise Architect that can be more convenient to use
over the right-click add-ins menu. To display these tasks
in Enterprise Architect do the following:

● Ensure “Learning Centre” is visible. If it is not,
use the View menu and click on Learning
Centre, or use the shortcut ALT+F1.

● At the top of the learning centre dialog is a
dropdown of the task groups that are available.
Select Solid Ground - Tasks from the list.

● Two tasks groups should appear that you can
expand. One called “Build and Publish Model”,
and another called “Model Data Products.”

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 27

9.1.8 View Solid Ground Toolbox

Solid Ground also provides toolbox that provide diagram
drawing tools to support model development. To display the
diagram toolbox, use the view menu or press ALT+5. Once
the toolbox is visible you can show one of the Solid Ground
toolboxes with it, for instance selecting the ISO 19100 tools.

Figure 13 – Version control settings

OGC 11-107

28 Copyright © 2011 Open Geospatial Consortium.

9.1.9 Integrating Enterprise Architect with subversion

Next we will configure the Version Control Settings in the Project Browser, right-click
on Model->Package Control->Version Control Settings

We will configure subversion for the HollowWorld and ISO Harmonized models
separately, as they link to separate subversion projects:

1. HollowWorld model
○ Set “Save nested version controlled packages to stubs only” to true
○ Unique ID: HollowWorld it is important that this is set to exactly this

(case-sensitive) value
○ Type: Subversion
○ Working Copy Path: $HollowWorldLocal
○ Subversion Exe Path: EA may find this automatically, but check it
○ Save
○ Close

2. ISO Harmonized model
○ Save nested version controlled packages to stubs only - true
○ Unique ID: isotc211 it is important that this is set to exactly this (case-

sensitive) value
○ Type: Subversion
○ Working Copy Path: $ISOLocal
○ Subversion Exe Path: set path
○ Save
○ Close

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 29

9.1.10 Load HollowWorld

In this step we will load the HollowWorld in the Project Browser. To do this:

● right-click on Model and select Package Control->Get Package
● Select the “HollowWorld” Version Control Configuration
● Select the shared file “HollowWorld.xml” (you may have to scroll down the list a

way)

Figure 14 – Loading HollowWorld

Make sure we have the latest copy of the files from the SubVersion repository by:

● In the Project Browser, right-click on Model and select Package Control->Get All
Latest. If "Get All Latest" is greyed out, you will need to check the "This model is
private..." tick box under Version Control Settings. It should then become active.

● Select “Import Changed Files Only” and then click “OK”.

At this point we are now ready to do some modelling.

OGC 11-107

30 Copyright © 2011 Open Geospatial Consortium.

10 Appendix B - Starting From Scratch

TBD - This section will follow the development of FarmML which doesn’t have any
existing modelling work done yet.

TBD - Use Case approach, look at existing datasets.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 31

11 Appendix C - Starting From a Physical Model

It is often the case that a physical model exists for a conceptual model you are working
on. This is true in the case of Digital NOTAM Events - actually there is a conceptual
model as well but we will start from the physical model here.

Both EA and SolidGround provide tools for starting from a physical model and ending up
with a conceptual model that is compliant to the ISO TC211 harmonized model. This
section will step through the process of doing so.

11.1 Physical Model vs. Conceptual Model

While the conceptual model represents concepts and the relationships between them, a
physical model is an application of those concepts in some tangible form; for example a
database structure or an XML Schema.

Many systems often start with a physical model and the conceptual model only appears
on paper or even in the system designer’s head. This is especially true when a single
practical goal is being met by the physical model - there may be little justification for the
added design overhead of generating accurate and complete conceptual models.

There are many reasons already discussed why at some point it is appropriate to do the
work of modelling the domain concepts themselves, and having one or more physical
models to start from provides direct feedback on the practical application of the concepts
to be modelled.

Physical models will often have plenty of implementation baggage not relevant to the
underlying concepts. While important to the physical model for the system to function,
they should never appear in a conceptual model.

Conceptual models should never include implementation details.

Examples of implementation details include; primary and foreign keys, encoding
information, platform or language specific details such as data types or structures.

It is common for systems to work with two or more conceptual domains. These cross-
domain features in physical models can lead to fuzzy boundaries between conceptual
models if not managed appropriately.

11.2 Supporting Tools

Enterprise Architect includes a Code Engineering feature in non-desktop versions that
support import from as well as export to a variety of sources; ODBC databases, mainly
object oriented programming languages, XML schema and web services (WSDL).

Once imported the physical model will be represented in UML in Enterprise Architect.
To get this into the conceptual model needed there will be a few steps involved. Some of

OGC 11-107

32 Copyright © 2011 Open Geospatial Consortium.

these will need to be manually performed but SolidGround provides a variety of
automated tools to improve this process.

11.3 Example: Digital NOTAM Events XSD

Next, start the Digital NOTAM refactor work by using the XSD files as a starting point to
generate the conceptual model.

1. In our Digital NOTAM Events project, create a new package called Event with a
stereotype of Application Schema.

2. Right click on the «Application Schema» Event package and select Code
Engineering->Import XML Schema...

3. Browse to your AIXM Event schema files and select both Event_Features.xsd and
Event_DataTypes.xsd.

4. We do not want to import referenced XML Schemas or add a Type postfix to
global elements, but we do want to create the diagram.

5. Import XSD Elements/Attributes as UML Associations, not UML attributes.
6. Check your settings against the image below, then press Import. It will take a

while.

Figure 15 – Import XML Schema

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 33

Once complete, take a look at the created diagrams.

Before we get into the manual work of removing implementation specifics we will use
the SolidGround tools to do some more of the work for us.

11.4 Conceptual Classes based on Physical Classes

The first thing we want to do is create a new package which will be the application
schema for our conceptual model. We will keep the imported physical model isolated and
in its original form as a reference.

Copy a class from the physical model - EventPropertyGroup to a new diagram called
“Event”. The same class now appears in two diagrams, change one and the other will
update. We want to change the new class. Right click on the copied class and select
“Advanced->Convert linked copy to local copy” - this makes this copy a separate class to
the original. Now rename the class to Event and see that the original doesn’t change. This
is how a conceptual model based on physical model is created while keeping the original
physical model intact.

You can also simply drag classes into your diagram from the project browser, which
gives a variety of options on how to treat the inclusion of the class in the diagram. The
point being made here is that the diagram is NOT the model, only a view of the model -
the same class can appear in many diagrams, but we actually want a new class based on
an existing one.

We repeat this process for select classes of interest to get the structure of our conceptual
model. For each copied model we will do some cleaning up:

● Rename the class - from a name that is an implementation detail of XSD to the
appropriate concept.

● Remove the XSD based stereotype
● Recreate links between classes. Especially in an XSD physical model the existing

links are riddled with implementation detail. Both the classes and linkages will be
much simpler. You’ll need to have a good comprehension of the different kinds of
UML relationships there are and their application. Make sure you set the
multiplicity of the relationship based on the physical model you imported.

● Remove implementation detail from the model. This is in the form of tagged
values that are not part of the ISO approach.

● Ensure all model details are properly documented.

We can use the Solid Ground tool to help with many of these tasks in a couple of ways:

11.4.1 Model Mapping

Solid Ground supports a feature that will convert model details based on an XML
configuration file. Files exist that can work with a model that has been imported from

OGC 11-107

34 Copyright © 2011 Open Geospatial Consortium.

Oracle and convert details of this model over to the ISO Harmonized model and the
formal model definition needs. Examples include detecting basic or more complicated
types and converting them over to ISO types or removing superfluous tagged values or
implementation specific attributes.

11.4.2 Conformance Checking

The conformance checker in Solid Ground will report any details of a model that are not
consistent with the formal modelling approach. To generate the report, select
“Conformance Check” from the learning centre, or right click on the application schema
to check and use the add ins->Solid Ground context menu.

Figure 16 – Conformance checking

The technical report for Solid Ground has extensive information on what conformance
checking Solid Ground does as well as how to interpret the report entries. This document
is available at:

https://wiki.csiro.au/confluence/display/solidground/Documents

11.5 Documentation

It is best practice to ensure that every model detail includes notes that document the
model. Solid Ground has a tool that allows export / import of model details into an Excel
spreadsheet to allow for easy documentation of model elements. This spreadsheet view of
the model is useful to check documentation coverage as well.

11.6 Dealing with Sequence

Attribute order is not important to UML but is very important to GML. Controlling order
in UML is achieved by applying a sequenceNumber tagged value to each attribute and
association connection role.

OGC 11-107

Copyright © 2011 Open Geospatial Consortium. 35

Solid Ground will automatically apply this tag for your application schema using the
“Add Sequence Number Tagged Value” task. This ensures generated GML encodings are
consistent.

11.7 Dealing with Code Lists

Code lists often have a need to be consumed or extended by others. A good practice is to
contain code lists into their own package within your application schema to allow for
easier extension and version management.

11.8 Package Dependency Diagram

Solid Ground can automatically generate a package diagram that documents the
dependencies between the packages in your model. This information is very useful for
governance and model sharing purposes.

When making use of an existing model, the level of granularity for dependency purposes
is the application schema, which is modelled as a package. Within an application schema
you have the classes which can internally have mutual dependencies (e.g. a leaf package
can have mutual dependencies) but you can’t have mutual dependencies across
application schemas.

The application schema is the point of governance whereas the class is the point of
reference - what you will make use of. When you reference a class though you import it’s
containing application schema. This is synonymous with XSD in that you can import
from another namespace, or include from within a single namespace.

Generating the package diagram will report on irresolvable referenced entities in your
model, though It doesn’t remove dependencies that are no longer in use.

11.8.1 Get Your Stereotypes Right!

It is important that when you select stereotypes you are correctly referencing the
appropriate UML profile. Don’t just type in the stereotype name without ensuring you
connect that name to the correct element or it will create a duplicate and confuse EA.
Make sure you push the ellipses button next to the stereotype field and select the
stereotype from the correct package.

You can also use the Solid Ground Toolbox to create a new class with the correct
stereotype (and tagged values), but if you didn’t do that and instead manually created a
new class you can right click on the relevant toolboox entry (say Application Schema)
and select “Synchronise Stereotype” - which will affect all entities for the current model.

