
Open Geospatial Consortium
Submission Date: 2023-XX-XX

Approval Date: 2023-XX-XX
Publication Date: 2023-XX-XX

External identifier of this OGC® document:
http://www.opengis.net/doc/UG/ConnectedSystems-reviewers
Internal reference number of this OGC® document: 23-053

Category: OGC® User Guide
Editors: C. Tucker, A. Robin, M. Botts, etc.

OGC API - Connected Systems Reviewers Guide

Copyright notice

Copyright © 2023 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document provides guidance for reviewers of the OGC API - Connected Systems
Candidate Standard. Throughout this document anywhere that there is a reference to the OGC
API - Connected Systems Standard v1.0, the reader should understand that until the OGC
membership votes to approve the final standard, the OGC API - Connected Systems
specification is a Candidate Standard.

This document is a non-normative resource and not an official position of the OGC membership.
It is subject to change without notice and may not be referred to as an OGC Standard. In
addition to this guide, developers, implementers and reviewers may wish to study the OGC API
- Connected Systems Users Guide. The guidance provided in this document is not to be
referenced as required or mandatory technology in procurements.

Document type: OGC® User Guide

Document subtype:

Document stage: Approved for public release

Document language: English

1

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and
subject to the terms set forth below, to any person obtaining a copy of this Intellectual Property and any
associated documentation, to deal in the Intellectual Property without restriction (except as set forth
below), including without limitation the rights to implement, use, copy, modify, merge, publish, distribute,
and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual
Property is furnished to do so, provided that all copyright notices on the intellectual property are retained
intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this
Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in
addition to the above copyright notice, a notice that the Intellectual Property includes modifications that
have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER
ANY PATENTS THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NONINFRINGEMENT OF THIRD
PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET
YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE
MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR
ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY
BE LIABLE FOR ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL
DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING FROM ANY ALLEGED INFRINGEMENT
OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF CONTRACT,
NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION
WITH THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS
INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual
Property together with all copies in any form. The license will also terminate if you fail to comply with any
term or condition of this Agreement. Except as provided in the following sentence, no such termination of
this license shall require the termination of any third party end-user sublicense to the Intellectual Property
which is in force as of the date of notice of such termination. In addition, should the Intellectual Property,
or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe,
any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole
discretion, may terminate this license without any compensation or liability to you, your licensees or any
other party. You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual
Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or
part of the Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or
other dealings in this Intellectual Property without prior written authorization of LICENSOR or such

2

copyright holder. LICENSOR is and shall at all times be the sole entity that may authorize you or any third
party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of
Massachusetts. The application to this Agreement of the United Nations Convention on Contracts for the
International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement
shall be deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid
and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies
available to it.

Table of Contents

<INSERT>

i. Abstract

The OGC API - Connected Systems Reviewers Guide is a public resource structured to provide
quick answers to questions which a reviewer may have about the OGC OGC API - Connected
Systems standard. This OGC document is provided to support professionals who need to
understand OGC API - Connected Systems and/or are reviewing the OGC API - Connected
Systems draft standard but do not wish to implement it.

OGC API - Connected Systems v1.0 is an OGC Implementation Standard for static data
(geographic and other domain features) and for dynamic data (e.g., Data Streams:
observations of these feature properties, and Control Streams: commands/actuations that
change these feature properties) for all manner of systems (e.g., sensors, things, robots,
drones, satellites, control systems, devices, and all manner of Platforms across space, air, land,
sea and cyber).

ii. Keywords

The following are keywords to be used by search engines and document catalogues.

OGC API - Connected Systems, ogcdoc, OGC document, OGC Implementation Standard, static
data, dynamic data, Data Streams, Control Streams, commands/actuations, sensors, things,
robots, drones, satellites, control systems, devices, Platforms, space, air, land, sea, cyber

iii. Preface

This version of the OGC API - Connected Systems Reviewers Guide is limited in scope to the
OGC API - Connected Systems 1.0 standard. Content of this document will be updated when
relevant information and feedback to the OGC API - Connected Systems 1.0 standard is
provided and the standard updated. The Open Geospatial Consortium shall not be held
responsible for the accuracy or completeness of this reviewers guide.

3

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Submitting organizations

The OGC API - Connected Systems Standards Working Group (SWG) submitted this document
for publication by the Open Geospatial Consortium (OGC).

v. Submitters

The OGC API - Connected Systems SWG submitted this document for publication by the OGC.

1.Introduction

1.1. How To Use This Resource
The OGC API - Connected Systems Reviewers Guide is not intended to be read from start to
finish. Rather, the document is a resource structured to provide quick answers to questions
which a reviewer may have about the OGC API - Connected Systems specification. This guide
is provided to support professionals who need to understand OGC API - Connected Systems
and/or are reviewing the OGC API - Connected Systems standard but do not wish or have need
to implement the Standard.

In addition, this guide can provide insights to professionals considering adopting the OGC API -
Connected Systems standard for their projects and products.

The OGC API - Connected Systems Reviewers Guide contains hyperlinks which can be used to
navigate directly to relevant sections of the guide as well as to sections of the OGC API -
Connected Systems standard.

1.2. What is OGC API - Connected Systems?
The OGC API - Connected Systems specification connects all systems on or around the Earth
into a common 4D framework for the purposes of discovery, access, processing, reasoning,
visualization and tasking of all manner of systems (e.g., sensors, things, robots, drones,
satellites, control systems, devices, and all manner of Platforms across space, air, land, sea and
cyber), providing a bridge between their dynamic data (e.g., Observations of these Feature
Properties, and Commands that change these Feature Properties) and more static
representations of them as Features within traditional geographic/geospatial applications.

4

OGC API - Connected Systems is an OpenAPI/RESTful interface (following the OGC API
strategic guidance) that is built upon accepted web formats such as GeoJSON as well as
existing OGC information models, including SensorML, Observations and Measurements (O&M)
(now called Observations, Measurements and Samples - OMS), SWE Common Data Model,
and the Semantic Sensor Network Ontology (SOSA/SSN).

OGC API - Connected Systems is an extension of the OGC API - Features and, in addition to
providing its own mechanism for retrieving static and dynamic data from these systems, the API
will allow linking to other OGC API Standards, such as OGC API - Maps, OGC API - Coverages,
OGC API - Environmental Data Retrieval (EDR), OGC API - 3D GeoVolumes/3D Tiles,
SensorThings API (STA), OGC API - Moving Features, OGC API- Processes, and others.
(https://ogcapi.ogc.org/connectedsystems/overview.html)

More about the OGC API - Connected Systems is available here:

https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/overview.html
https://github.com/opengeospatial/ogcapi-connected-systems

1.3. Why Is Another Standard Needed?
The development of the OGC API - Connected Systems standard was a response to the OGC’s
strategic guidance to all Standards Working Groups (SWG) to migrate their legacy/heritage
specification baseline to OpenAPI/RESTful patterns. Specifically, the OGC Sensor Web
Enablement (SWE) architecture, which has been in global use since 200X, needed to be
updated according to this architectural guidance. Also, the evolution of the OGC API- Features,
as part of this architectural renaissance, came to offer new opportunities for architectural
synergy between the historically divided OGC “web mapping” standards and its “SensorWeb”
standards. As mentioned above, OGC API - Connected Systems is an extension of the OGC
API - Features, and takes advantage of the modern consensus around other OGC standards
such as GeoPose, OMS, Pub/Sub, and more. In the end, this new OGC API - Connected
Systems specification represents a modernization and realignment of the OGC’s powerful
SensorWeb heritage within its new OGC Building Blocks framework.

1.4. How Does OGC API - Connected Systems Address Diverse
Requirements?
The OGC API - Connected Systems standard addresses a diverse set of requirements from
across all domains (e.g., space, air, land, sea, cyber) in a way that bridges these inherently
dynamic systems (whether sensors, things, robots, drones, satellites, control systems, devices,
or Platforms) with the more static world of geospatial mapping. The OGC API - Connected
System specification supports the discovery, access, processing, reasoning, visualization and
tasking of these various dynamic, connected systems. And, it offers an elegant bridge to other
OGC APIs, as outlined above.

5

https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/overview.html
https://github.com/opengeospatial/ogcapi-connected-systems

1.5. How Was the OGC API - Connected Systems v1.0 Scope
Defined?
The scope for the OGC API - Connected Systems V1.0 Standard was very much defined by the
OGC’s strategic guidance to migrate all legacy/heritage specifications to OpenAPI/RESTful
patterns. Once this update was underway, it became apparent that the OGC API - Features
refactoring, under this same strategic guidance, offered a unique opportunity for realignment
within the larger OGC architecture. The timing of this effort also allowed it to take advantage of
recent progress made on other specifications, including those by the GeoPose, OMS, and
Pub/Sub SWGs. By aligning all of these different evolutions, the OGC API - Connected
Systems v1.0 Standard scope ended up being quite tidily defined.

1.6. Who Will Use the OGC Reviewers Guide?
The OGC API - Connected Systems Reviewers Guide is a resource for those who seek to
understand key concepts used in the OGC API - Connected Systems Standard, the
requirements that the standard meets and the data structures the standard specifies.

The OGC intends this guide to be useful for reviewers of the standard as well as decision
makers seeking to understand the relevance of this standard in their use cases, and even
developers seeking more context.

2. Scope
The OGC API - Connected Systems Reviewers Guide introduces the key concepts used in the
OGC API - Connected Systems Standard to its target audiences.

To identify broadly applicable requirements for OGC API - Connected Systems, the SWG
solicited use cases and chose to highlight more than a dozen technical use cases and more
than half a dozen domain use cases that were agreed to be representative. (See ‘Section 7.0
Use Cases’, below, for more detail). To understand the ways in which the OGC API - Connected
Systems Standard can be used and how it meets requirements identified, this guide can be
used in conjunction with the OGC API - Connected Systems use cases section of the standard.

The choices of standardization targets made in the OGC Connected Systems SWG during
development of the standard are explained in this section of the present guide.

Finally, this guide explains how the OGC API - Connected Systems Standard fits in the
landscape of sensors, things (IoT), robotics, drones (e.g., UxS), satellites, control systems,
devices, Platforms (of all kinds, across space, air, land, sea, cyber) and more traditional
geospatial computing. The guide explores complementarities between OGC API - Connected
Systems and approaches that have been taken in other standards for encoding static and

6

dynamic data streams, as well as dynamic control streams, for sensors, things, robots, drones,
satellites, control systems, devices, and Platforms of all kinds.

The scope of the OGC API - Connected Systems Reviewers Guide can also be defined in terms
of what is out of scope. Specifically, the specification definition itself is not within the Reviewer’s
Guide. Rather, that info and issues related to its definition are located in OGC GitHub
repositories: https://github.com/opengeospatial/connected-systems.

3. Terms and Definitions
The following list is organized alphabetically. The hyperlinks reference many definitions from
the OGC/W3C Spatial Data on the Web Working Group’s SOSA/SSN Ontology, the OGC’s
specification definitions, and other such web resources.

Actuator: A device that is used by, or implements, an (Actuation) Procedure that changes the
state of the world. (https://www.w3.org/TR/vocab-ssn/#SOSAActuator)

Application Programming Interface (API): a set of functions and procedures allowing the
creation of applications that access the features or data of an operating system, application, or
other service.

Command: Command carries the information required by a System to change the state of a
Feature of Interest, which may be a System itself, a Subsystem of various Subtypes (e.g,
Sensor, Process, Actuator, Platform, Sampler, etc.), or any other Feature. See section 4.2.4.8
Command below for further definition of this term.

Control Stream: Control Stream defines the channels available for sending Commands to a
given System. Among other things, Control Streams provides schemas for the parameters for
Commands within the Control Stream. See section 4.2.4.7 Control Stream below for further
definition of this term.

Data Stream: Data Stream is a particular type of Observation Collection coming from a single
System. See section 4.2.4.5 Data Stream below for further definition of this term.

Deployment: Describes the Deployment of one or more Systems for a particular purpose.
Deployment may be done on a Platform. (https://www.w3.org/TR/vocab-ssn/#SSNDeployment)

Feature: Abstraction of real world phenomena. A digital representation of a real world
entity or an abstraction of the real world. Examples of features include almost anything
that can be placed in time and space, including desks, buildings, cities, trees, forest

7

https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://en.m.wikipedia.org/wiki/API
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/vocab-ssn/#SSNSystem
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SSNDeployment
https://www.w3.org/TR/sdw-bp/#dfn-feature

stands, ecosystems, delivery vehicles, snow removal routes, oil wells, oil pipelines, oil
spill, and so on. The terms feature and object are often used synonymously [ISO-19101].
(https://www.w3.org/TR/sdw-bfp/#dfn-feature, which in turn is referenced by
https://docs.ogc.org/is/17-069r4/17-069r4.html#_feature)

Feature of Interest: The thing whose property is being estimated or calculated in the course of
an Observation to arrive at a Result, or whose property is being manipulated by an Actuator, or
which is being sampled or transformed in an act of Sampling.
(https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest)

GeoPose: GeoPose 1.0 is an OGC Implementation Standard for exchanging the location and
orientation of real or virtual geometric objects (“Poses”) within reference frames anchored to the
earth’s surface (“Geo”) or within other astronomical coordinate systems. The standard specifies
two Basic forms with no configuration options for common use cases, an Advanced form with
more flexibility for more complex applications, and five composite GeoPose structures that
support time series plus chain and graph structures. (https://www.ogc.org/standard/geopose/)

Implementation Model: For the purposes of the OGC API - Connected Systems standard, we
define ‘Implementation Model’ as the collection of Implementation Standards used to implement
the abstract models from the SOSA/SSN Ontology underpinning the design of the OGC API -
Connected Systems standard.

Implementation Standards: As the OGC API - Connected Systems standard is an OGC
standard, it is considered an Implementation Standard, based on the OGC definition. Within the
OGC: “Implementation Standards are different from the Abstract Specification. They are written
for a more technical audience and detail the interface structure between software components.
An interface specification is considered to be at the implementation level of detail if, when
implemented by two different software engineers in ignorance of each other, the resulting
components plug and play with each other at that interface.”

Observation: Act of carrying out an (Observation) Procedure to estimate or calculate a value of
a property of a FeatureOfInterest. Links to a Sensor to describe what made the Observation and
how; links to an ObservableProperty to describe what the result is an estimate of, and to a
FeatureOfInterest to detail what that property was associated with.
(https://www.w3.org/TR/vocab-ssn/#SOSAObservation)

Observations and Measurements: This OGC standard specifies an XML implementation for
the OGC and ISO Observations and Measurements (O&M) conceptual model (OGC
Observations and Measurements v2.0 also published as ISO/DIS 19156), including a schema
for Sampling Features. This encoding is an essential dependency for the OGC Sensor
Observation Service (SOS) Interface Standard. More specifically, this standard defines XML
schemas for observations, and for features involved in sampling when making observations.
These provide document models for the exchange of information describing observation acts

8

https://www.w3.org/TR/sdw-bp/#bib-ISO-19101
https://www.w3.org/TR/sdw-bp/#dfn-feature
https://docs.ogc.org/is/17-069r4/17-069r4.html#_feature
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSASampling
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.ogc.org/standard/geopose/
https://www.ogc.org/standard/geopose/
https://www.ogc.org/standards/
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAObservableProperty
https://www.w3.org/TR/vocab-ssn/#SOSAFeatureOfInterest
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.ogc.org/standard/om/

and their results, both within and between different scientific and technical communities.
(https://www.ogc.org/standard/om/)

Observations, Measurements and Samples (OMS): This OGC standard builds upon the
previous Observations and Measurements standard, and its sister specification in ISO is Topic
20. (https://www.iso.org/standard/82463.html)

Open Geospatial Consortium (OGC): For more than 28 years, Open Geospatial Consortium
(OGC) has operated as a neutral forum where government, industry, nonprofits, and academia
come together to engage in collective problem-solving around the critical issues of the day. As
the global leader in location solutions and related data, OGC is the largest formal community of
geospatial experts with a mission to make location information FAIR – Findable, Accessible,
Interoperable, and Reusable – for an inclusive and sustainable future. (https://www.ogc.org/)

OGC API: OGC API - Common is a multi-part standard that documents the set of common
practices and shared requirements that have emerged from the development of Resource
Oriented Architectures and Web APIs within the OGC. Standards developers will use these
building-blocks in the construction of other OGC Standards that relate to Web APIs. The result
is a modular suite of coherent API standards which can be adapted by a system designer for the
unique requirements of their system. As such, this OGC API Standard serves as the "OWS
Common" standard for resource-oriented OGC APIs. Consistent with the architecture of the
Web, this specification uses a resource architecture that conforms to principles of
Representational State Transfer (REST). This OGC API Standard establishes a common
pattern that is based on OpenAPI. (https://ogcapi.ogc.org/)

OGC API - Connected Systems: OGC API - Connected Systems v1.0 is an OGC
Implementation Standard for connecting all Systems on or around a celestial body such as
Earth into a common 4D space for the purposes of discovery, access, processing, reasoning,
visualization and tasking. OGC API - Connected Systems v1.0 is built in alignment with OGC
API (see above) strategic guidance, as well as well accepted web formats such as GeoJSON as
well as existing OGC information models, including SensorML, Observations and
Measurements (O&M) (now called Observations, Measurements and Samples - OMS), SWE
Common Data Model, and the Semantic Sensor Network Ontology (SOSA/SSN). The OGC API
Connected Systems standard is intended to act as a bridge between static data (geographic
and other domain Features) and dynamic data (Observations of these Feature Properties, and
Commands that change these Feature Properties). (https://ogcapi.ogc.org/connectedsystems/)

OGC API - Features: OGC API - Features is a multi-part standard that offers the capability to
create, modify, and query spatial data on the Web and specifies requirements and
recommendations for APIs that want to follow a standard way of sharing feature data. The
specification is a multi-part document. The Core part of the specification describes the
mandatory capabilities that every implementing service has to support and is restricted to
read-access to spatial data. Additional capabilities that address specific needs will be specified
in additional parts. Envisaged future capabilities include, for example, support for creating and

9

https://www.ogc.org/standard/om/
https://docs.ogc.org/as/20-082r4/20-082r4.html
https://www.iso.org/standard/82463.html
http://www.ogc.org
https://www.ogc.org/
https://ogcapi.ogc.org/common/
https://ogcapi.ogc.org/
https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/connectedsystems/
https://ogcapi.ogc.org/features/

modifying data, more complex data models, richer queries, and additional coordinate reference
systems. (https://ogcapi.ogc.org/features/)

OGC API - Pub/Sub: The OGC API - Connected Systems specification implements the
Pub/Sub mechanism proposed by the OGC API - EDR SWG, which has been referred to the
newly rechartered OGC Pub/Sub SWG for formal consideration and passage.

OpenAPI: The OpenAPI Specification is a specification language for HTTP APIs that provides
a standardized means to define your API to others. You can quickly discover how an API works,
configure infrastructure, generate client code, and create test cases for your APIs. Read more
about how you can get control of your APIs now, understand the full API lifecycle and
communicate with developer communities inside and outside your organization.
(https://www.openapis.org/)

Platform: A Platform is an entity that hosts other entities, particularly Sensors, Actuators,
Samplers, and other Platforms. (NOTE: Within SOSA/SSN, a Platform is not a System, but
within the OGC API - Connected System specification, a System Resource can implement both
SSN System and SOSA Platform classes.). (https://www.w3.org/TR/vocab-ssn/#SOSAPlatform)

Procedure: A workflow, protocol, plan, algorithm, or computational method specifying how to
make an Observation, create a Sample, or make a change to the state of the world (via an
Actuator). A Procedure is re-usable, and might be involved in many Observations, Samplings, or
Actuations. It explains the steps to be carried out to arrive at reproducible Results. (NOTE: A
Procedure can describe a particular “make and model” of a System (as in a ‘Data Sheet’), or a
list of steps a human does.) (https://www.w3.org/TR/vocab-ssn/#SOSAProcedure)

Process: The Process concept is not explicitly defined in SOSA/SSN. Rather, depending on
the type of processing algorithm, a Process is just a regular System tagged using one of the sub
types defined previously. See section 4.2.4.1.1.5 Process below for further definition of this
term.

REST: Representational state transfer (REST) is a software architectural style that was created
to guide the design and development of the architecture for the World Wide Web. REST defines
a set of constraints for how the architecture of an Internet-scale distributed hypermedia system,
such as the Web, should behave. The REST architectural style emphasises the scalability of
interactions between components, uniform interfaces, independent deployment of components,
and the creation of a layered architecture to facilitate caching of components to reduce
user-perceived latency, enforce security, and encapsulate legacy systems. The term REST was
first coined by Roy Thomas Fielding in 2000. (Fielding, Roy Thomas (2000). "Chapter 5:
Representational State Transfer (REST)". Architectural Styles and the Design of Network-based
Software Architectures (Ph.D.). University of California, Irvine.)

REST has been employed throughout the software industry and is a widely accepted set of
guidelines for creating stateless, reliable web APIs. A web API that obeys the REST constraints

10

https://ogcapi.ogc.org/features/
https://github.com/opengeospatial/pubsub
https://www.openapis.org/
https://www.openapis.org/
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSASampler
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSASample
https://www.w3.org/TR/vocab-ssn/#SOSAActuator
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSASampling
https://www.w3.org/TR/vocab-ssn/#SOSAActuation
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://en.m.wikipedia.org/wiki/Representational_state_transfer

is informally described as RESTful. RESTful web APIs are typically loosely based on HTTP
methods to access resources via URL-encoded parameters and the use of JSON or XML to
transmit data.

The REST architecture makes use of four commonly used HTTP methods. These are:

Method Description

GET This method helps in offering read-only access for the resources.

POST This method is implemented for creating a new resource.

DELETE This method is implemented for removing a resource.

PUT This method is implemented for updating an existing resource or creating a fresh
one.

Sampler: A device that is used by, or implements, a (Sampling) Procedure to create or
transform one or more samples. (https://www.w3.org/TR/vocab-ssn/#SOSASampler)

Sensor: Device, agent (including humans), or software (simulation) involved in, or
implementing, a Procedure. Sensors respond to a Stimulus, e.g., a change in the environment,
or Input data composed from the Results of prior Observations, and generate a Result. Sensors
can be hosted by Platforms. (https://www.w3.org/TR/vocab-ssn/#SOSASensor)

Sensor Model Language (SensorML): SensorML is an OGC standard provides a robust and
semantically-tied means of defining processes and processing components associated with the
measurement and post-measurement transformation of observations. This includes sensors and
actuators as well as computational processes applied pre- and postmeasurement. The main
objective is to enable interoperability, first at the syntactic level and later at the semantic level
(by using ontologies and semantic mediation), so that sensors and processes can be better
understood by machines, utilized automatically in complex workflows, and easily shared
between intelligent sensor web nodes. This standard is one of several implementation
standards produced under OGC’s Sensor Web Enablement (SWE) activity. This standard is a
revision of content that was previously integrated in the SensorML version 1.0 standard (OGC
07-000). (https://www.ogc.org/standard/sensorml/)

SOSA/SSN: The W3C Semantic Sensor Network Incubator Group ontology (SSN), later
revised by the OGC/W3C Spatial Data on the Web Working Group (SDWWG), and expanded
based on the Sensor, Observation, Sample, and Actuator (SOSA) ontology. Similar to the
original SSO, SOSA acts as a central building block for the SSN but puts more emphasis on
light-weight use and the ability to be used standalone. (https://www.w3.org/TR/vocab-ssn/)

SWE Common Data Model Encoding Standard: The Sensor Web Enablement (SWE)
Common Data Model Encoding Standard (heretofore “OGC SWE Common”) defines low level

11

https://www.w3.org/TR/vocab-ssn/#SOSASampler
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSASampler
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SSNStimulus
https://www.w3.org/TR/vocab-ssn/#SSNInput
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSAObservation
https://www.w3.org/TR/vocab-ssn/#SOSAResult
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://defs.opengis.net/vocprez/object?uri=http%3A//www.opengis.net/def/glossary/term/SensorModelLanguage
https://www.ogc.org/standard/sensorml/
https://www.w3.org/TR/vocab-ssn/#Developments
https://www.w3.org/TR/vocab-ssn/
https://www.ogc.org/standard/swecommon/

data models for exchanging sensor related data between nodes of the OGC® Sensor Web
Enablement (SWE) framework. These models allow applications and/or servers to structure,
encode and transmit sensor datasets in a self describing and semantically enabled way. SWE
Common 1.0 was defined in the OGC SensorML 1.0 Standard.
(https://www.ogc.org/standard/swecommon/)

Subsystem: Technically, Subsystem is just a property, because a Subsystem is just a System
within a System. (https://www.w3.org/TR/vocab-ssn/#SSNhasSubsystem)

System: System is a unit of abstraction for pieces of infrastructure that implement Procedures.
A System may have components, its Subsystems, which are other Systems.
(https://www.w3.org/TR/vocab-ssn/#SSNSystem)

4. Conceptual Overview
In this conceptual overview, we address the information model at the core of the OGC API -
Connected System standard, as well as the API design.

4.1 Information Model
The OGC API - Connected Systems standard is built upon an information model with two parts -
the conceptual models and implementation models. The latter are based on the former. All
have a deep history within the Open Geospatial Consortium and World Wide Web Consortium
processes.

4.1.1 Conceptual Model
The conceptual model underpinning the OGC API - Connected Systems standard has two major
parts. First is the joint OGC/W3C Spatial Data on the Web Working Group’s (SDWWG)
SOSA/SSN model, and the SOSA/SSN revisions underway based on the inclusion of
Observation, Measurement and Sampling (OMS) updates to the OGC Observations and
Measurement (O&M) model. Together, these provide a conceptual model for describing every
possible System, their sensing, processing, and actuating Subsystems, and the Data Streams
and Control Streams at their core. Second is the GeoPose standard from the OGC which
provides a conceptual model for describing a digital object’s pose defined relative to a
geographical frame of reference. This allows for the description of the information required to
anchor a particular System, and its various Subsystems, in space and time with the kinds of
rigorous positional (e.g., spatio-temporal and orientation) information required to sense and act
with geographic precision and accuracy.

4.1.1.1 SOSA/SSN/OMS
SOSA/SSN has a long history. The OGC/W3C SDWWG did outstanding work bringing together
a diverse community of thought leaders and practitioners from academia, industry and

12

https://www.ogc.org/standard/swecommon/
https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem
https://www.w3.org/TR/vocab-ssn/#SSNSystem
https://www.w3.org/TR/vocab-ssn/#SOSAProcedure
https://www.w3.org/TR/vocab-ssn/#SSNSystem
https://www.w3.org/2021/sdw/#:~:text=The%20mission%20of%20the%20Spatial,Open%20Geospatial%20Consortium%20(OGC).
https://www.w3.org/TR/vocab-ssn/#Developments
https://www.w3.org/2021/sdw/#:~:text=The%20mission%20of%20the%20Spatial,Open%20Geospatial%20Consortium%20(OGC).

government to assemble a standard ontology for sensor semantics. The latest updates have
their history in SOSA/SSN concepts (particularly Observer and Deployment classes) that were
not originally included in the Observations and Measurements (O&M) standard. The OGC O&M
community saw their value, and this inspired the evolution toward the Observations,
Measurements and Samples (OMS) standard. In turn, the SOSA/SSN community saw value in
updating SOSA/SSN to reflect the OGC OMS efforts. As a result, these SOSA/SSN revisions
represent core learning within the SOSA/SSN community that advances the SOSA/SSN without
breaking backward compatibility. The OGC API - Connected System standard is deliberately
built on this OMS update of SOSA/SSN, using SensorML as its Implementation Model.

4.1.1.2 GeoPose
The OGC GeoPose standard builds on decades of experience defining the position of objects in
geographic space and time. Conceptually, when a real or digital object’s pose is defined relative
to a geographical frame of reference it will be called a "geographically-anchored pose." All
physical world objects inherently have a
geographically-anchored pose. Digital objects
may be associated with a
geographically-anchored pose (for example, in a
real-world overlay or on a stage). Specifically, the
OGC GeoPose standard defines the rules for the
interoperable interchange of
geographically-anchored poses. As such, the
OGC GeoPose standard defines a conceptual
model, a logical model, and encodings for the
position and orientation of a real or a digital object
in machine-readable forms using real world
coordinates. (For more on GeoPose, read the
OGC GeoPose Reviewers Guide,
https://docs.ogc.org/guides/22-000.html)

4.1.2 Implementation Model
The Implementation Model underpinning the OGC API - Connected Systems standard has three
major parts. First is Sensor Model Language (SensorML), which is the OGC standard for
encoding descriptions of sensing Systems and their Observations, as well as Processes,
Procedures and Deployments. Second is the OGC SWE Common Data Encoding Standard
which allows for the detailed common/standard way of describing the schemas of any Data
Stream, regardless of its format, including binary formats. Third is JSON and binary methods
for encoding Observations, beyond the traditional XML encodings. The first two of these
Implementation Models have been at the core of the OGC SWE legacy architecture, and they
continue as core concepts within the OGC API - Connected Systems standard. The third is
based on OGC Best practices for JSON encodings of SensorML and OGC SWE Common that
have been developed over time (https://docs.ogc.org/bp/17-011r2/17-011r2.html). Work has

13

https://www.ogc.org/standard/geopose/
https://www.ogc.org/standard/sensorml/
https://www.ogc.org/standard/swecommon/

also been done on binary encodings such as Protobuf and FlatGeobuf. Together, these
Implementation Models serve as the core of the new OGC API - Connected Systems standard.

4.1.2.1 SensorML
The primary focus of the Sensor Model Language (SensorML) is to provide a robust and
semantically-tied means of defining Processes and processing components associated with the
measurement and post-measurement transformation of Observations. This includes Sensors
and Actuators as well as computational Processes applied pre- and post-measurement. The
main objective is to enable interoperability, first at the syntactic level and later at the semantic
level (by using ontologies and semantic mediation), so that Sensors and Processes can be
better understood by machines, utilized automatically in complex workflows, and easily shared
between intelligent SensorWeb nodes. This standard is one of several implementation
standards produced under OGC’s Sensor Web Enablement (SWE) activity. This standard is a
revision of content that was previously integrated in the SensorML version 1.0 standard (OGC
07-000). There long been an OGC Best Practices for a SensorML JSON encoding
(https://docs.ogc.org/bp/17-011r2/17-011r2.html) that is being formalized as a SensorML 2.1
extension (https://github.com/opengeospatial/ogcapi-connected-systems/tree/master/sensorml)
as part of the OGC API - Connected Systems Standard v1.0 release.

4.1.2.3 SWE Common
The Sensor Web Enablement (SWE) Common Data Model Encoding Standard defines low level
data models for exchanging sensor related data between nodes of the OGC® Sensor Web
Enablement (SWE) framework. These models allow applications and/or servers to structure,
encode and transmit sensor datasets in a self describing and semantically enabled way.

SWE Common 1.0 was defined in the OGC SensorML 1.0 Standard available at
http://www.opengeospatial.org/standards/sensorml.

There is an OGC draft of OGC SWE Common Data Model 2.1 that includes new JSON
encodings (https://docs.ogc.org/DRAFTS/08-094r2.html), but this is yet to be adopted by the
working group.

There is complementary work being done within the OGC API - Features SWG that could
provide a parallel implementation that performs the same functions as SWE Common. A
complete alignment with the OGC API - Features future feature schema handling (which is not
yet codified) would be done in future versions of OGC API - Connected Systems standard.

4.1.2.4 Observation JSON/Binary Encodings
While there are “JSON Encoding Rules SWE Common / SensorML”
(https://docs.ogc.org/bp/17-011r2/17-011r2.html / https://docs.ogc.org/DRAFTS/08-094r2.html),
these were never formalized within the SensorML and SWE Common standards themselves.
Amended versions of these are being released as sister standards to the OGC API - Connected
Systems standard. These amended versions provide examples of binary encodings for

14

https://docs.ogc.org/bp/17-011r2/17-011r2.html
https://github.com/opengeospatial/ogcapi-connected-systems/tree/master/sensorml
http://www.opengeospatial.org/standards/sensorml
https://docs.ogc.org/DRAFTS/08-094r2.html
https://github.com/opengeospatial/ogcapi-features/labels/Part%205:%20Schemas
https://github.com/opengeospatial/ogcapi-features/labels/Part%205:%20Schemas
https://docs.ogc.org/bp/17-011r2/17-011r2.html
https://docs.ogc.org/DRAFTS/08-094r2.html

Observations, based on Protobuf and Flatbuf. Note: FlatGeoBuf does have limitations as to its
applicability to Observations (see 4.1.2.4 above), particularly with regard to video and other high
bandwidth data types. This is why Flatbuf is referenced here rather than FlatGeoBuf, which is
used to encode Features and Geometries (see below).

4.1.2.5. Features and Geometries JSON (JSON-FG)/Binary Encodings
JSON-FG is used as one possible encoding for Feature Resources (e.g., System, Procedure,
etc.). There is ongoing work within the OGC API - Feature SWG to define Protobuf and
FlatGeobuf encodings of Features and Geometries.

4.2 API Design
The design of the OGC API - Connected Systems standard can best be understood in terms of
the overarching strategic guidance that inspired it, the complementary OGC API standards that
it is extending or reusing, and then the structure of the API design itself.

4.2.1 OGC API Strategic Guidance
OGC API strategic guidance has led OGC SWGs to reimagine their existing specifications in
accordance with OpenAPI/RESTful architectural patterns that define reusable API building
blocks with responses in JSON and HTML. The resulting OGC API standards define modular
API building blocks to spatially enable Web APIs in a consistent way. The OGC API family of
standards is organized by resource type. OGC API - Common defines the resources and access
mechanisms which are useful for a client seeking to understand the offerings and capabilities of
an API. The standard also provides a common connection between the API landing page and
resource-specific details.

The OGC API - Connected Systems standard intentionally embraces these OpenAPI/RESTful
patterns, particularly following OGC API guidance.

4.2.2 OGC API - Features
More specifically, the OGC API - Connected Systems standard is an extension of the OGC API -
Features standard. This decision was made because most of the concepts in the conceptual
model, discussed above, are features. The OGC API - Features standard provides a way of
encoding Features in multiple formats (including binaries) and the Feature API SWG is working
on Part 5 to provide schemas for these encodings. As mentioned above, this creates a future
opportunity to harmonize ‘SWE Common’ and ‘Feature Schemas’ that the Connected Systems
SWG is eager to pursue.

4.2.3 OGC API - Pub/Sub
Both the OGC API - Connected Systems and OGC API - Features SWG’s have agreed to align
with the Pub/Sub proposal from OGC API - EDR. This includes using AsyncAPI, and an

15

agreement to generate an MQTT profile. This work stream has been referred over to the
previously dormant OGC Pub/Sub SWG.

4.2.4 OGC API - Connected Systems
In the end, the OGC API - Connected Systems Standard puts all this together in a way that
maximizes re-use and interoperability in a way that allows for the connection of all Systems on
planet earth and beyond. All of the resources within the OGC API - Connected Systems
Standard are based on SOSA/SSN concepts, and encoded in SensorML and various encodings
for Observations (e.g., JSON, Protobuf, FlatGeobuf, etc.). Due to the alignment with OGC API -
Features, the OGC API - Connected Systems SWG chose to make as many of these resources
as possible Feature Resources. Specifically, Feature Resources include Systems (and
Subsystems) of various subtypes (e.g., Sensors, Actuators, Platforms, Samplers, Processes),
Procedures, Deployments, Sampling Features. Additionally, the OGC API - Connected Systems
Standard includes non-Feature Resources - specifically Data Streams, Observations, Control
Streams, and Commands. This distinction will be discussed further below. For ease of reading
and comprehension, many Terms and Definitions (from section 3 above) will be repeated in this
section.

4.2.4.1 System (and Subsystem)
We begin this discussion with the SOSA/SSN definition for System:

System is a unit of abstraction for pieces of infrastructure that implement Procedures. A
System may have components, its Subsystems, which are other Systems.
https://www.w3.org/TR/vocab-ssn/#SSNSystem

In the real world, Systems will include things that normal people consider sensors, things,
robots, drones, satellites, control systems, devices, and Platforms of all kinds, across the
domains of space, air, land, sea, and cyber. In truth, all of these Systems represent various
constellations of Sensors, Processes and Actuators, designed to accomplish various goals,
which can be hierarchically combined in any way to address specific real world problems. In
more abstract terms, according to SOSA/SSN, a System is “a unit of abstraction for pieces of
infrastructure that implement Procedures. A System may have components, its Subsystems,
which are other Systems.”

Thus, we end this discussion with the SOSA/SSN definition of Subsystem, which is the has
Subsystem characteristic of a System:

Relation between a System and its component parts.
https://www.w3.org/TR/vocab-ssn/#SSNhasSubsystem

Many Systems can be Sensors, Actuators and Processes at the same time. In particular, a
Sensor can often accept Commands (e.g. change sampling rate or sensitivity), and Actuators

16

https://www.w3.org/TR/vocab-ssn/#SSNSystem
https://www.w3.org/TR/vocab-ssn/#SSNhasSubSystem

can produce data (e.g. Actuator status). It is often cumbersome to create a separate Systems in
these cases.1

Any system subtype can have Data Streams and Control Streams. For instance, a System
Subtype (Sensor) may have Control Streams, and a System Subtype (Actuator) may have Data
Streams.

4.2.4.1.1 System Subtype

We begin this discussion by recognizing that the OGC API - Connected Systems idea of System
Subtype builds on the SOSA/SSN ontology, with some specific additions in order to address the
full set of Connected Systems use cases. To foreshadow the coming discussion, these
SubType definitions include:

Sensor
Actuator
Platform
Sampler
Process

These Systems (and Subsystems) have various Subtypes (see below), though more complex
systems can engender all of these subtypes simultaneously. It is common for lay people to refer
to different kinds of systems in different ways as one subtype manifests as the dominant
characteristic. For instance, many Systems are thought of primarily as “sensors” or “sensing
systems” even though they have processes and actuators within them. Other Systems are
thought of primarily as “processes” or “processors” even though they have Sensors and
Actuators packaged within them. Other Systems are thought of primarily as “actuators,” even
though they have Sensors and onboard processing that make them work. It is often the case
that a given System is, quite simply, complex - such as an aircraft, or a satellite, or a control
system, with many different Subsystems of different Subtypes integrated for a very specific
purpose. And, the position/orientation (e.g., GeoPose) of each of these Subsystems can be
different, depending on how they are mounted and operated on the larger Platform at the heart
of the System. Due to this complexity, it is critical that these various System Subtypes be
semantically tagged.

4.2.4.1.1.1 Sensor

We begin this discussion with the SOSA/SSN definition for Sensor:

1 Additionally, a given System might have combinations of different kinds of Subsystem subtypes
simultaneously. In this case, each Subsystem would be described as their own type. In the
end, this is rather arbitrary, and it is up to the system designer (or the system modeler) to model
the system in the way that best works for your use case. At some point, the system modeler
creates a black box and says ‘this is what this black box does”. The system designer may have
good reason to articulate all of the system capabilities in all of their details while the system
modeler may want to keep it simpler for the purposes of their use case.

17

“Device, agent (including humans), or software (simulation) involved in, or implementing,
a Procedure. Sensors respond to a Stimulus, e.g., a change in the environment, or Input
data composed from the Results of prior Observations, and generate a Result. Sensors
can be hosted by Platforms.” (https://www.w3.org/TR/vocab-ssn/#SOSASensor)

Again, the term Sensor can be used to describe any sensing system or Subsystem that
observes the world and generates Data Streams filled with Observations (see below). In the
world of the OGC API - Connected Systems, we recognize that all such Sensors exist oriented
on (or around) Earth at a given moment in time, and therefore should have GeoPose
information for every Observation. Of course, not all Sensors are integrated with
complementary Sensors required to provide position, navigation and timing (PNT) solutions
capable of generating complete GeoPose information. The Sensor System/Subsystem may
have a magnetic compass that provides directionality, but no source for location information,
such as GPS. Others may offer location and direction, but lack the accelerometers required to
derive orientation. At an integration level, there tend to be engineering methods that allow for
the field augmentation of a given Sensor with the requisite Sensors, so that GeoPose
information can be provided for all Observations.

Even this simple example of ensuring telemetry Sensors are properly paired with the “primary’
Sensor demonstrates some of the complexities associated with properly incorporating Sensors
into a common 4D framework via the OGC API - Connected Systems Standard.

Within the OGC API - Connected Systems specifications Sensor Observations are shared over
Data Streams, within which Observations are sent. (See below). The control of Sensors (which
are Systems) is done with Control Streams (See below).

4.2.4.1.1.2 Actuator

We begin this discussion with the SOSA/SSN definition for Actuator:

“A device that is used by, or implements, an (Actuation) Procedure that changes the
state of the world.” (https://www.w3.org/TR/vocab-ssn/#SOSAActuator)

Again, it is important to understand that an Actuator can be a kind of System with other System
Subtypes as Subsystems. Within the OGC API - Connected Systems Standard, Actuators can
be as simple or as complex as needed. This could be something as simple as a door lock
Actuator which has a Sensor on it that confirms the status of the door lock (e.g., locked,
unlocked), and an onboard Process which sends an alert to the physical security System. It
could also be quite complex, involving the control of a gimbal, the tasking/control/dispatch of a
drone, the tasking of a satellite, or the launching of a countermeasure.

Within the OGC API - Connected Systems Standard, Actuators are controlled by Control
Streams, within which Commands are sent. (See below).

18

https://www.w3.org/TR/vocab-ssn/#SOSASensor
https://www.w3.org/TR/vocab-ssn/#SOSAActuator

4.2.4.1.1.3 Platform

We begin this discussion with the SOSA/SSN definition of Platform:

“A Platform is an entity that hosts other entities, particularly Sensors, Actuators,
Samplers, and other Platforms.” (https://www.w3.org/TR/vocab-ssn/#SOSAPlatform).

The OGC API - Connected Systems Standard, and the underlying SensorML specification,
provide an additional use case not contemplated within the SOSA/SSN ontology. Specifically, a
Platform can also be a System if you combine both Platform and System class from SSN
together. In the OGC API - Connected Systems Standard, all Platforms are also Systems.

4.2.4.1.1.4 Sampler

We begin this discussion with the SOSA/SSN definition of Sampler:

“A device that is used by, or implements, a (Sampling) Procedure to create or transform
one or more samples.” (https://www.w3.org/TR/vocab-ssn/#SOSASampler)

Sometimes the distinction between the Sampler and the Sensor is not evident, as they are often
packaged as a unit. The same device may be a Sampler when it is used to take a Sample, but
a Sensor when it is deployed as a sensing System that is systematically collecting Data Streams
filled with Observations.

Also, a Sampler need not be a physical device. It could be a person collecting Samples via a
Procedure.

The concept of a Sampler is useful when the sampling methodology needs to be documented
separately from the Sensor that actually makes the measurement. This is often the case when
the measurement is made ex-situ (e.g. a blood sample collected by a nurse and later analyzed
in the lab), or when a chain of samples is involved (e.g. a rock core sample collected in the field
is broken down into smaller segments that are then analyzed with various instruments).

4.2.4.1.1.5 Process

We begin this discussion with the OGC API - Connected Systems definition of Process, since
there is no such SOSA/SSN definition:

The Process concept is not explicitly defined in SOSA/SSN. Rather, depending on the
type of processing algorithm, a Process is just a regular System tagged using one of the
sub types defined previously.

A Process would thus be classified as:

- A Sensor if the process simulates observations or acts on input observations to generate
derived observations ;

- An Actuator if the process computes lower level actuations from a higher level command ;

19

https://www.w3.org/TR/vocab-ssn/#SOSAPlatform
https://www.w3.org/TR/vocab-ssn/#SOSASampler

- A Platform if the Process simulates a moving Platform ;
- A Sampler if the Process simulates a sampling Procedure.
- etc.

However, in the OGC API - Connected Systems Standards, a second property is available to
describe the type of asset that is involved in the implementation of the System. This property
called "assetType" can take the value "process" or "simulation".

Note that a Process instance is different from Procedure. The Procedure is what describes the
implementation and characteristics of any System, including processes but also hardware
equipment or even human behavior (see below).

4.2.4.2 Procedure
We begin this discussion with the SOSA/SSN definition of Procedure:

“A workflow, protocol, plan, algorithm, or computational method specifying how to make
an Observation, create a Sample, or make a change to the state of the world (via an
Actuator). A Procedure is re-usable, and might be involved in many Observations,
Samplings, or Actuations. It explains the steps to be carried out to arrive at reproducible
Results.”

Within SOSA/SSN, a System implements a Procedure. For a piece of equipment, Procedures
represent types of Systems, Sensors, Processes, Actuators, Platforms and Samplers and the
procedure description usually corresponds to the system's datasheet. But in the case where a
System (or Platform) involves one or more persons, (referred to in SOSA/SSN as an ‘Agent,
including Humans’), the Procedure description would describe the methodology used by these
persons.

Note that when a given System is capable of implementing different Procedures, the OGC API -
Connected Systems Standard provides several ways to describe this:

- As a single System instance associated to a Procedure with multiple "modes" (see
SensorML Modes) if those are known in advance.

- As multiple System instances referring to the same "person" in the contact information
when the system is a human who .

Also note that a Procedure is different from a Process instance (see Process definition above).

4.2.4.3 Deployment
We begin this discussion with the SOSA/SSN definition of Deployment:

“Describes the Deployment of one or more Systems for a particular purpose.
Deployment may be done on a Platform.”

20

This is particularly important for systems such as unmanned systems (UxS) which might be
deployed in one operating environment over one particular geography at a particular moment in
time, and later deployed to another operating environment over a different geography at a
different time. The DataStreams/Observations collected on these different Deployments may
need to be tied to other mission data from a particular Deployment.

4.2.4.4 Sampling Feature
We begin this discussion with the SOSA/SSN definition of Sampling Feature. Sampling Feature
is referred to as Sample in SOSA/SSN.

"Sample - Feature which is intended to be representative of a FeatureOfInterest on
which Observations may be made."

OGC API - Connected Systems defines several sampling feature sub-types:

- Spatial Sampling Features
- Specimens (or Material Samples)
- Statistical Samples
- Feature Parts

Sampling Feature always refers to a larger Feature of Interest that they are a sample of. In the
OGC API - Connected Systems Standard, any Feature can be a Feature of Interest, including
Systems themselves.

4.2.4.5 DataStream
We begin this discussion with the OGC API - Connected Systems Standard definition of Data
Stream, since there is no such SOSA/SSN definition:

Data Stream is a particular type of Observation Collection coming from a single System.

Note: An Observation Collection in SOSA/SSN could include Observations from multiple
different Systems. Among other things, a Data Stream provides the schema for the Result of
Observations within the Data Stream.

4.2.4.6 Observation
We begin this discussion with the SOSA/SSN definition of Observation:

“Act of carrying out an (Observation) Procedure to estimate or calculate a value of a
property of a FeatureOfInterest. Links to a Sensor to describe what made the
Observation and how; links to an ObservableProperty to describe what the result is an
estimate of, and to a FeatureOfInterest to detail what that property was associated with.”

21

https://www.w3.org/TR/vocab-ssn/#SOSASample

In the OGC API - Connected Systems specification, observations can have many different kinds
of Result Types. And this is where we provide schemas for the Observation Result. This lets
the API describe its Observations Types by providing a schema for each Data Stream, akin to
how the OGC API - Features Standard provides schemas for each Feature Type.

4.2.4.7 ControlStream
We begin this discussion with the OGC API - Connected Systems Standard definition of Control
Stream, since there is no such SOSA/SSN definition:

Control Stream defines the channels available for sending Commands to a given
System.

Among other things, Control Streams provides schemas for the parameters for Commands
within the Control Stream.

4.2.4.8 Command
We begin this discussion with the OGC API - Connected Systems Standard definition of
Command, since there is no such SOSA/SSN definition:

Command carries the information required by a System to change the state of a Feature
of Interest, which may be a System itself, a Subsystem of various Subtypes (e.g, Sensor,
Process, Actuator, Platform, Sampler, etc.), or any other Feature.

In the OGC API - Connected Systems Standard, this is distinct from Actuation. The Command
is not the actuation. And, a Command can control many different System Subtypes beyond
Actuators. The Command is the information sent to control these various System Subtypes.

4.2.5. OGC Building Blocks
The OGC API - Connected Systems SWG is committed to reuse of OGC Building Blocks
(https://blocks.ogc.org/) to the greatest extent possible. As this OGC Building Blocks process
matures, the OGC API - Connected Systems Standard may later reference Building Blocks
external to the specification.

5. The OGC API - Connected Systems Encodings
The OGC API - Connected Systems Standard supports a series of different encodings in order
to enable particular kinds of functionality required by different communities. These encodings
are based on the implementation models outlined in section 4.1.2 (above). These
implementation models are based on the original XML encodings that have been at the core of
the OGC Sensor Web Enablement architecture for the past two decades. The new OGC API -
Connected Systems Standard no longer requires the XML encodings of these implementation
models (e.g., there is no conformance class for XML). Instead, the OGC API - Connected

22

https://blocks.ogc.org/

Systems specification relies on modern encodings such as JSON, Protobuf, Flatbuff, and other
binary encodings could also be supported in extensions.

5.1. Ideas Driving Encoding Strategy
At the core of the OGC API - Connected Systems Standard’s encoding strategy is the idea of
reusing the concept of logical schemas from OGC API - Features specification to describe not
only Feature properties but also Observation results. Under the legacy/heritage OGC SWE
architecture, this was not possible due to the lack of alignment with the OGC API - Features
Standard. This new alignment pays dividends in a number of ways. However, there is still the
need for other encodings such as SensorML (and SWE Common Data Encoding Standard), to
describe the sensing Systems themselves, and provide schemas for Observations within their
Data Streams. However, now, there are more opportunities to align even between SensorML
and the Feature model that will be explored in future versions of the OGC API - Connected
Systems Standard and the OGC API - Features Standard.

5.2. Different Kinds of Encodings
This section will walk you through the static Feature encodings and the encodings used for
dynamic Data Streams (and Observations) and Control Streams (and Commands).

5.2.1 Static Feature Encodings
As an extension to the OGC API - Features Standard, the OGC API - Connected Systems
Standard is able to express a variety of things as static Features. These include the Systems
themselves (and all of their GeoPose information), Procedures, Deployments, and Sampling
Features.

5.2.1.1 SensorML
SensorML is used to provide detailed descriptions of Systems, Procedures and Deployments.
SensorML provides the ability to describe detailed characteristics, capabilities, and other
metadata about these entities. Note: For Sampling Features, the specification just uses
GeoJSON or JSON FG. This could evolve in future versions of SensorML.

5.2.1.2 GeoJSON/JSON FG
While SensorML is used to provide detailed descriptions, GeoJSON and JSON FG are used to
provide summary descriptions when listing a large number of resources. JSON FG is required
when the coordinate reference system is not CRS84 or CRS84h (e.g., WGS84 in Lon/Lat
order).

5.2.1.3 Protobuf, FlatGeobuf
As mentioned above, there is ongoing work within the OGC API - Feature SWG to define
Protobuf and FlatGeobuf encodings of Features and Geometries. Flatbuf could be used directly,

23

but the OGC community has defined geospatial profiles of Flatbuf within FlatGeobuf. No
equivalent standard geospatial profile exists for Protobuf at the time of writing.

5.2.2. Dynamic Data Streams Protocols and Encodings
Where the OGC API - Connected Systems Standard extends beyond the OGC API - Features is
with regard to dynamic Data Streams and Control Streams, to support real-time interactions
within Systems of all kinds. This section addresses dynamic Data Streams.

5.2.2.1 Dynamic Data Stream Protocols
Protocols for dynamic Data Streams need to be lightweight and efficient. Often times, specific
technical communities have worked hard to define efficient protocols that can be used for
streaming what can be voluminous streams of Observations. Protocols for implementing
dynamic Data Streams within the OGC API Connected Systems Standard include:

5.2.2.1.1. WebSockets

Within the OGC API - Connected Systems Standard, WebSockets is used for Data Streams in
the following ways:

● Retrieve real-time Observations from Data Streams (each WebSocket connection allows
streaming data from a single Data Stream)

● Push real-time Observation into Data Streams (each WebSocket connection allows
streaming data to a single Data Stream)

5.2.2.1.2. MQTT

Within the OGC API - Connected Systems Standard, MQTT is used for Data Streams in the
following ways:

● Subscribe to Observations from Data Streams (a single MQTT connection can be used
to stream observations from multiple Data Streams at once)

● Publish Observations to Data Streams (a single MQTT connection can be used to push
data to multiple Data Streams)

● Subscribe to Data Stream resource events (creation/update/deletion events plus
enable/disable events)

5.2.2.2 Dynamic Data Stream Encodings
Encodings for dynamic Data Streams need to be lightweight and efficient, and specialized for
the specific Observation type. Often times, specific technical communities have worked hard to
define efficient JSON or XML encodings of their content, or efficient binary encodings for
streaming what can be voluminous streams of data. Encodings for implementing dynamic Data
Streams within the OGC API Connected Systems Standard include:

24

5.2.2.2.1. JSON

Within the OGC API - Connected Systems Standard, various forms of JSON are used for Data
Streams in the following ways:

● The Data Stream description itself is provided in JSON
● Logical schemas for Observation result and parameters are provided in SWE Common

JSON
● Observation themselves can be encoded in JSON (OM-JSON)

The OGC API - Connected Systems Standard does not model Data Streams/Observations as
Features, and therefore does not use GeoJSON or JSON FG Features schema for Commands
and Command Status - instead using JSON schemas.

5.2.2.2.2. Binary Encodings (Protobuf, Flatbuff, etc.)

For efficiency, OGC API - Connected Systems also allows encoding Observations using binary
formats such as Protobuf, Flatbuff or Apache Avro for example. When such binary encodings
are used, an encoding specific schema is also provided (e.g. a proto file if Observations are
encoded using Protobuf). Some binary encodings, such as H.264 can be implemented within
Protobuf or Flatbuf streams or SWE Common binary encoded streams.

FlatGeoBuf does have limitations as to its applicability to Observations (see 4.1.2.4 above),
particularly with regard to video and other high bandwidth data types. This is why Flatbuf is
referenced here rather than FlatGeoBuf, which is used to encode Features and Geometries
(see below).

Beyond these generic binary encodings (e.g., Protobuf, Flatbuf, etc.) extensions can define
additional binary formats for specific types of Observations like video, imagery, point clouds, etc.
Or, more likely, an implementer can choose to reference another appropriate OGC interface that
provides specialized format support such as OGC API - Coverage, OGC API - EDR, and OGC
API - WAMI Best Practice.

5.2.3. Dynamic Control Streams Protocols and Encodings
Where the OGC API - Connected Systems Standard extends beyond the OGC API - Features is
with regard to dynamic Data Streams and Control Streams, to support real-time interactions
within Systems of all kinds. This section addresses dynamic Control Streams.

5.2.3.1 Dynamic Control Stream Protocols
Protocols for dynamic Control Streams need to be lightweight and efficient. Often times,
specific technical communities have worked hard to define efficient protocols that can be used
for controlling Systems with voluminous streams of Commands. Protocols for implementing
dynamic Control Streams within the OGC API Connected Systems Standard include:

25

5.2.3.1.1. WebSockets

Within the OGC API - Connected Systems Standard, WebSockets is for Control Streams in the
following ways:

● Push real-time Commands into Control Streams, and receive ACK (each websocket
connection allows streaming data to a single Control Stream)

● Retrieve real-time Commands from Control Streams (each websocket connection allows
streaming data from a single Control Stream)

5.2.3.1.2. MQTT

Within the OGC API - Connected Systems Standard, MQTT is used for Control Streams in the
following ways:

● Publish Commands to Control Streams (a single MQTT connection can be used to push
data to multiple Control Streams)

● Subscribe to Command status messages (i.e. initial ACK, status report for long running
commands, etc.)

● Subscribe to Commands received in Control Streams (a single MQTT connection can be
used to subscribe to multiple Control Streams).

● Subscribe to Control Stream resource events (creation/update/deletion events plus
enable/disable events)

5.2.3.2. Dynamic Control Stream Encodings
Encodings for dynamic data streams need to be lightweight and efficient, and specialized for the
specific Observation type. Often times, specific technical communities have worked hard to
define efficient JSON or XML encodings of their content, or efficient binary encodings for
streaming what can be voluminous streams of data. Encodings for implementing dynamic
Control Streams within the OGC API Connected Systems Standard include:

5.2.2.2.1 JSON (GeoJSON/JSON FG)

Within the OGC API - Connected Systems Standard, various forms of JSON are used for
Control Streams in the following ways:

● The Control Stream description itself is provided in JSON
● Logical schemas for Command parameters and results are provided in SWE Common

JSON
● Command themselves can be encoded in JSON

The OGC API - Connected Systems Standard does not model Control Streams/Commands as
Features, and therefore does not use GeoJSON or JSON FG Features schema for Commands
and Command Status - instead using JSON schemas.

26

5.2.2.2.2 Binary Encodings (Protobuf, Flatbuf, etc.)

For efficiency, the OGC API - Connected Systems Standards also allows encoding Commands,
Command Status and Command Results using binary formats such as Protobuf, Flatbuff or
Apache Avro for example. When such binary encodings are used, an encoding specific schema
is also provided (e.g. a proto file if Protobuf is used).

Note: FlatGeoBuf does have limitations as to its applicability to real-time Commands (see
4.1.2.4 above). This is why Flatbuf is referenced here rather than FlatGeoBuf, which is used to
encode Features and Geometries (see below).

6. OGC API - Connected Systems in the Landscape
of Standards
It is always the goal to have an orderly set of interoperability standards with a clear set of
relationships between each other, and no ambiguity or minimal overlap in their functionality.
However, not only are there similar looking standards built for different purposes, but they often
interact with each other in useful and surprising ways.

This discussion of how the OGC API - Connected Systems Standard sits within the larger
landscape of standards will be provided in 3 parts. First, we will discuss how the OGC API -
Connected Systems Standard relates to other OGC Standards. Second, we will discuss how it
relates to other Web standards. And Third, we will discuss other standards that are related, but
which the OGC API - Connected Systems Standard does not normatively reference or link to.

6.1. OGC Universe of Standards
Within the OGC’s universe of standards, there are complementarities, touch points, and
isomorphic functions. With the OGC API - Connected Systems Standard, things are no
different. This discussion will address those OGC specifications that are normatively referenced
within the OGC API - Connected Systems Standard, and those that the OGC API - Connected
Systems Standard links with, since all OGC API based standards are built on the same
patterns, we can combine functionality from different OGC APIs on the same endpoint.

6.1.1 Normatively Referenced OGC Standards
The OGC specifications that are normatively referenced within the OGC API - Connected
Systems Standard are:

6.1.1.1 OGC API - Features (Part 1, Part 3, Part 4)
As mentioned above, if a user (e.g., human or process) seeks a static Feature representation of
Systems published by a given OGC API - Connected Systems instance, they will access this

27

static Feature representation from the OGC API - Features part (e.g., Part 1) of the
specification. It is also possible that this static Feature representation might be served by a
linked remote OGC API - Feature instance. For more on this later point regarding linked
resources, see section 6.1.7 below. Note: Part 2 related to coordinate reference Systems can
also be used within the OGC API - Connected Systems Standard.

6.1.1.2 OGC API - Pub/Sub
Given that several OGC API SWGs, including the OGC API - Connected Systems SWG,
contemporaneously expressed interest in adopting a common architecture for asynchronous
communication, and support the approach proposed by the OGC API - EDR SWG - an
approach based on the AsyncAPI (which is the asynchronous counterpart to OpenAPI). This
approach supports the asynchronous workflows of the previous OGC SWE interface while
better conforming with the OpenAPI strategic guidance provided by the

6.1.1.3. SOSA/SSN/OMS
As mentioned above, SOSA/SSN/OMS is one of the core conceptual level information models
underpinning the OGC API - Connected Systems Standard. Its predecessor, the OGC SWE
specification, predated the SOSA/SSN/OMS standard, but provided support for all of the
concepts that have been formalized within the SOSA/SSN/OMS specification. See Section 3:
Terms and Definitions for more detail.

6.1.1.4. SensorML
As mentioned above, SensorML is one of the core implementation level information models
underpinning the OGC API - Connected Systems Standard, and its predecessor, the OGC SWE
Standards. See Section 3: Terms and Definitions for more detail.

6.1.1.5. SWE Common Data Model Encoding Standard
As mentioned above, SWE Common Data Model Encoding Standard is one of the core
implementation level information models underpinning the OGC API - Connected Systems
Standard, and its predecessor, the OGC SWE Standards. See Section 3: Terms and Definitions
for more detail.

6.1.1.6. GeoPose
As mentioned above, GeoPose is one of the core conceptual level information models
underpinning the OGC API - Connected Systems Standard. Its predecessor, the OGC SWE
Standards, predated the GeoPose standard, but provided support for all of the concepts that
have been formalized within the GeoPose specification. See Section 3: Terms and Definitions
for more detail.

6.1.2 Linking to external Observation result
As mentioned above in section 6.1.1., if the user seeks to have Observations provisioned in the
form of static Features, by an external OGC API - Features instance, they can request data from

28

Part 1 of the OGC API - Connected Systems Standard, which conforms to the OGC API -
Features specification, or from a remote OGC API - Features instance.

Beyond this, the other OGC specifications that the OGC API - Connected Systems Standard
links with (organized according to their OGC API - Connected Systems function) include:

6.1.2.1. Link to OGC API - Maps
If the user seeks a map in response to their request for Observations, it can be provided through
a link to an OGC API - Maps interface.

6.1.2.2. Link to OGC API - Coverages
If the user seeks to request Observations in the form of a gridded coverage, or to further slide
and dice raster observations (aka gridded coverages) it can be provided through a link to an
OGC API - Coverage interface.

6.1.2.3. Link to OGC API - EDR
If the user seeks to discover or query data resources from an OGC API - EDR instance, they
can request metadata about the Environmental Data Resources (EDR) provided by the server,
or execute query operations to retrieve EDR from the underlying data store based upon simple
selection criteria, defined by this standard and selected by the client. This can include sub
setting certain Connected Systems resources available through an OGC API - EDR instance.

6.1.2.4. Link to OGC SensorThingsAPI
If the user seeks to request Observations from an OGC SensorThings API that is linked to an
OGC API - Connected Systems instance, they can do so.

6.1.2.5. Link to OGC API - 3D Volumes/3D Tiles
If the user seeks to request 3D Features of Interest response to their request for Observations,
it can be provided through a link to an OGC API - 3D Volumes or 3DTiles interface.

6.1.2.6. Link to API OGC - Record
If the user seeks to request metadata records regarding a System, or the Observations from a
particular System, it can be provided through a link to an OGC API - Record interface.

6.1.2.7. Link to OGC API - Moving Features
If the user seeks to request OGC API - Moving Features response to their request for
Observations, they can do so.

6.1.2.8. Link to OGC WAMI Best Practice
If the user seeks to request OGC WAMI Best Practice response to their request for
Observations, they can do so.

29

Future support for linking to yet to be approved OGC specifications such as GeoDCAT
(https://www.ogc.org/press-release/ogc-forms-new-geodcat-standards-working-group/), based
on the W3C’s Data Catalog Vocabulary (https://www.w3.org/TR/vocab-dcat-3/) can also be
added.

6.2. Other Web Standards
The OGC has long held Class A liaison relationships with other international standards
organizations (ISO) that promulgate Web standards, and other domain standards. Some of
these are normatively referenced through various OGC API Standards, including

:6.2.1 OpenAPI
As mentioned above, the scope for the OGC API - Connected Systems Standard v1.0 was very
much defined by the OGC’s strategic guidance to migrate all legacy/heritage specifications to
OpenAPI/RESTful patterns.

6.2.2 AsyncAPI
As mentioned above, AsyncAPI (which is the asynchronous counterpart to OpenAPI) provides
the asynchronous workflows of the previous OGC SWE interface while better conforming with
the OpenAPI strategic guidance.

6.2.3. JSON
JSON (www.json.org), also known as ECMA-404 The JSON data interchange syntax (2nd
edition, December 2017) was published by Ecma International
(https://www.ecma-international.org/publications-and-standards/standards/ecma-404/) which,
since 1961 facilitates the timely creation of a wide range of global Information and
Communications Technology (ICT) and Consumer Electronics (CE) standards. JSON is flexible
and powerful format, which can be profiled in innovative ways. It underpins GeoJSON and
JSON-FG, which, despite their common reliance on JSON, diverge on important issues such as
spatial reference system/coordinate system support. The OGC API - Connected Systems
specification utilizes JSON in the following 4 important ways:

6.2.4.XML
Extensible Markup Language (XML) (https://www.w3.org/XML/) is a simple, very flexible text
format derived from SGML (ISO 8879), managed by the World Wide Web Consortium’s XML
Activity (www.w3.org). Originally designed to meet the challenges of large-scale electronic
publishing, XML is also playing an increasingly important role in the exchange of a wide variety
of data on the Web and elsewhere.

30

https://www.ogc.org/press-release/ogc-forms-new-geodcat-standards-working-group/
https://www.w3.org/TR/vocab-dcat-3/
http://www.json.org
https://www.ecma-international.org/publications-and-standards/standards/ecma-404/
https://www.w3.org/XML/

6.2.5.Protobuf (https://protobuf.dev/)
Protocol Buffers are language-neutral, platform-neutral extensible mechanisms for serializing
structured data. One uses Protobufs if they want to be more efficient and the message is not
that big (1 MB or less).

6.2.6.Flatbuf (https://flatbuffers.dev/) (FlatGeoBuf - http://flatgeobuf.org/,
https://www.ogc.org/tag/flatgeobuf/)
Use FlatBuffers if we want to be more efficient with larger messages. FlatBuffers is the better
choice if you're looking to create read-only query messages - this feature also saves on time
and memory.

6.2.7.MQTT
MQTT (https://mqtt.org/) is an OASIS standard messaging protocol for the Internet of Things
(IoT). It is designed as an extremely lightweight publish/subscribe messaging transport that is
ideal for connecting remote devices with a small code footprint and minimal network bandwidth.
MQTT today is used in a wide variety of industries, such as automotive, manufacturing,
telecommunications, oil and gas, etc. The OGC API - Connected System Standard utilizes
MQTT for Data Streams and Control Streams. MQTT is hub-and-spoke and is optimized for
centralized data collection and analysis – connecting sensors and mobile devices to
applications or a message broker.

6.2.8. Data Distribution System (DDS)
The Object Management Group (OMG) Data Distribution Service for Real-Time Systems (DDS)
standard (like MQTT) was designed specifically to address machine-to-machine (M2M)
communication, directly connecting sensors, devices and applications to each other without any
dependence on centralized IT infrastructure. While DDS is not called out explicitly in the OGC
API - Connected Systems Standard, it can be accommodated as an extension.

6.3. Related Standards
There are many related standards that are not normatively referenced in the OGC API -
Connected Systems specification.
Formats and interfaces

6.3.1 Related Geospatial Format Standards
There are many related format standards that are not normatively referenced in the OGC API -
Connected Systems specification

31

https://flatbuffers.dev/
https://mqtt.org/

6.3.1.1 H. 264/MISB/STANAG 4609
H. 264, also called Advanced Video Coding (AVC), is the most common video compression
standard in use today. When used for overhead imagery from drones and satellites, telemetry
data can be encoded in Motion Imagery Standards Board (MISB) metadata within H.264.
STANAG 4609 describes an exchange format for motion imagery. It is the official format for motion
imagery (video data, image sequences, FMV - full motion videos) exchange within the NATO
nations. Motion imagery is defined by MISB to be video of at least 1 Hz image frequency together
with metadata. STANAG 4609 describes the encoding of the video and the metadata (geographical
data) for different usages. This includes the supported video codecs, bit rates, frame rates,
container formats, metadata content, metadata encoding and hardware to distribute the motion
imagery.

6.3.1.2 STAC Item
SpatioTemporal Asset Catalog (STAC) specification provides a common structure for describing
and cataloging spatiotemporal assets. A STAC Item is the core atomic unit, representing a
single spatiotemporal asset as a GeoJSON feature plus datetime and links.
(https://stacspec.org/en)

6.3.1.3 COG
A Cloud Optimized GeoTIFF (COG) is a regular GeoTIFF file, aimed at being hosted on a HTTP
file server, with an internal organization that enables more efficient workflows on the cloud. It
does this by leveraging the ability of clients issuing ​HTTP GET range requests to ask for just the
parts of a file they need. (https://www.cogeo.org/)

6.3.1.4 LAS
The LAS file format is a public file format for the interchange of 3-dimensional point cloud data
data between data users. Although developed primarily for exchange of LiDAR point cloud data,
this format supports the exchange of any 3-dimensional x,y,z tuplet. LAS is a Standard of the
American Society for Photogrammetry & Remote Sensing.
(https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf)

6.3.1.5 Gridded Coverage/Imagery Formats
There are countless other gridded coverage and imagery formats that are commonly generated
by Sensors of all kinds. The OGC API - Connected Systems Standard provides support for any
and all of these. This includes GRIB, NetCDF, HDF, HDF-EOS, JPEG, JPEG2000, GRASS,
NITF, and Compensated Phase History Data (CPHD).

6.3.2. Related Libraries and Interface Standards
There are many related interface standards that are not normatively referenced in the OGC API
- Connected Systems and cannot be linked, but which have shared and overlapping

32

https://stacspec.org/en
https://www.cogeo.org/
https://www.asprs.org/wp-content/uploads/2019/07/LAS_1_4_r15.pdf
https://nsgreg.nga.mil/doc/view?i=5062&month=3&day=8&year=2022

6.3.2.1 ArduPilot (https://ardupilot.org/)
ArduPilot is an open source, unmanned vehicle autopilot software suite capable of controlling
autonomous multirotor drones, fixed-wing and VTOL aircraft, helicopters, ground rovers, boats,
submarines, antenna trackers. ArduPilot was originally developed by hobbyists to control model
aircraft and rovers and has evolved into a full-featured and reliable autopilot used by industry,
research organizations, and amateurs. (https://en.m.wikipedia.org/wiki/ArduPilot)

As the dominant standard for UxS remote piloting and autopiloting, ArduPilot serves as one of
the primary bridges from which any OGC API - Connected Systems based System will receive
Data Streams of Observations, and over which it would send Control Streams (e.g., feasibility
and tasking commands) to control UxS. Preliminary mappings demonstrate compatibility
between these two standards.

6.3.2.2. Integrated Sensor Architecture (ISA -
https://apps.dtic.mil/sti/pdfs/AD1079785.pdf)
ISA is a U.S. Army Service-Oriented Architecture (SOA) developed by the Night Vision
Electronic Sensors Directorate (NVESD) of what now is the US Army DevCom C5ISR Center.
ISA identifies common standards and protocols, which support a net-centric system-of-systems
integration. Utilizing a common language, these systems are able to connect, publish their
needs and capabilities, and interact dynamically. ISA provides an extensible data model with
defined capabilities, and provides a scalable approach across multi-echelon deployments, which
when coupled with dynamic discovery capabilities, cybersecurity, and sensor management,
provides a system which can adjust and adapt to dynamic environment. ISA capabilities enable
Soldiers to exchange information between their own sensors and those on other Platforms in a
fully dynamic and shared environment. ISA enables Army sensors and systems to readily
integrate into an existing network and dynamically share information and capabilities to improve
situational awareness in a battlefield environment.

As the dominant standard for discovering, accessing, visualizing and tasking sensors on US
Army Platforms, ISA serves as one of the primary bridges from which any OGC API -
Connected Systems based System will receive Data Streams of Observations, and over which it
would send Control Streams (e.g., feasibility and tasking commands) to control ISA Sensors.
Preliminary mappings demonstrate compatibility between these two standards.

6.3.2.3. Joint Interface Control Document (JICD) 4.2.1
The JICD for common services lets systems become interoperable with Network-Centric
Collaborative Targeting (NCCT) and Theater Net-Centric Geolocation (TNG) sensor fusion
networks.

As a niche Department of Defense (DOD) standard for discovering, accessing, visualizing and
tasking Electronic Warfare systems, JICD 4.2.1 serves as one of the primary bridges from which
any OGC API - Connected Systems based System will receive Data Streams of Observations,
and over which it would send Control Streams (e.g., feasibility and tasking commands) to control

33

https://en.m.wikipedia.org/wiki/ArduPilot
https://apps.dtic.mil/sti/pdfs/AD1079785.pdf
https://c5isrcenter.devcom.army.mil/

JICD 4.2.1 Systems. Preliminary mappings demonstrate compatibility between these two
standards.

6.3.2.4. Micro Air Vehicle Link (MavLink - https://mavlink.io)
MAVLink is a protocol for communicating with small unmanned vehicle. It is designed as a
header-only message marshaling library. MAVLink was first released early 2009 by Lorenz
Meier under the LGPL license.
(https://en.m.wikipedia.org/wiki/MAVLink)

As the dominant standard for communicating with UxS, MAVLink serves as one of the primary
bridges from which any OGC API - Connected Systems based System will receive Data
Streams of Observations, and over which it would send Control Streams (e.g., feasibility and
tasking commands) to control UxS. Preliminary mappings demonstrate compatibility between
these two standards.

6.3.2.5. Robot Operating System (ROS or ros - https://ros.org/)
ROS is an open-source robotics middleware suite. Although ROS is not an operating system
(OS) but a set of software frameworks for robot software development, it provides services
designed for a heterogeneous computer cluster such as hardware abstraction, low-level device
control, implementation of commonly used functionality, message-passing between processes,
and package management. Running sets of ROS-based processes are represented in a graph
architecture where processing takes place in nodes that may receive, post, and multiplex sensor
data, control, state, planning, actuator, and other messages. Despite the importance of reactivity
and low latency in robot control, ROS is not a real-time operating system (RTOS). However, it is
possible to integrate ROS with real-time computing code.[3] The lack of support for real-time
systems has been addressed in the creation of ROS 2,[4][5][6] a major revision of the ROS API
which will take advantage of modern libraries and technologies for core ROS functions and add
support for real-time code and embedded system hardware.
(https://en.m.wikipedia.org/wiki/Robot_Operating_System)

As the dominant standard for controlling robots, ROS serves as one of the primary bridges from
which any OGC API - Connected Systems based System will receive Data Streams of
Observations, and over which it would send Control Streams (e.g., feasibility and tasking
commands) to control ROS based robotic Platforms. Preliminary mappings demonstrate
compatibility between these two standards.

6.3.2.6. Sensor Open Systems Architecture (SOSA -
http://prod.opengroup.org/sosa)
SOSA, developed by the OpenGroup, establishes guidelines for Command, Control,
Communications, Computers, Cyber, Intelligence, Surveillance and Reconnaissance (C5ISR)
systems. The objective is to allow flexibility in the selection and acquisition of sensors and
Subsystems that provide sensor data collection, processing, exploitation, communication, and
related functions over the full life cycle of the C5ISR system.

34

https://en.m.wikipedia.org/wiki/MAVLink
https://ros.org/
https://en.m.wikipedia.org/wiki/Robot_Operating_System
http://prod.opengroup.org/sosa

As a dominant hardware standard for connecting sensors into larger C5ISR systems, SOSA
serves as one of the primary bridges from which any OGC API - Connected Systems based
System will receive Data Streams of Observations, and over which it would send Control
Streams (e.g., feasibility and tasking commands) to control such Sensor Systems. Preliminary
mappings demonstrate compatibility between these two standards.

6.3.2.7. SISO High Level Architecture (HLA) and Distributed Interactive Simulation
(DIS)
(https://www.sisostds.org/StandardsActivities/DevelopmentGroups/HLAPDG-High-Level
Architecture.aspx, and
https://www.sisostds.org/StandardsActivities/SupportGroups/DISRPRFOMPSG.aspx)

In 1995, the Defense Modeling and Simulation Office (DMSO) formulated a vision for modeling
and simulation and established a modeling and simulation masterplan, which included the High
Level Architecture (HLA). The purpose of HLA is to provide one unified standard that would
meet the simulation interoperability requirements of all US DoD components, and to support
legacy modeling and simulation interoperability protocols including the Distributed Interactive
Simulation (DIS) protocol. To facilitate usage outside of the defense community, HLA was then
transitioned into an IEEE standard, maintained by Simulation Interoperability Standards
Organization (SISO). SISO-PN-016-2016 established the High Level Architecture (HLA)
Product Development Group which developed and maintains High-Level Architecture Version
3.0. The PDG operates simultaneously as the HLA Working Group under the IEEE Computer
Society Standards Activities Board Simulation Interoperability (C/SI) SISO SAC Standards
Committee.

To facilitate the migration for DIS users, a Federation Object Model corresponding to the fixed
object model of DIS was also developed as the Real-time Platform Reference FOM (RPR FOM).
The Distributed Interactive Simulation / Real-time Platform Reference Federation Object Model
(DIS / RPR FOM) Product Support Group (PSG) is a permanent support group chartered by the
Simulation Interoperability Standards Organization (SISO) Standards Activity Committee to
support multiple DIS-related products including:

● IEEE Std 1278.1™-2012, IEEE Standard for Distributed Interactive Simulation -
Application Protocols (a revision of IEEE Std 1278.1™-1995 and IEEE Std
1278.1a™-1998)

● IEEE Std 1278.2™-2015, IEEE Standard for Distributed Interactive Simulation (DIS) -
Communication Services and Profiles (a revision of IEEE Std 1278.2™-1995)

● IEEE Std 1278.4™-1997, IEEE Recommended Practice for Distributed Interactive
Simulation - Verification, Validation, and Accreditation

● SISO-STD-001-2015, Standard for Guidance, Rationale, and Interoperability Modalities
(GRIM) for the Real-time Platform Reference Federation Object Model (RPR FOM),
Version 2.0

35

https://www.sisostds.org/StandardsActivities/DevelopmentGroups/HLAPDG-High-LevelArchitecture.aspx
https://www.sisostds.org/StandardsActivities/DevelopmentGroups/HLAPDG-High-LevelArchitecture.aspx
https://www.sisostds.org/StandardsActivities/SupportGroups/DISRPRFOMPSG.aspx

● SISO-STD-001.1-2015, Standard for Real-time Platform Reference Federation Object
Model (RPR FOM), Version 2.0

As a dominant standard for connecting interactive simulations to larger systems, SISO HLA/DIS
offers OGC API - Connected Systems specification based systems an opportunity to integrate
simulated data feeds into larger systems for many purposes, including mission planning and
rehearsal, as well as the inclusion of simulations of phenomena that may not be observable in
real time, in order to calibrate real time operations. As such, SISA HLA/DIS serve as one of the
primary bridges from which any OGC API - Connected Systems based System will receive Data
Streams of Observations, and over which it would send Control Streams (e.g., feasibility and
tasking commands) to control such simulations. Preliminary assessments demonstrate
compatibility between these two standards.

6.3.2.8. Spatio-Temporal Asset Catalog (STAC - https://stacspec.org):
The STAC specification is a common language to describe geospatial information, so it can
more easily be worked with, indexed, and discovered. Though it began independently, the
current version of STAC is based on the OGC API - Features specification, where a “STAC item”
is a Feature.

As a dominant standard for managing remote sensing imagery archives, emerging STAC based
tasking/ordering strategies (currently called Spatio-Tempora Asset Tasking - STAT) offer OGC
API - Connected Systems specification based feasibility and tasking commands a potential
bridge to traverse in order to order data collection from remote sensing satellite constellations.
STAC is already aligned with the OGC API - Features specification, and the STAC community
has expressed its desire for its future tasking/ordering interface to continue to OGC API
standards. The OGC API - Connected Systems editors are committed to remaining engaged in
the STAT process.

6.3.2.9. Universal C2 Language (UC2 -
https://www.sei.cmu.edu/publications/annual-reviews/2021-year-in-review/year_in_revie
w_article.cfm?customel_datapageid_315013=335863)
The UC2 program comprises a set of technical working groups led by a coalition of six federally
funded research and development centers (FFRDCs) with representatives from the military.
Together, Fully Networked Command, Control, and Communications (FNC3) and the Aerospace
Corporation, the Institute for Defense Analyses Systems and Analyses Center, the MIT Lincoln
Laboratory, the MITRE National Security Engineering Center, the RAND National Defense
Research Institute, and the SEI are developing a universal C2 language and standard.

As an emerging and evolving specification, UC2 is similar to many other DoD specifications for
command and control objects, and should easily be accommodated within the OGC API -
Connected Systems Standard framework. Unless there is a serious regression in C2 language
from existing C2 capabilities, compatibility between these two standards should be
straightforward.

36

https://stacspec.org
https://www.sei.cmu.edu/publications/annual-reviews/2021-year-in-review/year_in_review_article.cfm?customel_datapageid_315013=335863
https://www.sei.cmu.edu/publications/annual-reviews/2021-year-in-review/year_in_review_article.cfm?customel_datapageid_315013=335863

6.3.2.10. Universal Command and Control Interface (UCI)
UCI is a standard managed, systematized and evolved by the US Air Force’s Open Architecture
Management Standards (OAMS) and the Open Mission Systems (OMS) standard. The OAMS
enable current, legacy, and new programs to realize the benefits of Open Architecture.

The USAF’s UCI standard is one of several “universal” C2 standards from the US DoD. As with
UCI, unless there is a serious regression in C2 language from existing C2 capabilities,
compatibility between UCI and the OGC API - Connected Systems Standard should be
straightforward.

7. Use Cases
Interoperability specifications such as the OGC API - Connected Systems Standard can only
truly be understood when seen through the lens of concrete, real world examples. This section
provides a series of technical use cases and a series of domain use cases. Together, reviewers
should be able to better understand how Systems, Platforms, Sensors, Processes, Actuators,
Features of Interest, Data Streams and their Observations, and Control Streams and their
Commands work together within the OGC API - Connected Systems Standard.

7.1. Technical use cases
This section provides concrete technical use cases of how Systems, Platforms, Sensors,
Processes, Actuators, Features of Interest, Data Streams and their Observations, and Control
Streams and their Commands work together when integrating different kinds of systems via the
OGC API - Connected Systems Standard. These include:

1) IoT Thing
2) Weather Station
3) Pan Tilt Zoom (PTZ) Camera
4) Aircraft Telemetry
5) Ground Vehicle
6) Surface Vessel
7) Unmanned Aerial Vehicle (Aerial UxS)
8) Unmanned Ground Vehicle (Ground UxS)
9) Unmanned Surface Vehicle (Surface Marine UxS)
10) Unmanned Underwater Vehicle (Underwater Marine UxS)
11) Spaceborne Systems
12) Cell Towers
13) GMTI SAR
14) Air Traffic Radar
15) Doppler Radar
16) Counter UAS Radar
17) Weather Forecast Model

37

18) Flight Optimization
19) Tipping and Cueing (Laser Range Finder to PTZ)
20) Alerts/Notification (Temperature Threshold)
21) Cyber Sensor
22) Human as Sensor
23) Human as Platform
24) Human Receiving Command
25) Dynamic Data Feed

7.1.1. Thing/IoT (Motion Detector)
When a sensing System has a single purpose, it is often termed a “Thing”, as part of the
Internet of Things. This Thing (IoT) example is of a Motion Detector, which is a Sensor. Other
such Things could be Actuators, such as electronic door locks. As everything becomes
connected to the Internet, creating the “Internet of Everything”, Things are becoming more and
more complex. Still this example seeks to showcase a simple System of SubType Sensor. The
diagram and discussion below help convey how IoT Things can be treated in the OGC API -
Connected Systems Standard.

38

System: The top level System is the Sensor in this case
Platform: None
Sensors: Motion Detector
Processes: None
Actuators: None
Features of Interest: Motion Detector Frustum, Object(s)
Data Streams/Observations: Motion Detection (Y/N)
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Thing (Motion
Detector)

Sensor

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Motion
Detector
Frustum

Motion
Detector

The volume covered by the detector

39

Object(s) Motion
Detector

The objects whose motion is being detected.

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Motion
Detector

Motion (Y/N)

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.2. Weather Station
While there are simpler sensors (see Thing/IoT above), a Weather Station is a good example of
a geographically fixed in situ sensing System that collects Observations at a given sampling
point. The diagram and discussion below help convey how Weather Stations can be treated in
the OGC API - Connected Systems Standard.

40

System: Weather Station (the top level System is the Platform in this case)
Platform: Weather Station (the Platform is the top level System)
Sensors: Thermometer, Barometer, Anemometer, Rain Gauge
Processes: Wind Chill
Actuators: None
Features of Interest: Sampling point at the Weather Station location
Data Streams/Observations: One Data Stream per Sensor/Process (see below)
Control Streams/Commands: Change Sensor configuration (e.g. sampling rate) (one
Control Stream per Sensor)

Systems:

Name Type Description (+ link to datasheet)

Weather
Station

System

Weather
Station

Platform the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Barometer Sensor Subsystem mounted on the Platform

Anemometer Sensor Subsystem mounted on the Platform

Rain Gauge Sensor Subsystem mounted on the Platform

41

Wind Chill Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Sampling point
at the Weather
Station
location

All Sensors All Sensors measure parameters of the same Feature
of Interest

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Thermometer Air temperature
and relative
humidity
measurements

Barometer Air pressure
measurements

Anemometer Wind speed
and direction
measurements

Rain Gauge Precipitation
measurements

Wind Chill
Process

Wind chill
measurements

Wind chill is calculated from temperature, wind speed,
and humidity

Control Streams/Commands:

42

System Control
Stream

Comments

Thermometer Change sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Barometer Change Sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Anemometer Change Sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Rain Gauge Change Sensor
config (e.g.,
sampling rate)

This Control Stream is directly available on the Sensor
resource itself (no need for an additional Actuator)

Wind Chill
Process

Change
Process config
(e.g., sampling
rate)

This Control Stream is directly available on the Process
resource itself (no need for an additional Actuator)

7.1.3. Pan Tilt Zoom (PTZ) Camera
A PTZ Camera is an example of a fixed sensor that can be tasked to remotely observe its
surroundings. In this example, the position and orientation (GeoPose) is configured at the time
of installation. While it is possible to have a PTZ Camera that derives GeoPose from
GNSS/INS, that is not contemplated in this particular use case. This example is intentionally
‘stripped down’, combining the Actuator of the gimbal within the PTZ Camera description for the
purpose of simplicity, since a Control Stream can be used to Command any System, whether
primarily Sensor, Process, or Actuator. The diagram and discussion below help convey how
PTZ Cameras can be treated in the OGC API - Connected Systems Standard.

43

System: PTZ Camera
Platform: None
Sensors: PTZ Camera (the Sensor is the top level System)
Actuators: None
Processes: GeoPointing Algorithm
Features of Interest: PTZ Camera, with Frustum, Video Target(s)
Data Streams/Observations: Video, PTZ Parameters
Control Streams/Command: Raw PTZ, Point to Location, Change Video Parameters

Systems:

Name Type Description (+ link to datasheet)

PTZ Camera System

PTZ Camera Sensor Subsystem mounted on the Platform

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

44

PTZ Camera
with Frustum

PTZ Camera The PTZ Camera provides its own orientation relative
to earth, as well as imaging parameters like FOV, frame
size, frame rate, etc.

Video Target(s) PTZ Camera This is the feature the camera is looking at (e.g. a
street intersection, a building, a room inside a building,
etc.). The video camera provides imagery of the target.

Controlled FOI
(the thing you
want to control)

System Comments

PTZ Camera
with Frustum

PTZ Camera The camera system itself can receive commands to
move (rotate) itself.

Data Streams/Observations:

System Data Stream Comments

Video Camera Video Feed

Video Camera PTZ
Parameters

Control Streams/Commands:

System Control
Stream

Comments

Video Camera Video
Parameters

Change video parameters (e.g. frame rate, frame size,
exposure, etc.)

Video Camera PTZ
Parameters

GeoPointing
Algorithm

X,Y,Z,T Point the PTZ camera to a given lat/lon/elevation

7.1.4. Aircraft Telemetry / ADS-B
Telemetry data from 6 Degree of Freedom (6 DoF) airborne Platforms applies the same to fixed
wing aircraft and rotary wing aircraft as it does to missiles and projectiles. Telemetry Sensors

45

generating position, attitude, and course information are critical to deriving the GeoPose of such
Platforms, and then, by association, other Sensors on the Platform can derive their own
GeoPose information. Given the increasing prevalence of GPS-denial within conflict zones,
some military aircraft also come with Assured Position, Navigation, and Timing (A-PNT)
solutions that can derive GeoPose information for the aircraft, as a System/Platform, and by
association, for its mounted Sensor Systems. The diagram and discussion below help convey
how aircraft telemetry and associated Sensors can be treated in the OGC API - Connected
Systems Standard. For the purposes of this example, there are no Actuators, because we
assume the human pilot will control the Platform.

System: Helicopter (the top level System is the Platform in this case)
Platform: Helicopter (the Platform is the top level System)
Sensors: GNSS/INS, Engine Sensors (Subsystems mounted on the Platform)
Actuators: None
Processes: None
Features of Interest: Helicopter, Engine
Data Streams/Observations: Positioning Data, Engine State
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Helicopter System

46

Helicopter Platform The top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Engine
Sensors

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Helicopter GNSS/INS GNSS/INS provides position and orientation of the
Helicopter Platform

Engine Engine Sensor Engine Sensors provide measurements of engine
parameters

Controlled FOI
(the thing you
want to control)

System Comments

None None This example is manned/piloted, therefore there are no
controllable parameters in this model.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Aircraft
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Engine Sensor Engine State Engine parameters (e.g. temp, power, rpm, etc.)

Control Streams/Commands:

System Control
Stream

Comments

None None

Note: This is a purposefully simple example that could be further enhanced by:

47

- Adding more Sensors providing state of the Aircraft (e.g. air speed, temp, etc.)
- Adding Control Channels to communicate mission info to the pilot
- Adding one or more payloads, each with its own Data Stream(s) and Control

Channel(s)

7.1.5. Ground Vehicle Telemetry / AVL
Ground vehicles increasingly come with sophisticated telemetry Sensors. Given the increasing
prevalence of GNSS-denial within conflict zones, some military vehicles also come with Assured
Position, Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the
ground vehicle, as a System/Platform, and by association, for its mounted Sensor Systems.
The diagram and discussion below help convey how ground vehicle telemetry and associated
Sensors can be treated in the OGC API - Connected Systems Standard. For the purposes of
this example, there are no Actuators, because we assume the human driver will control the
Platform.

System: Ground Vehicle (the top level System is the Platform in this case)
Platform: Ground Vehicle (the Platform is the top level System)
Sensors: GNSS/INS, Engine Sensors (Subsystems mounted on the Platform)
Actuators: None
Processes: None
Features of Interest: Ground Vehicle, Engine
Data Streams/Observations: Positioning Data, Engine State
Control Streams/Commands: None

48

Systems:

Name Type Description (+ link to datasheet)

Ground Vehicle System

Ground Vehicle Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Engine
Sensors

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Ground Vehicle GNSS/INS GNSS/INS provides position and orientation of the
vehicle

Engine Engine Sensor Engine Sensors provide measurements of engine
parameters

Controlled FOI
(the thing you
want to control)

System Comments

None None This example is manned/crewed therefore there are no
controllable parameters in this model.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Vehicle
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Engine Sensor Engine State Engine parameters (e.g. temp, power, rpm, etc.)

Control Streams/Commands:

System Control Stream Comments

49

None None

Note: This is a purposefully simple example that could be further enhanced by:
- Adding more Sensors providing state of the Ground Vehicle (e.g. ground speed, temp,

etc.)
- Adding Control Channels to communicate mission info to the driver
- Adding one or more payloads, each with its own Data Stream(s) and Control

Channel(s)

7.1.6. Surface Vessel / AIS
Surface vessels have long benefited from onboard GNSS/INS that provide persistent location
and heading information to the navigator. Given the increasing prevalence of GNSS-denial
within conflict zones, some military surface vessels also come with Assured Position,
Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the surface
vessel, as a System/Platform, and by association, for its mounted Sensor Systems. The
diagram and discussion below help convey how surface vessel telemetry and associated
Sensors can be treated in the OGC API - Connected Systems Standard. For the purposes of
this example, there are no Actuators, because we assume the human captain will control the
Platform.

50

System: Surface Vessel (the top level System is the Platform in this case)
Platform: Surface Vessel (the Platform is the top level System)
Sensors: GNSS/INS, Engine Sensors (Subsystems mounted on the Platform)
Actuators: None
Processes: None
Features of Interest: Surface Vessel, Engine
Data Streams/Observations: Positioning Data, Engine Performance
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Surface Vessel System

Surface Vessel Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Engine
Sensors

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Surface Vessel GNSS/INS GNSS/INS provides position and orientation (e.g.,
‘orientation at rest’, heal, trim, heading of the Vessel
Platform

Engine Engine Sensor Engine Sensors provide measurements of Engine
parameters

Controlled FOI
(the thing you
want to control)

System Comments

None None This example is manned/crewed/captained, therefore
there are no controllable parameters in this model.

Data Streams/Observations:

System Data Stream Comments

51

GNSS/INS Vessel
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Engine Sensor Engine State Engine parameters (e.g. temp, power, rpm, etc.)

Control Streams/Commands:

System Control
Stream

Comments

None None

Note: This is a purposefully simple example that could be further enhanced by:
- Adding more sensors providing state of the Surface Vessel (e.g. vessel speed, temp,

etc.)
- Adding control channels to communicate mission info to the captain
- Adding one or more payloads, each with its own Data Stream(s) and Control

Channel(s)

7.1.7. Unmanned Aerial System (UAS - aka Aerial UxS)
Aerial UxS Platforms increasingly have onboard GNSS/INS that provide persistent 6 DoF
GeoPose to the operator or the autonomous navigation process. Given the increasing
prevalence of GNSS-denial within conflict zones, aerial UxS producers are increasingly looking
to miniaturize Assured Position, Navigation, and Timing (A-PNT) solutions that can derive
GeoPose information for the Aerial UxS, as a System/Platform, when GNSS is denied, and by
association, for its mounted Sensor Systems. The diagram and discussion below help convey
how Aerial UxS telemetry and associated Sensors can be treated in the OGC API - Connected
Systems Standard.

52

System: Unmanned Aerial System (UAS) (the top level System in this case includes the
Platform and the Ground Control Station (GCS))
Platform: Unmanned Aerial Vehicle (UAV)
Sensors: GNSS/INS, Video Camera
Actuators: Onboard Navigation Control System
Processes: GeoPointing Algorithm
Features of Interest: UAV, GCS, Camera Frustum, Video Target(s)
Data Streams/Observations: Positioning Data, Video
Control Streams/Commands: Navigation, Camera pointing, Camera config

Systems:

Name Type Description (+ link to datasheet)

UAS System

UAV Platform The Platform is the first component of the top level
System (UAS)

GNSS/INS Sensor Subsystem mounted on the Platform

Video Camera Sensor Subsystem mounted on the Platform

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

53

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Ground Control
Station

System The GCS is the second component of the top level
System (UAS)

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

UAV GNSS/INS GNSS/INS provides position/orientation/velocity of the
UAV Platform

Ground Control
Station

GCS GCS reports data about itself (e.g. battery, radio status,
position). Not all GCS have GNSS/INS describing their
position, but increasingly they do.

Video Camera Video Camera Video Camera Subsystem provides its own orientation
relative to the Platform, as well as imaging parameters
like FOV, frame size, frame rate, etc.

Video Target(s) Video Camera Video Camera provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

UAV Onboard
Navigation
Control System

Control Subsystem receives navigation commands to
task the UAV to change position or follow a flight plan.

Video Camera Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

Video Frustum Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

UAV, Video
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
maneuvering the UAV and rotating the gimbal.

Data Streams/Observations:

54

System Data Stream Comments

GNSS/INS UAV
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Onboard
Navigation
Control System

UAV State This can include reporting on Platform health, power,
radio, etc. details.

Video Camera Video Data
(H.264)

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control System

Navigation - Relative motion (e.g., joystick controls)
- Navigate to geographic location
- Load and execute entire mission

Video Camera Camera
Pointing

- Raw yaw/pitch/roll command

Video Camera Camera
Configuration

- Start/stop recording
- Change frame rate / resolution / exposure, etc.

GeoPointing
Algorithm

Camera
GeoPointing

Point gimballed camera to X, Y, Z, T

7.1.8. Unmanned Ground Vehicle (UGV - aka Ground UxS)
UGVs increasingly come with sophisticated telemetry Sensors. Given the increasing prevalence
of GNSS-denial within conflict zones, some military vehicles also come with Assured Position,
Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the UGV, as
a System/Platform, and by association, for its mounted Sensor Systems. The diagram and
discussion below help convey how UGV telemetry and associated Sensors can be treated in the
OGC API - Connected Systems Standard.

55

System: Ground UxS (Unmanned Ground System) (the top level System in this case includes
the Platform and the Ground Control Station (GCS))
Platform: UGV (Unmanned Ground Vehicle)
Sensors: GNSS/INS, Video Camera
Actuators: Onboard Navigation Control System, Weapon
Processes: GeoPointing Algorithm
Features of Interest: UGV, Camera Frustum, Object(s)
Data Streams/Observations: Telemetry, Video, Gun scope
Control Streams/Commands: Navigation, Camera pointing, Change camera config (e.g.
sampling rate), Gun trigger actuator

Systems:

Name Type Description (+ link to datasheet)

Ground UxS System

UGV Platform The Platform is the first component of the top level
System (UGV)

GNSS/INS Sensor Subsystem mounted on the Platform

Video Camera Sensor Subsystem mounted on the Platform

Weapon Scope Sensor Subsystem mounted on the Platform

56

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Weapon Actuator Subsystem mounted on the Platform

Ground Control
Station

System The GCS is the second component of the top level
System (UGV)

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

UGV GNSS/INS GNSS/INS provides position/orientation/velocity of the
UGV Platform

Ground Control
Station

GCS GCS reports data about itself (e.g. battery, radio status,
position). Not all GCS have GNSS/INS describing their
position, but increasingly they do.

Video Camera Video (H.264) Video Camera Subsystem receives commands to
change the imaging parameters

Video Target(s) Video Camera Video Camera provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

UGV Onboard
Navigation
Control System

Control Subsystem receives navigation commands to
task the UGV to change position or follow a mission
plan.

Video Camera Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

Video Frustum Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

Weapon Range Weapon Weapon controller receives weapon actuation

57

commands.

UGV, Video
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
maneuvering the UAV and rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS UGV
Positioning
Data

Position, attitude, velocity, acceleration, positioning
accuracy, etc.

Onboard
Navigation
Control System

UGV State This can include reporting on Platform health, power,
radio, etc. details.

Video Camera Video (H.264)

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control System

Navigation
Commands

- Relative motion (e.g., joystick controls)
- Navigate to geographic location
- Load and execute entire mission

Video Camera Camera
pointing

- Raw yaw/pitch/roll command

Video Camera Camera config - Start/stop recording
- Change frame rate / resolution / exposure, etc.

GeoPointing
Algorithm

Camera
GeoPointing

Point gimballed camera to X, Y, Z, T

Weapon Weapon
Actuation
Commands

58

7.1.9.Unmanned Surface Vehicles (USV - aka Marine UxS)
USV have long benefited from onboard GPS and magnetic compasses that provide persistent
location and heading information to the navigator. Given the increasing prevalence of
GPS-denial within conflict zones, some military USV also come with Assured Position,
Navigation, and Timing (A-PNT) solutions that can derive GeoPose information for the USV, as
a System/Platform, and by association, for its mounted Sensor Systems. The diagram and
discussion below help convey how USV telemetry and associated Sensors can be treated in the
OGC API - Connected Systems Standard.

System: Marine UxS (Unmanned Surface Vehicle)
Platform: USV (Unmanned Surface Vehicle)
Sensors: GNSS/INS, Thermometer/Humidity Probe, Wind Sensor, CDT, Dissolved Oxygen
Sensor, Acoustic Doppler, Barometer
Actuators: Onboard Navigation Control System
Processes: None
Features of Interest: USV, Atmosphere, Hydrosphere
Data Streams/Observations: Telemetry, Weather, Acoustic Doppler (Bathymetry, etc.), SST,
Salinity, Wave Height, Dissolved O2/CO2
Control Streams/Commands: Navigation, Change sensor config (e.g. sampling rate)

Systems:

Name Type Description (+ link to datasheet)

59

Marine UxS System

USV Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Weather
Sensors

Sensor Subsystem mounted on the Platform

Water Surface
Sensors

Sensor Subsystem mounted on the Platform (includes SST,
Salinity, Wave Height, Dissolved O2/CO2 sensors)

Acoustic
Doppler
(Sonar)

Sensor Subsystem mounted on the Platform

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

USV GNSS/INS GNSS/INS provides position/orientation/velocity of the
USV Platform

Atmosphere All Weather
Sensors

Hydrosphere Water Surface
Sensors

Controlled FOI
(the thing you
want to control)

System Comments

USV Controller Controller receives navigation commands to task the
USV to change position or follow a flight plan.

Data Streams/Observations:

System Data Stream Comments

60

GNSS/INS USV
Positioning
Data

Weather
Sensors

Air
Temperature
Atm Pressure
Wind Velocity
Solar
Irradiance

Water Sensors Sea Surface
Temperature

Water Sensors Salinity PPM

Water Sensors Wave Height

Water Sensors Dissolved
O2/CO2

Acoustic
Doppler

Doppler radar
of currents,
bathymetry,
etc.

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control
System

Sensors Change sensor sample rate

Note: All weather Sensors are combined into a single System within the Control
Streams/Commands section of this presentation for the sake of brevity.

61

7.1.10. Unmanned Underwater Vehicle (UUV - aka Marine UxS)
UUVs have long benefited from onboard GPS, magnetic compasses, and inertial measurement
units (IMU) that provide persistent location and heading information to the navigation system,
albeit interpolated between GPS readings. Given the increasing prevalence of GPS-denial
within conflict zones, some military UUV also come with Assured Position, Navigation, and
Timing (A-PNT) solutions that can derive GeoPose information for the underwater vessel, as a
System/Platform, and by association, for its mounted Sensor Systems. The diagram and
discussion below help convey how UUV telemetry and associated sensors can be treated in the
OGC API - Connected Systems Standard.

System: Marine UXS (Unmanned Underwater Vehicle)
Platform: UUV (Unmanned Underwater Vehicle)
Sensors: GNSS/INS, Water Pressure/Depth, Engine, Hydrosphere Sensors, Acoustic
Doppler
Actuators: Flight Controller
Processes: A-PNT, GeoPointing Algorithm
Features of Interest: UUV, Sonar Range, Acoustic Doppler (e.g., Sonar) Target(s)
[Object(s)], Hydrosphere, Engine
Data Streams/Observations: Positioning Data, Acoustic Doppler (Bathymetry, etc.),
Hydrosphere Data
Control Streams/Commands: Navigation, Change sensor config (e.g. sampling rate)

Systems:

62

Name Type Description (+ link to datasheet)

Marine UxS System

UUV Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Water
Pressure/Depth

Sensor Subsystem mounted on the Platform

Hydrosphere
Sensors

Sensor (s) Subsystem mounted on the Platform

Sonar Sensor Subsystem mounted on the Platform

Engine Sensor Subsystem mounted on the Platform

Onboard
Navigation
Control System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

A-PNT Process Subsystem executed on the Platform
(GNSS/INS+Water Pressure/Depth)

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

UUV GNSS/INS +
Water Pressure
Depth

GNSS/INS and Water Pressure/Depth sensor provides
position/orientation/velocity of the UUV Platform

Acoustic
Doppler range

Acoustic
Doppler

Acoustic Doppler Subsystem provides its own
orientation relative to the Platform, as well as sensing
parameters like FOV, frame size, frame rate, etc.

Acoustic
Doppler
Target(s)

Acoustic
Doppler

Sonar provides signatures of the target

Engine Engine Sensor

63

Hydrosphere Hydrosphere
Sensors

Controlled FOI
(the thing you
want to control)

System Comments

UUV Controller Controller receives navigation commands to task the
UUV to change position or follow a flight plan.

Sonar Sonar Sonar Subsystem receives commands to change the
sonar parameters

UUV, Sonar
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher
level task that breaks down into lower level commands
for maneuvering the UUV and rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS UUV
Positioning
Data

Sonar

Hydrosphere
Sensors

Hydrosphere
Observations

Control Streams/Commands:

System Control
Stream

Comments

Onboard
Navigation
Control System

Commands for
New Waypoints

Sonar Change
frequency or
sampling ra

64

GeoPointing
Algorithm

Change the
orientation of
the UUV

7.1.11. Spaceborne Systems
Spaceborne Systems, including satellites, have long benefited from onboard GPS, star trackers
and other technologies that provide persistent location and orientation information to the
Platform navigation system and ground mission control, and by association, for its mounted
Sensor Systems. The diagram and discussion below help convey how space borne system
telemetry and associated Sensors can be treated in the OGC API - Connected Systems
Standard.

System: Space Mission
Platform: Satellite
Sensors: Camera, Startracker, GNSS/INS
Actuators: Gimbal,
Processes: Orbit Tracking, GeoPointing Algorithm
Features of Interest: Satellite, Camera Frustum, Objects
Data Streams/Observations: Images, Video

65

Control Streams/Commands: Slew to Cue

Systems:

Name Type Description (+ link to datasheet)

Satellite
System

System

Satellite Platform the top level System is the Platform in this case

GNSS/INS Sensor Subsystem mounted on the Platform

Camera Sensor Subsystem mounted on the Platform

Nav Control
System

Actuator Subsystem mounted on the Platform, also includes
processes but not described here.

GeoPointing
Algorithm

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Satellite GNSS/INS GNSS/INS provides position/orientation/velocity of the
UAV Platform

Object(s) Imager Imager provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

Satellite Flight
Controller

Flight Controller receives navigation commands to task
the satellite to change position or follow a flight plan.

Camera Camera Camera Subsystem receives commands to change the
imaging parameters

Camera
Frustum

Camera
Gimbal/Bus

Camera Gimbal/Bus Subsystem receives commands to
change the Camera Frustum orientation

66

Satellite,
Camera
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
Camera Frustum to a particular 3D location. This is a
higher level task that breaks down into lower level
commands for maneuvering the Satellite and rotating
the gimbal or bus.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Satellite
Positioning
Data

Camera Imagery/Video

Control Streams/Commands:

System Control
Stream

Comments

Flight Controller

Camera Commands to
change the
imaging
parameters

Imager
Gibal/Bus

Commands to
change the
Camera
Frustum
orientation

GeoPointing
Algorithm

Commands to
the
GeoPointing
process to
determine
where to point
the Camera

67

7.1.12. Cell Tower
Fixed terrestrial infrastructure such as Cell Towers have long served a key role in helping
triangulate the location of mobile handsets in scenarios where the GPS information was not
available. The diagram and discussion below help convey how Cell Towers and associated
Sensors can be treated in the OGC API - Connected Systems Standard.

System: Cell Tower
Platform: Cell Tower
Sensors: Thermometer, Tower Status Monitor (electrical power, HW temp, receiver/emitter
power), Mobile Device Log (mac address, cell region, signal level)
Actuators: None
Processes: Cell Tower Range Calculator, Mobile Device Locator (triangulation)
Features of Interest: Cell Tower, Mobile Device, Cell Tower Range
Data Streams/Observations: One Data Stream per Sensor (see below)
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Cell Tower System

Cell Tower Platform the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

68

Tower Status
Monitor
(electrical
power, HW
temp,
receiver/emitter
power)

Sensor Subsystem mounted on the Platform

Mobile Device
Log (Mac
address, Cell
Region, Signal
Level)

Sensor Subsystem mounted on the Platform

Cell Tower
Range
Calculator

Process Subsystem mounted on the Platform

Mobile Device
Locator

Process Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Cell Tower Tower Status
Monitor
(Sensor)

electrical power, HW temp, receiver/emitter power

Mobile Device Mobile Device
Log (Sensor)

mac address, cell region, signal level

Cell Tower
Range

Cell Tower
Range
Calculator
(Process)

This is calculated with cell RF characteristics, RF
propagation model, and terrain model.

Controlled FOI
(the thing you
want to control)

System Comments

None

69

Data Streams/Observations:

System Data Stream Comments

Thermometer Air
Temperature

Tower Status
Monitor

Electrical
power, HW
temp,
Receiver/emitte
r power

Mobile Device
Log

MAC address,
Cell region,
Signal level

Cell Tower
Range
Calculator

Cell Tower
Range

Mobile Device
Locator

Mobile Device
Location

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.13 GMTI SAR
Ground Moving Target Indicator Synthetic Aperture Radar (GMTI SAR) is an airborne remote
sensing capability that discerns Observations of fixed and moving objects on the ground. The
diagram and discussion below help convey how GMTI SAR and associated Processes can be
treated in the OGC API - Connected Systems Standard.

70

System: GMTI SAR
Platform: Aircraft
Sensors: Synthetic Aperture Radar
Actuators: None
Processes: Decluttering Algorithm Using DTED, GMTI Detection Report Generator
Features of Interest: Aircraft, Left Radar Beam, Right Radar Beam, GMTI Detection
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation) (Left and
Right), Decluttered GMTI Detection Reports
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

GMTI SAR System

Aircraft Platform the top level System is mounted on the Platform

Radar Sensor Subsystem mounted on the Platform

GNSS/INS Sensor Subsystem mounted on the Platform

Decluttering
Algorithm
Using DTED

Process Subsystem mounted on the Platform

GMTI Detection Process Subsystem mounted on the Platform

71

Report
Generator

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Aircraft GNSS/INS

Radar Beams
(Left Beam,
Right Beam)

Radar

GMTI
Detections

Decluttering
Algorithm
Using DTED,
GMTI
Detection
Report
Generator

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Radar Radar returns

GMTI Detection
Report
Generator

GMTI
Detections

Control Streams/Commands:

System Control
Stream

Comments

72

None

7.1.14 Air Traffic Radar
Air Traffic Radar is another remote sensing capability tied to a fixed location. Rather than being
slewed as a PTZ Camera is, it can be tasked to collect in different modes. The diagram and
discussion below help convey how Air Traffic Radar can be treated in the OGC API - Connected
Systems Standard.

System: Air Traffic Radar
Platform: Radar Tower
Sensors: Radar
Actuators: None
Processes: Aircraft Tracking
Features of Interest: Radar, Radar Lobes, Targets (aircrafts / drones / birds / weather)
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation), Processed
data = aircraft locations
Control Streams/Commands: Radar Mode (shift frequency/polarity, elevation/azimuth
speed/increments)

73

Systems:

Name Type Description (+ link to datasheet)

Air Traffic
Radar System

System

Radar Tower Platform the top level System is the Platform in this case

Radar Sensor Subsystem mounted on the Platform

Aircraft Feature
Detection/
Tracking

Process Subsystem not mounted on Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Radar Radar

Radar Lobes Radar

Aircraft Radar

Controlled FOI
(the thing you
want to control)

System Comments

Radar Lobes RF modulator

Radar, Radar
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
pointing the radar.

Data Streams/Observations:

System Data Stream Comments

Radar Radar returns

Aircraft Feature
Detection/

Aircraft
Features

74

Tracking
Process

Control Streams/Commands:

System Control
Stream

Comments

Radar Mode
Control

Command a
change to the
radar
modulation

7.1.15 Weather Radar
Weather Radar is another remote sensing capability tied to a fixed location. Rather than being
slewed as a PTZ camera is, it can be tasked to collect in different modes. The diagram and
discussion below help convey how Weather Radar can be treated in the OGC API - Connected
Systems Standard.

75

System: Weather Radar System
Platform: Radar Tower
Sensors: Radar
Actuators: None
Processes: Weather Feature Detection/Tracking
Features of Interest: Radar, Radar Lobes, Targets (aircrafts / drones / birds / weather)
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation), Processed
data = reflectivity (etc.) coverage, additional processing to get features
Control Streams/Commands: Radar Mode (shift frequency/polarity, elevation/azimuth
speed/increments)

Systems:

Name Type Description (+ link to datasheet)

Weather Radar
System

System

Radar Tower Platform the top level System is the Platform in this case

Radar Sensor Subsystem mounted on the Platform

Weather
Feature
Detection/
Tracking

Process Subsystem not mounted on Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Radar Radar

Radar Lobes Radar

Weather
System

Radar

Controlled FOI
(the thing you
want to control)

System Comments

Radar Lobes RF modulator

76

Radar, Radar
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher level
task that breaks down into lower level commands for
pointing the radar.

Data Streams/Observations:

System Data Stream Comments

Radar Radar returns

Weather
Feature
Detection/
Tracking
Process

Weather
Features

Control Streams/Commands:

System Control
Stream

Comments

Radar Mode
Control

Command a
change to the
radar
modulation

7.1.16. Counter UAS System (C-UAS)
A C-UAS System is an example of a complex System comprising multiple Sensors, Processes,
and Actuators which observes and discriminates between Features of Interest of different kinds,
and takes action with geospatial precisions and accuracy. A C-UAS System may operate in a
fixed location, or while on the move. The diagram and discussion below help convey how
C-UAS can be treated in the OGC API - Connected Systems Standard.

77

System: C-UAS System
Platform: C-UAS System
Sensors: Radar, Optical, Acoustic,
Actuators: Countermeasures like High energy RF
Processes: UAS Tracking, UAS Identification, GeoPointing Algorithm
Features of Interest: C-UAS System, Radar, Radar Lobes, Countermeasures, Targets
(aircrafts / drones / birds / weather)
Data Streams/Observations: Raw radar data (echo power at azimuth/elevation), Processed
data = aircraft locations, optical, etc.
Control Streams/Commands: Radar Mode (shift frequency/polarity, elevation/azimuth
speed/increments), Countermeasure Command

Systems:

Name Type Description (+ link to datasheet)

C-UAS System Platform the top level System is the Platform in this case

Radar Sensor Subsystem mounted on the Platform

Optical Sensor Subsystem mounted on the Platform

Acoustic Sensor Subsystem mounted on the Platform

GNSS/INS Sensor Subsystem mounted on the Platform

78

UAS
Identification

Process

UAS Tracking Process

GeoPointing
Algorithm

Process

Countermeasur
es

Actuator Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

C-UAS System GNSS/INS GNSS/INS provides position/orientation/velocity of the
C-UAS Platform

Radar Video Camera Subsystem provides its own orientation
relative to the Platform, as well as imaging parameters
like FOV, frame size, frame rate, etc.

Radar Lobes

Countermeasur
es

Countermeasur
e Frustum

Target(s) Video Camera Video Camera provides imagery of the target

Controlled FOI
(the thing you
want to control)

System Comments

Radar Flight Controller receives navigation commands to task
the UAV to change position or follow a flight plan.

Radar Lobes Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

79

Countermeasur
es

Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

Countermeasur
e Frustum

C-UAS, Video
Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location. This is a higher
level task that breaks down into lower level commands
for maneuvering the CUAS and rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

GNSS/INS C-UAS
Positioning
Data

Radar Raw Radar
Data

Optical Video

UAS Tracking
(Process)

Processed
Track Data

Control Streams/Commands:

System Control
Stream

Comments

Radar Mode
Control

Command a
change to the
radar
modulation

Countermeasur
e Control

GeoPoint
Countermeasu
re, and
Execute

80

7.1.17. Weather Forecast Model
A Weather Forecast Model is a System that is a Process which consumes a variety of weather
related Sensor feeds, and generates Data Streams of Observations about a variety of Features
of Interest comprising our forecasted understanding of global weather. The diagram and
discussion below help convey how Weather Forecast Models can be treated in the OGC API -
Connected Systems Standard.

System: Top level System is a Process
Platform: None
Sensors: None
Actuators: None
Processes: The weather forecast model.
Features of Interest: the atmosphere globally (GFS, other weather features can be extracted
with additional processing (e.g., temperature, pressure, wind speed, precipitation, etc.)
Data Streams/Observations: 3D grid of the state of the atmosphere at a given time, and
predicted at a given time (result time (the time the forecast was run), and phenomenon time
(the time you are predicting for)
Control Streams/Commands: None. It runs on its own.

Systems:

Name Type Description (+ link to datasheet)

81

Weather
Forecast Model

System the top level System is the Process in this case

Weather
Forecast Model

Process the top level System is the Process in this case

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

The
atmosphere
globally

Process

Other weather
features (e.g.,
temperature,
pressure, wind
speed,
precipitation,
etc.)

Process

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

GFS model GFS data
output

Additional
processes

Other weather
feature

Control Streams/Commands:

System Control
Stream

Comments

82

None

7.1.18. Flight Optimization Algorithm
A Flight Optimization Algorithm is a System that is a Process which consumes a variety of
space-based, airborne and terrestrial weather, aircraft, and flight plan data, and generates Data
Streams of Observations that represent optimal flight plans for pilots to choose from. The
diagram and discussion below help convey how Flight Optimization Algorithms can be treated in
the OGC API - Connected Systems Standard.

System: Top level System is a Process.
Platform: None
Sensors: None
Actuators: None
Processes: The Process is the flight optimization algorithm
Features of Interest: The Flight. Different Feature of Interest for each flight number.
Data Streams/Observations: Output of Process is the predicted optimized flight plan (vector
of aircraft location/heading/speed vs time). Plan of what the airplane would need to do to fly
in an optimal way, given the predicted constraints.

83

Control Streams/Commands: Set algorithm parameters for given flight ID (e.g. optimize for
fuel and/or time); Trigger optimization on-demand (if not automatically triggered); In general,
this would run on its own. But, it could also be triggered by a pilot/navigator at any time using
an Execute Command, with some parameters beyond Flight ID.

Systems:

Name Type Description (+ link to datasheet)

Flight
Optimization
Algorithm

System

Flight
Optimization
Algorithm

Process the top level System is the Platform in this case

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

The Flight GNSS/INS provides position/orientation/velocity of the
flight Platform

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Flight
optimization
algorithm

Flight
optimization

Control Streams/Commands:

System Control
Stream

Comments

None

84

7.1.19. Tipping and Cueing (Laser Range Finder to PTZ)
A Tipping and Cueing is a System that is a Process which consumes X,Y,Z,T coordinates from
one Sensor (e.g., Laser Range Finder - LRF) and forwards them to another Sensor (e.g., PTZ
Camera) for the purposes of tasking. The diagram and discussion below help convey how
Tipping and Cueing Processes can be treated in the OGC API - Connected Systems Standard.

System: Top level System is a Process Chain, with Sensor, Processing and Actuator
components
Platform: None
Sensors: LRF, PTZ Camera
Actuators: PTZ gimbal, Camera config
Processes: Process is a Tip and Cue of PTZ from Laser Range Finder geolocation.
Features of Interest: Target pointed by LRF in X/Y/Z/T
Data Streams/Observations: None, this is a closed loop process, that sends output data as
a command to an actuator.
Control Streams/Commands: None, this is a closed loop process that gets inputs directly
from sensors.

85

Systems:

Name Type Description (+ link to datasheet)

Tipping and
Cueing
Process Chain

System

Tipping and
Cueing
Process Chain

Process the top level System is the Process in this case

LRF Sensor Subsystem not mounted on the Process

PTZ Camera Sensor Subsystem not mounted on the Process

PTZ Gimbal Actuator Subsystem not mounted on the Process

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

PTZ Video
Frustum

PTZ Video Camera Subsystem provides its own orientation
relative to the Platform, as well as imaging parameters
like FOV, frame size, frame rate, etc.

LRF Line of
Sight

LRF This assumes the LRF has GPS, magnetic compass,
and accelerometers.

Video Target(s) Video Camera Video Camera provides imagery/video of the target

Controlled FOI
(the thing you
want to control)

System Comments

Video Camera Video Camera Video Camera Subsystem receives commands to
change the imaging parameters

Video Frustum Video Camera Video Camera Subsystem receives commands to
change the gimbal and thus the frustum orientation

PTZ Camera,
Video Frustum

GeoPointing
Algorithm

GeoPointing process receives commands to point the
frustum to a particular 3D location, generated by the
LRF. This is a higher level task that breaks down into

86

lower level commands for maneuvering the PTZ and
rotating the gimbal.

Data Streams/Observations:

System Data Stream Comments

None None, this is a closed loop process, that sends output
data as a command to an actuator.

Control Streams/Commands:

System Control
Stream

Comments

None None, this is a closed loop process that gets inputs
directly from sensors.

7.1.20. Alerts/Notification (Temperature Threshold)
An Alert is a System that is a Process that (in this use case) notifies particular subscribers when
a threshold is exceeded. The diagram and discussion below help convey how
Alerts/Notification can be treated in the OGC API - Connected Systems Standard.

87

System: Top level System is a Process that is fed with data from a Sensor
Platform: None
Sensors: Thermometer
Actuators: None
Processes: Threshold Cross Alert Process
Features of Interest: Temperature sampling location
Data Streams/Observations: Alert message sent to subscriber. (In the API, alerts are just
observations with a different meaning)
Control Streams/Commands: None.

Systems:

Name Type Description (+ link to datasheet)

Alerts/Notificati
on

System

Alerts/Notificati
on

Process the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Threshold
crossing
algorithm

Process Subsystem mounted on the Platform

88

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Temperature
sampling
location

Temperature
Sensor

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Alert message
sent to
subscriber

(In the API, alerts are just observations with a different
meaning)

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.21. Cyber Sensor
A Cyber Sensor is a System that is a Process that makes Observations about the state of a
given device’s software, data and network behaviors. The diagram and discussion below help
convey how Cyber Sensors can be treated in the OGC API - Connected Systems Standard.

89

System: Top level System is a Process, with Sensor and Processing components
Platform: None
Sensors: Thermometer
Actuators: None
Processes: Process is a threshold crossing algorithm.
Features of Interest: Temperature sampling location
Data Streams/Observations: Alert message sent to subscriber. (In the API, alerts are just
observations with a different meaning)
Control Streams/Commands: None.

Systems:

Name Type Description (+ link to datasheet)

Alerts/Notificati
on

System

Alerts/Notificati
on

Process the top level System is the Platform in this case

Thermometer Sensor Subsystem mounted on the Platform

Threshold
crossing
algorithm

Process Subsystem mounted on the Platform

90

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Temperature
sampling
location

Temperature
Sensor

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Alert message
sent to
subscriber

(In the API, alerts are just observations with a different
meaning)

Control Streams/Commands:

System Control
Stream

Comments

None

7.1.22. Human as Sensor
A Human is a System that is a Sensor capable of observing the world with eyes, ears, nose,
skin, and tongue in order to make Observations of how a Feature of Interest looks, sounds,
smells, feels, and tastes and input them into a survey mechanism. The diagram and discussion
below help convey how Humans as Sensors can be treated in the OGC API - Connected
Systems Standard.

91

System: The top level System is the human Sensor
Platform: None
Sensors: The human filling up a survey based on observations from their eyes, ears, nose,
skin, tongue.
Actuators: None
Processes: None
Features of Interest: Subject of the survey
Data Streams/Observations: Survey responses
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Human as
Sensor

System

Human Sensor the top level System is the Platform in this case

Eyes Sensor Subsystem is mounted on the Platform

Ears Sensor Subsystem is mounted on the Platform

Nose Sensor Subsystem is mounted on the Platform

Skin Sensor Subsystem is mounted on the Platform

92

Tongue Sensor Subsystem is mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Human
(Sensor)

Human (eyes,
ears, nose,
skin, tongue)

Subject of the
survey

Human (eyes,
ears, nose,
skin, tongue)

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Human (eyes) Survey
responses

Observations of how something looks

Human (ears) Survey
responses

Observations of how something sounds

Human (nose) Survey
responses

Observations of how something smells

Human (skin) Survey
responses

Observations of how something feels

Human
(tongue)

Survey
responses

Observations of how something tastes

Control Streams/Commands:

93

System Control
Stream

Comments

None

7.1.23. Human as Platform
A Human is a Platform for mounting/carrying (in this use case) a Sensor (mobile phone camera)
that can be tasked to Pan, Tilt and Zoom. In this use case, the top level system is the Human
Platform. The diagram and discussion below help convey how Humans as Platforms can be
treated in the OGC API - Connected Systems Standard.

System: Top level System is the Human Platform
Platform: Human
Sensors: Mobile Phone Camera
Actuators: None
Processes: None
Features of Interest: Camera Frustum, Object
Data Streams/Observations: Mobile Phone Positioning Data, Video/Image
Control Streams/Commands: Command the Pan, Tilt and Zoom of the Camera, Configure
Camera Video

94

Systems:

Name Type Description (+ link to datasheet)

Human
(Platform)

System

Human Platform the top level System is the Platform in this case

Mobile Phone
Camera

Sensor Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Camera
Frustum

Mobile Phone
Camera

Object Mobile Phone
Camera

Camera provides video/imagery of the object

Controlled FOI
(the thing you
want to control)

System Comments

Camera
Frustum

Human hands

Data Streams/Observations:

System Data Stream Comments

GNSS/INS Mobile Phone
Positioning
Data

Video Camera Video/Image

Control Streams/Commands:

System Control Stream Comments

95

Human hand Command the
Pan, Tilt and
Zoom of the
Camera

Human hand Configure
Camera Video

7.1.24. Human Receiving Command
A Human is a Platform that can be tasked to go somewhere at a time and collect Observations
about a Feature of Interest with the Sensors inherent to the Human Platform/System - eyes,
ears, nose, skin, and tongue - and/or to undertake some sort of action. The diagram and
discussion below help convey how Humans (as Platforms) can receive Commands within the
OGC API - Connected Systems Standard.

System: Top level System is the Human Platform
Platform: Human

96

Sensors: Eyes, Ears, Nose, Skin, Tongue
Actuators: Human legs, being told to go somewhere and sense/do something.
Processes: None
Features of Interest: Object
Data Streams/Observations: None
Control Streams/Commands: Location to move to received by the human

Systems:

Name Type Description (+ link to datasheet)

Human
(Platform)

System

Human Platform the top level System is the Platform in this case

Human l and
hands, legs
and arms

Actuator Subsystem mounted on the Platform

Features of Interest:

Observed FOI
(the thing you
want to
observe)

System Comments

Object

Controlled FOI
(the thing you
want to control)

System Comments

Human Task the human to go somewhere at a moment of time
and collect data or do something.

Data Streams/Observations:

System Data Stream Comments

Eyes Visual
observations

Observations of how something looks

Ears Audible
observations

Observations of how something sounds

97

Nose Olfactory
observations

Observations of how something smells

Skin Temperature,
texture,
pressure, etc.
observations

Observations of how something feels

Tongue Taste
observations

Observations of how something tastes

Control Streams/Commands:

System Control
Stream

Comments

Command to
human to move
to a location
and collect
observations.

7.1.25. Dynamic Data Feed
A Dynamic Data Feed is a System that is an aggregation of multiple underlying Sensor Data
Streams that can be either aggregated into a single ‘Virtual’ Sensor, or recombined in different
ways into n- Virtual Sensors. The diagram and discussion below help convey how Dynamic
Data Feeds can be treated in the OGC API - Connected Systems Standard.

98

System: Top level System is the Dynamic Data Feed
Platform: System
Sensors: Sensors 1-5, ‘Virtual’ Sensors A-E
Actuators: None
Processes: None
Features of Interest: Object
Data Streams/Observations: None
Control Streams/Commands: None

Systems:

Name Type Description (+ link to datasheet)

Dynamic Data
Feed (Platform)

System

Dynamic Data
Feed

Platform the top level System is the Platform in this case

Underlying
Sensors

Sensor

Virtual Sensors Sensor

Features of Interest:

Observed FOI System Comments

99

(the thing you
want to
observe)

Object Virtual Sensor Each Virtual Sensor will have Observed FOI.

Controlled FOI
(the thing you
want to control)

System Comments

None

Data Streams/Observations:

System Data Stream Comments

Virtual Sensor Yes Each Virtual Sensor will have Data
Streams/Observations.

Control Streams/Commands:

System Control
Stream

Comments

Command to
human to move
to a location
and collect
observations.

7.2. Domain use cases
This section provides concrete domain use cases of how Systems, Platforms, Sensors,
Processes, Actuators, Features of Interest, Data Streams and their Observations, and Control
Streams and their Commands work together when integrating different kinds of systems via the
OGC API - Connected Systems specifications within and across a particular domain. These
include:

1) Environmental Monitoring

100

2) Logistics
3) Energy and Utilities
4) Facility/Installation/Campus Security
5) Smart Cities
6) Industrial Monitoring and Control (IoT/SCADA)
7) Maritime Domain Awareness
8) Joint All Domain Command and Control
9) Smart Buildings
10) Aviation

7.2.1. Environmental Monitoring
Monitoring environmental change requires the integration of many sensing modalities within a
common 4D framework. An OGC standards-based interoperability architecture for
environmental monitoring enables the integration of all kinds of Systems. The OGC API -
Connected Systems Standard offers architectural opportunities to enable the rapid collection,
fusion, and customization of integrated sensed observations from every source within a
common 4D framework.

System: Each Sensor is a System
Platform: None
Sensors: Buoy Sensors, Water Monitoring Sensors, Well Sensors
Processes: None
Actuators: None
Features of Interest: Ocean, River, Aquifer

101

Data Streams/Observations: Air Temperature, Wave Heights, CTD Profile (Buoy Sensor),
Gauge Height, Discharge, Water Temperature (Water Monitoring Sensors), Groundwater
Level, Water Temperature, Chemicals detection (Well Sensors)
Control Streams/Commands: None

7.2.2.Logistics
Managing logistics across complex supply chains requires detailed tracking of
goods/freight/cargo at a very granular level as these items move from one origin facility to a
destination, often through many intermediate location, on one or more Platforms, and even
within intermediate Platforms such as shipping containers. The OGC API - Connected System
Standard offers architectural opportunities to enable the rapid collection, fusion, and
customization of integrated sensed observations from every source within a common 4D
framework.

System: Each Sensor is a System
Platform: None
Sensors: GPS, RFID, LoRA
Processes: None
Actuators: None
Features of Interest: Truck, Fork Lift, Package

102

Data Streams/Observations: Geographic Location (Long-Range, Truck), Relative Location
(Site-Wide, Fork Lift), Proximity Detections (Approximate Location, Package)
Control Streams/Commands: None

7.2.3 Energy & Utilities
The generation, distribution and use of energy can be a geographically complex endeavor, with
different patterns for those energy utilities requiring fuel sources. The OGC API - Connected
System Standard offers architectural opportunities to enable the rapid collection, fusion, and
customization of integrated sensed observations from every source within a common 4D
framework.

System: Each Sensor is a System
Platform: None
Sensors: Boiler Sensors, Generator Sensors, Chimney Sensors, Transformer Sensors, Plant
Sensors
Processes: None
Actuators: None
Features of Interest: Boiler, Generator, Chimney, Transformer, Plant

103

Data Streams/Observations: Input Water Temp, Boiler Temperature, O2 Level, Steam
Pressure, Steam Temperature (Boiler); Output Voltage, Output Frequency, RPM,
Temperature, Vibration (Generator); SO2, NOx, PM10,PM2.5 Concentration (Chimney); Terminal
Voltage, Frequency, Power Factor, Temperature (Transformer); Total Power Output (Plant)
Control Streams/Commands: None

7.2.4. Facility/Installation/Campus Security
Securing facilities, installations, and campuses requires the integration and dynamic tasking of a
variety of different kinds of sensors, control systems, and response resources. The OGC API -
Connected System Standard offers architectural opportunities to enable the rapid collection,
fusion, and customization of integrated sensed observations from every source within a
common 4D framework.

System: Each Sensor is a System
Platform: None
Sensors: Shot Spotter, Vehicle Positioning Information, Security Cameras, RFID
Processes: None
Actuators: Building Access Control, Security Vehicle Dispatch

104

Features of Interest: Shot Spotter, Shot Spotter Video Frustum, Object(s), Security Vehicle,
Video Camera, Camera Frustum, Object(s), Objects tagged with RFID.
Data Streams/Observations: Acoustic Locator, Video Frustum, Video, Object(s) (Shot
Spotter); Location, Heading, Speed (Vehicle Positioning Information), Video (Security
Cameras), Unique RFID proximity readings (RFID)
Control Streams/Commands: Unique access point requests (Building Access Control),
Unique dispatch orders (Security Vehicle Dispatch)

7.2.5 Smart Cities
The management of smart cities requires the integration and dynamic tasking of a variety of
different kinds of sensors, control systems, and response resources. The OGC API -
Connected System Standard offers architectural opportunities to enable the rapid collection,
fusion, and customization of integrated sensed observations from every source within a
common 4D framework.

System: Each Sensor is a System
Platform: None
Sensors: Parking Sensors, Security Cameras, Energy Consumption Sensors, HVAC
Sensors, Traffic Speed Sensor, Air Quality Sensor

105

Processes: None
Actuators: None
Features of Interest: Parking Sensors, Security Cameras, Energy Consumption Sensors,
HVAC Sensors, Traffic Speed Sensor, Air Quality Sensor
Data Streams/Observations: Occupied (Y/N), Unique Vehicle ID, Time Elapsed (Parking
Sensors); Video (Security Cameras); kWh (Energy Consumption Sensors); Temperature,
Energy Use (HVAC Sensors); Video, Speed Radar, License Plate Reader (Traffic Speed
Sensor); Pollution Markers (Air Quality Sensor)
Control Streams/Commands: Could have, but not assumed in this use case.

7.2.6.Industrial Monitoring and Control (IoT/SCADA)
Industrial facilities, infrastructure and processes require active monitoring and control.
Historically, this required Supervisory Control and Data Acquisition (SCADA) Systems, while
now the conversation centers more on “industrial IoT”. Both are simply constellations of
Sensors, Processes and Actuators arrayed across a complex industrial infrastructure in order
observe, make sense of, and take actions that drive efficiency, error mitigation, safety,
profitability, and overall effectiveness.

Supervisory Control and Data Acquisition (SCADA) Systems are used for controlling, monitoring,
and analyzing industrial devices and processes. The system consists of both software and hardware
components and enables remote and on-site gathering of data from the industrial equipment. The
connecting links in the SCADA architecture, which connect to equipment (also called field devices)
are commonly termed the Programmable Logic Controllers (PLCs), Intelligent Electronic Devices
(IED), Remote Terminal Units (RTUs), Master Terminal Units (MTU) which in turn connect to Human
Machine Interfaces (HMIs). SCADA Systems are using in Manufacturing, Water Management, Oil
and Gas, Transportation, Renewable Energy, Power distributions and control.

106

System: System comprises a variety of Subsystems that are both Sensors, Actuators, and
Features of Interest.
Platform: None
Sensors: HMI, MTU, PLC, IED, RTU
Processes: None
Actuators: HMI, MTU, PLC, IED, RTU
Features of Interest: HMI, MTU, PLC, IED, RTU
Data Streams/Observations: HMI, MTU, PLC, IED, RTU
Control Streams/Commands: HMI, MTU, PLC, IED, RTU

7.2.7.Maritime Domain Awareness
Maritime domain awareness is important for commercial maritime operations, coast guard and
law enforcement operations, and national security operations. Maritime domain awareness is
achieved through the integration of space-based, airborne, mobile/marine, in situ and
terrestrial/marine remote sensors of a wide variety of phenomenologies. With the rising
prevalence of USV and UUV, as well as UAS, within the maritime domain, the tasking of such
Platforms must also be taken into account.

107

System: Each Sensor is a System
Platform: None
Sensors: Remote Sensing Satellite, Coastal Effluent Sensor, Radar, AIS, Sonar
Processes: None
Actuators: None
Features of Interest: Remote Sensing Satellite, Coastal Effluent Sensor, Radar, AIS, Sonar,
Vessel
Data Streams/Observations: Satellite Position Information, Camera Frustum, Image/Video,
Object(s) (Remote Sensing Satellite); Volume, Water Quality (Coastral Effluent Sensors);
Radar Range, Object(s) (Radar); AIS ID, Position, Heading, Speed (AIS); Hydrosphere
Sensors, Atmosphere Sensors (Ocean Boy); Bathymetry (Sonar); Position, Heading, Speed
(Vessel)
Control Streams/Commands: None

7.2.8.Joint All Domain Command and Control
JADC2 demands an architecture that can sense and simultaneously integrate information from
and within all domains to enable the Joint Force Commander to achieve information and
decision advantage. "Sense and integrate" is the ability to discover, collect, correlate,
aggregate, process, and exploit data from all domains and sources (friendly, adversary, and
neutral), and share the information as the basis for understanding and decision-making. OGC
standards-based interoperability architecture enables the integration of sensors, things, robots,

108

drones, satellites, control systems devices and Platforms across space, air, land, sea and cyber
- observing the world across all phenomenologies (e.g., EO, IR, MSI, HSI, LiDAR, Radar, SAR,
GMTI SAR, Sonar, Acoustic, RF, CBRNE, cyber, etc.). OGC API - Connected Systems offers
architectural opportunities to enable the rapid collection, fusion, and customization of integrated
sensed observations from every source within a common 4D framework.

System:
Platform:
Sensors:
Processes:
Actuators:
Features of Interest:
Data Streams/Observations:
Control Streams/Commands:

8.Other SDOs
Beyond the Open Geospatial Consortium, maintaining the OGC API - Connected Systems
Standard will require actively engaging with the specifications, processes, and leadership of
other standards development organizations (SDO). This will include:

109

IETF HTTP, TCP/IP, UDP, RTP,
RTSP, SSL

World Wide Web Consortium XML, WebSockets

OASIS MQTT

IEEE HLA/DIS, etc.

ISO/IEC Moving Picture
Experts Group

MPEG-4

ISO/IEC JTC 1/SC 22, ICS
35.060

JSON

MISB H.264/MISB

DGIWG STANAG 4609

110

https://en.m.wikipedia.org/wiki/International_Organization_for_Standardization
https://en.m.wikipedia.org/wiki/International_Electrotechnical_Commission
https://en.m.wikipedia.org/wiki/Moving_Picture_Experts_Group
https://en.m.wikipedia.org/wiki/Moving_Picture_Experts_Group

SISO HLA/DIS (via IEEE)

OpenGroup SOSA

Object Management Group DDC

Khronos glTF, 3DTiles

ROS Note: ROS is not a traditional
ISO, but a community
developing standard libraries,
interfaces, and encodings for
robotics.

MAVLink Note: MAVLink is not a
traditional ISO, but a
community developing
standard libraries, interfaces,
and encodings for UxS.

ArduPilot Note: ArduPilot is not a
traditional ISO, but a
community developing
standard libraries, interfaces,
and encodings for autopilot.

111

9. Conclusion
The OGC API - Connected Systems Standard provides the foundation for connecting all
Systems in, on, and around our planet (and potentially other celestial bodies) within a common
4D framework for discovery, access, process, reasoning, visualization, and tasking. As more
and varied Systems and technical communities come into existence, this standard will need to
continue to evolve to ensure that all such Systems can interoperate within a common 4D
framework with spatio-temporal precision precision and accuracy. After all, everything on Earth,
by definition, exists in space and time, and as such all our Systems need to interoperate in this
manner. Going forward all technical communities, user communities, and policy communities
are invited to join and participate in the OGC Connected Systems Specification Working Group
(SWG) that will govern the evolution of the OGC API - Connected Systems Standard.

112

