Open Geospatial Consortium
Submission Date: <2023-05-19>
Approval Date: <yyyy-mm-dd>
Publication Date: <yyyy-mm-dd>

External identifier of this OGC® document: http://www.opengis.net/doc/IS/ogcapi-movingfeatures-
1/1.0.draft

Internal reference number of this OGC® document: 22-003
Version: 1.0.draft
Category: OGC® Implementation Specification

Editor: Taehoon Kim, Kyoung-Sook Kim, Mahmoud SAKR, Martin Desruisseaux
OGC API — Moving Features — Part 1: Core

Copyright notice
Copyright © 2023 Open Geospatial Consortium

To obtain additional rights of use, visit http://www.opengeospatial.org/legal/

Warning

This document is not an OG@tan rﬁd nt @ distribfited for review and comment. This
document is subject to chan outhoti dm t be ref@rred to as an OGC Standard.

Recipients of this document are invited to submit, with their comments, notification of any relevant
patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Implementation
Specification

Document stage: Draft

Document language: English

http://www.opengis.net/doc/IS/ogcapi-movingfeatures-1/1.0.draft
http://www.opengis.net/doc/IS/ogcapi-movingfeatures-1/1.0.draft
http://www.opengeospatial.org/legal/

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set
forth below, to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the
Intellectual Property without restriction (except as set forth below), including without limitation the rights to implement,
use, copy, modify, merge, publish, distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to
whom the Intellectual Property is furnished to do so, provided that all copyright notices on the intellectual property are
retained intact and that each person to whom the Intellectual Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by
LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS THAT MAY BE
IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED IN THIS NOTICE DO NOT
WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL MEET YOUR REQUIREMENTS OR
THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE UNINTERRUPTED OR ERROR FREE. ANY USE OF THE
INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT
HOLDER OR ANY CONTRIBUTOR OF INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR
ANY CLAIM, OR ANY DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER
RESULTING FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH THE
IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until termi ying the Intellectual Property together
with all copies in any form. The ply with any term or condition of this
Agreement. Except as provided in t ination offthis license shall require the termination of
any third party end-user sublicense i
In addition, should the Intellectual Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole
opinion be likely to infringe, any patent, copyright, trademark or other right of a third party, you agree that LICENSOR, in its
sole discretion, may terminate this license without any compensation or liability to you, your licensees or any other party.
You agree upon termination of any kind to destroy or cause to be destroyed the Intellectual Property together with all copies
in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the
Intellectual Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this
Intellectual Property without prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all
times be the sole entity that may authorize you or any third party to use certification marks, trademarks or other special
designations to indicate compliance with any LICENSOR standards or specifications. This Agreement is governed by the laws
of the Commonwealth of Massachusetts. The application to this Agreement of the United Nations Convention on Contracts
for the International Sale of Goods is hereby expressly excluded. In the event any provision of this Agreement shall be
deemed unenforceable, void or invalid, such provision shall be modified so as to make it valid and enforceable, and as so
modified the entire Agreement shall remain in full force and effect. No decision, action or inaction by LICENSOR shall be
construed to be a waiver of any rights or remedies available to it.

Table of Contents

L S0P 9
2. ConformanCe 10
B REIEIEINCES . . . oo 11
4. Terms and Definitions. 12
5. CONVENTIONS.o 15
B Identifiers. 15
5.2.Use of HTTPS 15
6. OVETVIEW . . .o 16
6.1. General 16
6.2. SEATCR 18
6.3. DEPendencCies. 19
7. Requirements Class "MovingFeature Collection Catalog". 20
T OVEIVIEW . oo 20
7.2. Information REeSOUTCES 20
7.3. Resource ColleCtions 20
7.3 1. OVEIVIEWo 20
7.3.2. OPeration e 21
7.3.3. Response

7.3.4. Error situations . .
7.4. Resource Collection . .

TATL OVEIVIEW . « .o
7.4.2. OPeration e 25
7.4.3. RESPOIISE oo 27
7.4.4. EXTOT SITUATIONSo 30
8. Requirements Class "MovingFeatures™. 31
8.1 OVEIVIEW . . .o 31
8.2. Information ReSOUICeS 31
8.3. Resource MovingFeatures 32
8.3.1. OVEIVIEWo 32
8.3.2. OPeration o 32
8.3.3. RESPONSEo 35
8.3.4. Exror SItuationS 39
8.4. Resource MovingFeature 39
841 OVEIVIEW oo 39
8.4.2. OPEration 40
8.4.3. RESPONISEo 41
8.4.4. Exror SItuationS 44
8.5. Resource TemporalGeometryCollection 44

8. 5. 0. OV VICW . . . 44

8.5.2. Parameters 44
8.5.3. OPeratioNn 46
8.5.4. RESPONISEo 48
8.5.5. Error Situations 52
8.6. Resource TemporalGeometry 52
8.6.1. OVEIVIEWo 52
8.6.2. OPEratioNn 53
8.6.3. RESPONSE e 54
8.6.4. Error Situations 54
8.7. TemporalGeometry Query ReSOUrCes i 54
8.7.1. OVEIVIEW oo 54
8.7.2. Shared qUery parameters. 55
8.7.3. Distance QUETY 55
8.7.4. VeloCity QUETYo 56
8.7.5. Acceleration QUETY 56
8.7.6. Operation Requirements. 57
8.7.7. Response RequUITemMents 57

8.8. Resource TemporalPropertyCollection

8.8.1. Overview.
8.8.2. Operation
8.8.3.Response
8.8.4. Error Situations
8.9. Resource TemporalProperty 62
8.9.1. OVEIVIEWo 62
8.9.2. OPEratioN 63
8.9.3. RESPONISE 65
8.9.4. Error Situations 67
9. Common RequiremMents 68
0.1, ParametersSo 68
9.1.1. Parameter Limit 68
9.1.2. Parameter bboX. 68
9.1.3. Parameter datetime 68
9.2. HTTP ReSPONSEo 69
9.3. HTTP Status COAES 69
Annex A: Conformance Class Abstract Test Suite (Normative) 71
AL INtroduCtion 71
A.2. Conformance Class MovingFeature Collection Catalog. 71
A.2.1. MovingFeature Collections. 71
A.2.2. MovingFeature Collection 73
A.3. Conformance Class MovingFeatures. 75

A3.1. MovIngFeatures 75

A3.2. MovingFeature 77
A3.3. Parameter Leaf 79
A.3.4. TemporalGeometryCollection 79
A.3.5. TemporalGeometry 81
A.3.6. TemporalGeometryQuUeTY 82
A.3.7. TemporalPropertyCollection 84
A.3.8. TemporalProperty 86
Annex B: Relationship with other OGC/ISO Standards (Informative) 90
B.1. Static geometries, features and accesses 90
B.1.1. Geometry (ISO 19107) oo 90
B.1.2. Features (ISO 19109) 91
B.1.3. Simple Features SQL 92
B.1.4. Filter Encoding (ISO 19143) 92
B.1.5. Features web API

Annex C: Revision History . .

Annex D: Bibliography

1. Abstract

Moving feature data can represent various phenomena, including vehicles, people, animals,
weather patterns, etc. The OGC API — Moving Features (OGC API — MF) is a Draft Standard defines
a standard interface for querying and accessing geospatial data that changes over time, such as the
location and attributes of moving objects like vehicles, vessels, or pedestrians. The OGC API — MF
provides a standard way to manage these data, which can be helpful for applications such as
transportation management, disaster response, and environmental monitoring. OGC API — MF also
includes operations for filtering, sorting, and aggregating moving feature data based on location,
time, and other properties.

The OGC API — Moving Features — Part 1: Core specifies a set of RESTful web service interfaces and
data formats for querying and updating moving feature data over the web. OGC API Standards
define modular API building blocks to spatially enable Web APIs in a consistent way. OpenAPI is
used to define the reusable API building blocks with responses in JSON and HTML.

The OGC API family of standards is organized by resource type.

Table 1. Overview of Resources

Resource

Path

Collections metadata /collections

Collection instance
metadata

Moving Features

Moving Feature
instance

Temporal Geometry
Collection

Temporal Geometry
instance

TemporalGeometry
Queries

Temporal Property
Collection

Temporal Property
instance

ii. Keywords

/collections/{collectionId}

/collections/{collectionId}/items

/collections/{collectionId}/items
/{mFeatureld}

/collections/{collectionId}/items
/{mFeatureld}/tgeometries

/collections/{collectionId}/items
/{mFeatureld}/tgeometries/{tGeometryId}

{root}/collections/{collectionId}/items
/{mFeatureld}/tgeometries/{tGeometryId}/

{queryType}

/collections/{collectionId}/items
/{mFeatureld}/tproperties

/collections/{collectionId}/items
/{mFeatureld}/tproperties/{tPropertylId}

HTTP
Method

GET,
POST

GET,
DELETE,
PUT

GET,
POST

GET,
DELETE

GET,
POST

DELETE

GET

GET,
POST

GET,
POST

Document
Reference

Resource Collections

Resource Collection

Resource
MovingFeatures

Resource
MovingFeature

Resource
TemporalGeometryC
ollection

Resource
TemporalGeometry

TemporalGeometry
Query Resources

Resource
TemporalPropertyC
ollection

Resource
TemporalProperty

The following are keywords to be used by search engines and document catalogues.

ogcdoc, OGC document, OGC MovingFeature, OGC Moving Features JSON, Moving Features Access,
API, OpenAPI, REST, trajectory

iii. Preface
OGC Declaration

Attention is drawn to the possibility that some of the elements of this document may be the subject
of patent rights. The Open Geospatial Consortium shall not be held responsible for identifying any
or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that might
be infringed by any implementation of the standard set forth in this document, and to provide
supporting documentation.

iv. Security Considerations

The OGC API — Moving Features — Part 1: Core Draft Standard does not mandate any specific
security controls. However, it was constructed to add security controls without impacting
conformance, the same as the OGC API — Common — Part 1: Core.

This document applied the Rgpiggeme J/0asil/sec\gm API 3.0 Security support.
v. Submitting organiza

The following organizations submitted this Document to the Open Geospatial Consortium (OGC):

* Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and
Technology

Université libre de Bruxelles
* Geomatys

* Central Research Laboratory, Hitachi Ltd.

Feng Chia University

vi. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

Name Organization

Kyoung-Sook KIM Artificial Intelligence Research Center, National Institute of
Advanced Industrial Science and Technology

Taehoon KIM Artificial Intelligence Research Center, National Institute of
Advanced Industrial Science and Technology

https://docs.ogc.org/is/19-072/19-072.html#_91afaabd-dc29-41eb-805d-15e1afd18825
https://docs.ogc.org/is/19-072/19-072.html#rc_oas30-security

Mahmoud SAKR Université libre de Bruxelles

Esteban Zimanyi Université libre de Bruxelles

Martin Desruisseaux Geomatys

Akinori Asahara Central Research Laboratory, Hitachi Ltd.
Chen-Yu Hao Feng Chia University

DRAFT

Chapter 1. Scope

The scope of the OGC API — Moving Features — Part 1:Core is to provide a uniform way to access,
communicate, and manage data about moving features across different applications, data
providers, and data consumers. The OGC API — MF defines a set of API building blocks that enable
clients to discover, retrieve, and update information about moving features, as well as a data model
for describing moving features and their trajectories.

The OGC API — Moving Features — Part 1:Core Draft Standard defines an API with two goals. First,
to provide access to representations of Moving Features that conform to the OGC Moving Features
JSON Encoding Standard. Second, to provide functionality comparable to that of the OGC Moving
Features Access Standard. The OGC API — Moving Features Draft Standard is an extension of the
OGC API — Common and the OGC API — Features Standards.

DRAFT

Chapter 2. Conformance

This Standard defines two requirements / conformance classes that describe different levels of
compliance with the Standard. These requirements / conformance classes help to ensure
interoperability between other implementations of the Standard and allow data providers to
specify which parts of the Standard they support. The standardization target is "Web APIs".

The conformance classes for OGC API — Moving Features are:

* Collection Catalog

* Moving Features

The conformance class defines the minimum requirements for an API to be compliant with the OGC
API — Moving Features Draft Standard. This includes support for querying and retrieving
information about moving features using HTTP GET requests. Also, the conformance class enables
clients to add, modify, or delete features from the server using HTTP POST, PUT, and DELETE
requests. Lastly, the conformance class adds support for querying and retrieving features based on
their temporal characteristics, such as their position at a specific time or their velocity over a given
time interval.

Implementers of the OGC API — MF can choose which conformance classes they want to support
based on the specific needs of their use case and the capabilities of their software. However, to be
considered compliant with the Standard, an implementation shall support at least the Core

conformance class.
andge cl are:

The URIs of the associated co

Table 2. Conformance class URIs

Conformance class URI

MovingFeatures http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-

Collection Catalog collection

MovingFeatures http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/
movingfeatures

Conformance with this Standard shall be checked using all the relevant tests specified in Annex A
of this document. The framework, concepts, and methodology for testing, and the criteria to be
achieved to claim conformance are specified in the OGC Compliance Testing Policies and
Procedures and the OGC Compliance Testing website.

10

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-collection
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-collection
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/movingfeatures
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/movingfeatures
https://portal.ogc.org/files/?artifact_id=55234
https://portal.ogc.org/files/?artifact_id=55234
https://cite.opengeospatial.org/teamengine/

Chapter 3. References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. For dated references, subsequent amendments to, or
revisions of, any of these publications do not apply. For undated references, the latest edition of the
normative document referred to applies.

NOTE

OGC 08-131r3:—The Specification Model —A Standard for Modular
Specifications (2009). https://portal.opengeospatial.org/files/?artifact_id=34762

OGC 16-120r3: OGC Moving Features Access (2017). https://docs.ogc.org/is/16-
120r3/16-120r3.html

OGC 19-045r3: OGC Moving Features Encoding Extension - JSON (2020).
https://docs.ogc.org/is/19-045r3/19-045r3.html

OGC 17-069r4: OGC API — Features — Part 1: Core (2022).
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html

OGC 20-002: OGC API — Features — Part 4: Create, Replace, Update and Delete
(Draft). http://docs.ogc.org/DRAFTS/20-002.html

OGC 19-072: OGC API — Common — Part 1: Core (2023). https://docs.ogc.org/is/
19-072/19-072.html

OGC 20-024: OGC API — Common — Part 2: Geospatial Data (Draft).

http://docs.o 0 20- tm
288 Th I Mgltipart/Related Content-type.
T ict@orgM ¥/ htm[Wfd@®387

IETF RFC 2818: HTTP Over TLS. https://datatracker.ietf.org/doc/html/rfc2818

IETF RF
https://data

IETF RFC 3339: Date and Time on the Internet: Timestamps.
https://datatracker.ietf.org/doc/html/rfc3339

IETF RFC 3986: Uniform Resource Identifier (URI): Generic Syntax.
https://datatracker.ietf.org/doc/html/rfc3986

IETF RFC 7230 to TFC 7235: Hypertext Transfer Protocol (HTTP/1.1).
https://datatracker.ietf.org/doc/html/rfc7230, https://datatracker.ietf.org/doc/
html/rfc7231, https://datatracker.ietf.org/doc/html/rfc7232,
https://datatracker.ietf.org/doc/html/rfc7233, https://datatracker.ietf.org/doc/
html/rfc7234, and https://datatracker.ietf.org/doc/html/rfc7235

IETF RFC 7946: The GeoJSON Format. https://datatracker.ietf.org/doc/html/
rfc7946

IETF RFC 8288: Web Linking. https://datatracker.ietf.org/doc/html/rfc8288

IETF RFC 8259: The JavaScript Object Notation (JSON) Data Interchange Format.
https://datatracker.ietf.org/doc/html/rfc8259

Open API Initiative: OpenAPI Specification, Version 3.0. The latest patch version
at the time of publication of this standard was 3.1.0. https://spec.openapis.org/
oas/v3.1.0.

11

https://portal.opengeospatial.org/files/?artifact_id=34762
https://docs.ogc.org/is/16-120r3/16-120r3.html
https://docs.ogc.org/is/16-120r3/16-120r3.html
https://docs.ogc.org/is/19-045r3/19-045r3.html
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html
http://docs.ogc.org/DRAFTS/20-002.html
https://docs.ogc.org/is/19-072/19-072.html
https://docs.ogc.org/is/19-072/19-072.html
http://docs.ogc.org/DRAFTS/20-024.html
https://datatracker.ietf.org/doc/html/rfc2387
https://datatracker.ietf.org/doc/html/rfc2818
https://datatracker.ietf.org/doc/html/rfc3339
https://datatracker.ietf.org/doc/html/rfc3986
https://datatracker.ietf.org/doc/html/rfc7230
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7231
https://datatracker.ietf.org/doc/html/rfc7232
https://datatracker.ietf.org/doc/html/rfc7233
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7234
https://datatracker.ietf.org/doc/html/rfc7235
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc7946
https://datatracker.ietf.org/doc/html/rfc8288
https://datatracker.ietf.org/doc/html/rfc8259
https://spec.openapis.org/oas/v3.1.0
https://spec.openapis.org/oas/v3.1.0

Chapter 4. Terms and Definitions

This document used the terms defined in OGC Policy Directive 49, which is based on the ISO/IEC
Directives, Part 2, Rules for the structure and drafting of International Standards. In particular, the
word “shall” (not “must”) is the verb form used to indicate a requirement to be strictly followed to
conform to this standard and OGC documents do not use the equivalent phrases in the ISO/IEC
Directives, Part 2.

This document also uses terms defined in the OGC Standard for Modular specifications (OGC 08-
131r3), also known as the 'ModSpec'. The definitions of terms such as standard, specification,
requirement, and conformance test are provided in the ModSpec.

For the purposes of this document, the following additional terms and definitions apply.

application programming interface (API)

a formally defined set of types and methods which establish a contract between client code
which uses the API and implementation code which provides the API

coordinate

one of a sequence of numbers designating the position of a point

Note 1 to entry: In a spatial coordinate reference system, the coordinate values are qualified by units.

[source: ISO 19111]
)
to je da
umglare ed to 8 reflerence frafhes.

Note 2 to entry: For geodetic and vertical reference frames, the object will be the Earth. In planetary applications,

coordinate reference syste

coordinate system that is

Note 1 to entry: Geodetic and vepi

geodetic and vertical reference frames may be applied to other celestial bodies.

[source: ISO 19111]

dataset

collection of data, published or curated by a single agent, and available for access or download
in one or more formats
[source: DCAT]

datatype

specification of a value domain with operations allowed on values in this domain
Examples: Integer, Real, Boolean, String and Date.

Note 1 to entry: Data types include primitive predefined types and user definable types.

[source: ISO 19103]

distribution

represents an accessible form of a dataset
Note 1 to entry: EXAMPLE: a downloadable file, an RSS feed or a web service that provides the data.
[source: DCAT]

dynamic attribute

characteristic of a feature in which its value varies with time

12

https://portal.ogc.org/public_ogc/directives/directives.php
https://portal.opengeospatial.org/files/?artifact_id=34762
https://portal.opengeospatial.org/files/?artifact_id=34762
https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset
https://www.w3.org/TR/vocab-dcat-2/#Class:Distribution

[source: OGC 16-140]

feature
abstraction of a real-world phenomena
Note 1 to entry: A feature can occur as a type or an instance. Feature type or feature instance should be used when only

one is meant.

[source: ISO 19109]

feature attribute
characteristic of a feature
Note 1 to entry: A feature attribute can occur as a type or an instance. Feature attribute type or feature attribute instance

is used when only one is meant.

[source: ISO 19109]

feature table

table where the columns represent feature attributes, and the rows represent features
[source: OGC 06-104]

geographic feature

representation of real-world phenomenon associated with a location relative to the Earth
[source: ISO 19101-2]

geometric object

spatial object representin t
[source: ISO 19107:2003]

leaf
<one parameter set of geometries>

geometry at a particular value of the parameter
[source: ISO 19141]

moving feature
feature whose location changes over time
Note 1 to entry: Its base representation uses a local origin and local coordinate vectors of a geometric object at a given
reference time.
Note 2 to entry: The local origin and ordinate vectors establish an engineering coordinate reference system (ISO 19111),

also called a local frame or a local Euclidean coordinate system.

property
facet or attribute of an object referenced by a name
[source: ISO 19143]

resource

entity that might be identified
Note 1 to entry: The term “resource”, when used in the context of an OGC Web API standard, should be understood to

mean a web resource unless otherwise indicated.
[source: Dublin Core Metadata Initiative — DCMI Metadata Terms]

13

https://docs.ogc.org/is/19-072/19-072.html#iso15836-2

resource type

a type of resource
Note 1 to entry: Resource types are re-usable components that are independent of where the resource resides in the API.

[source: OGC 19-072]

trajectory

path of a moving point described by a one parameter set of points
[source: ISO 19141]

web API

API using an architectural style that is founded on the technologies of the Web
[source: W3C Data on the Web Best Practices]

web resource

a resource that is identified by a URI.
[source: OGC 17-0069r4]

DRAFT

14

https://docs.ogc.org/is/19-072/19-072.html#resource-type-definition
https://docs.ogc.org/is/19-072/19-072.html#DWBP
https://docs.ogc.org/is/17-069r4/17-069r4.html#web-resource-def

Chapter 5. Conventions

This section provides details and examples for any conventions used in the document. Examples of
conventions are symbols, abbreviations, use of XML schema, or special notes regarding how to read
the document.

5.1. Identifiers

The normative provisions in this Standard are denoted by the URI
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0

All requirements and conformance tests that appear in this document are denoted by partial URIs
which are relative to this base.

5.2. Use of HTTPS

For simplicity, this OGC Standard only refers to the HTTP protocol. This is not meant to exclude the
use of HTTPS. This is simply a shorthand notation for “HTTP or HTTPS”. In fact, most servers are
expected to use HTTPS and not HTTP.

DRAFT

15

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0

Chapter 6. Overview

6.1. General

The OGC API — Features Standard enable access to resources using the HTTP protocol and its
associated operations (GET, PUT, POST, DELETE, etc.) The OGC API — Common Standard defines a
set of features which are applicable to all OGC APIs. Other OGC standards extend OGC API —
Common with features specific to a resource type.

This OGC API — Moving Features — Part1: Core Draft Standard defines an API with the goal to:

* Provide a standard interface for creating (HTTP POST), retrieving (HTTP GET), updating (HTTP
PUT), and deleting (HTTP DELETE) Moving Features, with conformance to the OGC Moving
Features JSON Encoding Standard

Resources exposed through an OGC API may be accessed via a Universal Resource Identifier (URI).
The URI representation in this Draft Standard is composed of three sections:

* Dataset distribution API: The endpoint corresponding to a dataset distribution, where the
landing page resource as defined in OGC API — Common — Part 1: Core is available
(subsequently referred to as Base URI or {root}).

* Access Paths: Unique paths to Resources.

* Query Parameters: ParafheteRg, t tt eprésentatiof of a Resource or Resources like
encoding format or sub-sgtting

Access Paths are used to build resource identifiers. This approach is recommended, but not
required. Most resources are also accessible through links to previously accessed resources. Unique
relation types are used for each resource.

Table 3 summarizes the access paths and relation types defined in this Standard.

Table 3. Moving Features API Paths

Path Template Relation Resource
Collections
{root}/collections data Metadata describing the Collection Catalog of

data available from this API.

{root}/collections/{collectionId} Metadata describing the Collection Catalog of
data which has the unique identifier
{collectionId}
MovingFeatures
{root}/collections/{collectionId} items Static information of MovingFeature about
/items available items in the specified Collection
{root}/collections/{collectionId} item Static information describing the MovingFeature
/items/{mFeatureld} of data which has the unique identifier
{mFeatureld}

16

Path Template Relation Resource

{root}/collections/{collectionId} items Temporal object information of
/items/{mFeatureld}/tgeometries TemporalGeometryCollection about available
items in the specified MovingFeature

{root}/collections/{collectionId} item Temporal object describing the
/items/{mFeatureld}/tgeometries TemporalGeometryCollection of data which has
/{tGeometryld} the unique identifier {tGeometryId}
{root}/collections/{collectionId} Identifies an Information Resource of type
/items/{mFeatureld}/tgeometries {queryType} associated with the
/{tGeometryld}/{queryType} TemporalGeometry instance
{root}/collections/{collectionId} items Temporal object information of
/items/{mFeatureld}/tproperties TemporalPropertyCollection about available

items in the specified MovingFeature

{root}/collections/{collectionId} item Temporal object describing the
/items/{mFeatureld}/tproperties TemporalPropertyCollection of data which has
/{tPropertyName} the unique identifier {tPropertyName}
Where:

e {root} = Base URI for the API server
e {collectionld} = An identifier for

o {mFeatureld} = An identif of aspecific Collection of data

o {tGeometryId} = An ident
data

Geome@y of a specific MovingFeatures of

» {tPropertyName} = An identifier for a specific TemporalProperty of a specific MovingFeatures of
data

Figure 1 shows a UML class diagram for OGC API — Moving Features (OGC API — MF) which
represents the basic resources of this Standard, such as Collections, Collection,
MovingFeatureCollection, MovingFeature, TemporalGeometryCollection, TemporalGeometry,
TemporalPropertyCollection, and TemporalProperty. In this Standard, a single moving feature can
have temporal geometries, such as a set of trajectories. Also, the moving feature can have multiple
temporal properties, and each property can have a set of parametric values.

17

«Resource»
Landing Page
+ get()
tags.
th =
C) include a link to
I include a link to
include a link to
+conformance\|/ 1
+data\[/1
+service-desc\|/1 P
Craes) Conformance Declaration
Collections «Resource»
- - ~ API Definition + conformanceClasses: URI [0..*]
+ get(limit: int, bbox: Bounding Box, datetime: Time Intervals) e
+ posticollection: Collection) ~ ~ _ + get() + get() o .
- (&5 i ey LZES - o + angles: double [2..3] {ordered}
path = /collections path = /api path = /conformance X
MovingFeatureCallection + scales: double [2..3] {ordered}
\ i Catalog
contains
, «DataTypen
0. . Leat
«Resource» + times: date-time [1..%] {ordered}
o
includes a link to
+ description: string [0..1] next0.1
+ extent: Extent[0..1] «DataType»
+ id:string {ic} e ExternalModel
. ::I':T:FE:Sgnnf="mw'"gfemm" TemporalProperty + href: URI
ite:string [0.1) updateF requency’s unitis + type:string
+ updateFrequency: int [0..1] i + description: string [0..1]
form: string [0..1
+ delete() + form:string (0..1]
= + name: string {id)
N + type: TemporalPropertyType
+ _ pufeoliection: Collecton) + values: TemporalValue [1..] {ordered) bl Lo
per TemporalValue
B] . + get(limit int, datetime: Time Intervals, leaf: Leaf) - -
path = /collections/{collectionid} I vl e, + datetimes: date-time [1..*] {ordered}
+ interpolation: DynamicValuelnterpolationType = "Discrete”
tags + values: anyType [1..*] {ordered}
| 1 path= { J f A
includea link to /l\
0.+
includes a link to)
contains.
1 +next0..1’
1 «Enumeration» «Enumeration»
ci=mme,) TemporalPrimitiveGometryType MotionCurveType
MovingFeatures e
S _ - TemporalPropertyCollection MovingPoint Discrete
+ get(lmit: int, bbox: Bounding Bos, datetime: Time Interval) MovinglineString Step
+ _ post(mf-json-prism: MF-ISON) + get(limit: int, datetime: Time Intervals) Mo 0g PO E T
s + post(tproperty: TemporalProperty) MovingPointCloud Quadratic
path = /collections/{collectionidl/items 1 P Cube
path= ionld)/items/ tprop
1 «Enumeration»
TemporalPropertyType «Enumeration»
contains DynamicValuelnter polationType
TBoolean
TText Discrete
Tinteger Step
0.* TReal Linear
includes a link to Timage Regression
«Resource»
MovingF eature
+ bbox: Bounding Box [0..1])
+ crs: URI0..1] includes a link tol «Resources
+ geometry: Geometry TemporalGeometry
+ id: string {id}
+ properties: Property [1..%] P + bose: ExtemalModel 0.1]
+ time: Time Intervals [0..1] TemporalGeometryCollection + coordinates: Coordinates [1. 1.
+ s UR[0.1] . + datetimes: date-time [1..*] {ordered}
e e + get(limit: int, bbox: Bounding Bo, datetime: Time Intervals, leaf: Leaf) ontains ~_| + id: string {id}
L includesalinkto | *_Postigeometry: TemporalGeomety) e = e o Matienchr T SEIT
+ delete() - + orientations: Orientation [0..*] {sequence}
+ get() tags + type: TemporalPrimitiveGometryType
path = /collections/ i i @)
tags + delete()
path = /collecti ionld)/items/()
tags
path= i items/ ies/{g
1
1| generates 1 | generates 1| generates
«Resource» «Resource» «Resource
Velocity Acceleration Distance
+ form: string + form: string + form: string
+ type: TemporalPropertyType = "TReal" + type: TemporalPropertyType ="TReal" + type: TemporalPropertyType = “TReal"

=

values: TemporalValue [1..¥] {ordered}

=

values: TemporalValue [1..*] {ordered}

+ values: TemporalValue [1..*] {ordered}

+ getftime: date-time)

¥

get(time: date-time)

+ get{time: date-time)

tags

tags

path= i fonl i/ fes/{tg: Y

path = /collecti ionld)/items/{)

path = i i i {r W

Figure 1. Class diagram for OGC API — Moving Features

6.2. Search

The core search capability is based on OGC API — Common and thus supports:

* bounding box searches,

* time instant or time period searches,

* and equality predicates (i.e. property=value).

OGC API — Moving Features extends these core search capabilities to include:

 spatiotemporal queries for accessing TemporalGeometry resources.

18

https://ogcapi.ogc.org/common/

6.3. Dependencies

The OGC API — Moving Features (OGC API — MF) Draft Standard is an extension of the OGC API —
Common and the OGC API — Features Standards. Therefore, an implementation of OGC API — MF
shall first satisfy the appropriate Requirements Classes from OGC API — Common and OGC API —
Features. Also, the OGC API — MF Standard is based on the OGC Moving Features Encoding
Extension for JSON (OGC MF-JSON) Standards. Therefore, an implementation of OGC API — MF
shall satisfy the appropriate Requirements Classes from OGC MF-JSON. Table 4, identifies the OGC
API — Common and OGC API — Features Requirements Classes which are applicable to each
section of this Standard. Instructions on when and how to apply these Requirements Classes are
provided in each section.

Table 4. Mapping OGC API — MF Sections to OGC API — Common, OGC API — Features, and
OGC MF-JSON Requirements Classes

API — MF API — MF Requirements Class API — Common, API — Features,

Section MF-JSON Requirements Class
Collections /req/mf-collection http://www.opengis.net/spec/
ogcapi-common-2/1.0/req/
collections,

http://www.opengis.net/spec/
ogcapi-features-4/1.0/req/create-
replace-delete

MovingFeatures /req/movingfeatures http://www.opengis.net/spec/
ogcapi-features-1/1.0/req/core,
http://www.opengis.net/spec/
ogcapi-features-4/1.0/req/create-
replace-delete,
http://www.opengis.net/spec/
movingfeatures/json/1.0/req/
trajectory, http://www.opengis.net/
spec/movingfeatures/json/1.0/req/

prism
HTML inherit all requirement (no http://www.opengis.net/spec/
modification) ogcapi-common-1/1.0/req/html
JSON inherit all requirement (no http://www.opengis.net/spec/
modification) ogcapi-common-1/1.0/req/json
GeoJSON inherit all requirement (no http://www.opengis.net/spec/
modification) ogcapi-features-1/1.0/conf/geojson
OpenAPI 3.0 inherit all requirement (no http://www.opengis.net/spec/
modification) ogcapi-common-1/1.0/req/oas30

19

http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory
http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory
http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory
http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism
http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism
http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/json
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30
http://www.opengis.net/spec/ogcapi-common-1/1.0/req/oas30

Chapter 7. Requirements Class
"MovingFeature Collection Catalog"

7.1. Overview

Requirements Class

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/mf-collection

Target type Web API

Dependency http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections

Dependency http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-
delete

The MovingFeature Collection (Catalog requirements class defines the requirements for a moving
feature collection. A moving feature collection is an object that provides information about and
access to a set of related MovingFeature.

7.2. Information Resources

The two resources defined in this Requirements Class are summarized in Table 5.

Table 5. MovingFeature Collectign Cat@éilo urg
Resource URI HTTP Description
Method
Collections {root}/collections GET Getinformation which describes the

set of available Collections resource

POST Add a new resource (Collection)
instance to a Collections resource

Collection {root}/collections GET Getinformation about a specific
/{collectionld} Collection resource ({collectionId}) of
geospatial data

PUT Update information about a specific
Collection resource ({collectionld})

DELETE Delete a specific Collection resource
({collectionId})

7.3. Resource Collections

7.3.1. Overview

The Collections resource supports retrieving and creating operations via GET and POST HTTP
methods respectively.

20

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/mf-collection
http://www.opengis.net/spec/ogcapi-common-2/1.0/req/collections
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete

1. A retrieve operation returns a set of metadata which describes the collections available from
this APL.

2. A create operation posts a new Collection resource instance to the collections with this API.

7.3.2. Operation

Retrieve

The retrieve operation is defined in the Collections conformance class of OGC API — Common. No
modifications are needed to support MovingFeature resources.

1. Issue a GET request on {root}/collections path

Support for the HTTP GET method on the {root}/collections path is specified as a requirement in
OGC API — Common.

Requirement1 /req/mf-collection/collections-get

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Common Collections operation requirement
/req/collections/rc-md-op.

t ATE Ad@nfo of OGC API — Features. This
C
/coll@cti ath

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

Create

The create operation is def
operation targeted Collectio

1. Issue a POST request on {ro0

Requirement 2 /req/mf-collection/collections-post

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE operation requirement /req/create-
replace-delete/insert-post-op.

B An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE request body requirements
/req/create-replace-delete/insert-body and /req/create-replace-
delete/insert-content-type.

C The content of the request body SHALL be based upon the
Collection request body schema.

Collection Request Body Schema:

type: object
required:
- itemType
properties:
title:

21

https://docs.ogc.org/DRAFTS/20-024.html#rc-collections-section
https://docs.ogc.org/DRAFTS/20-024.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#create
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body

description: human readable title of the collection
type: string
updateFrequency:
description: a time interval of sampling location. The unit is millisecond.
type: number
description:
description: any description
type: string
itemType:
description:
type: string
default: "movingfeature"

The following example adds a new feature (collection information) to the feature collections. The
feature is encoded as JSON. A pseudo-sequence diagram notation is used to illustrate the details of
the HTTP communication between the client and the server.

An Example of Creating a New Collection:

Client Server
| I
| POST /collections HTTP/1.1
| Content-Type: application/json

I
|
I
{ I
"title": "MovingFeatureCollection_1", |
"updateFrequency": 1000, |
"description”: "a collection of moving features to manage data |
in a distinct (physical or logical) space", |

"itemType": "movingfeature" |
|

I

I

I

|

| HTTP/1.1 201 Created
| Location: /collections/mfc_1

7.3.3. Response

Retrieve

A successful response to the Collections GET operation is a document that contains summary
metadata for each collection accessible through an instance of an API implementation. In a typical
deployment of the OGF API — MF, the Collections GET response will list collections of all offered
resource types. The collections where the value of the itemType property is movingfeature are
collections of moving features.

22

Requirement 3 /req/mf-collection/collections-get-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Common Collections response requirement
/req/collections/rc-md-success.

B The content of that response SHALL be based upon the
Collections response schema.

C The itemType property of the response schema SHALL be
movingfeature.

The usage of the itemType property is referred from the OGC API — Common item
Type section.

NOTE

Collections GET Response Schema (collections.yaml):

type: object
required:
- collections
- links
properties:
collections:
type: array
items:
$ref: collection.yaml
links:
type: array
items:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/1link.yaml
timeStamp:
type: string
format: date-time
numberMatched:
type: integer
min: 0
numberReturned:
type: integer
min: 0

The following JSON payload is an example of a response to an OGC API — Moving Features
Collections GET operation.

An Example of Collections JSON Payload:

{

"collections": [

{
ll_idll: llmfc_1ll'
"title": "MovingFeatureCollection_1",

23

https://docs.ogc.org/DRAFTS/20-024.html#_response
http://docs.ogc.org/DRAFTS/20-024.html#collection-item-type-section
http://docs.ogc.org/DRAFTS/20-024.html#collection-item-type-section

"description”: "a collection of moving features to manage data in a distinct
(physical or logical) space",

"itemType": "movingfeature",

"updateFrequency": 1000,

"extent": {
"spatial": {
"bbox": [
-180, -90, 190, 90
1
"crs": "http://www.opengis.net/def/crs/06C/1.3/CRS84"
Iy
"temporal": {
"interval": [
"2011-11-11T12:22:112","2012-11-24T12:32:437"
1.
"trs": "http://www.opengis.net/def/uom/IS0-8601/0/Gregorian”
}
Iy
"links": [
{
"href": "https://data.example.org/collections/mfc-1",
"rel": "self",
"type": "application/json"
}
]
}
1
"links": [
{
"href": "https://data.example.org/collections”,
"rel": "self",
"type": "application/json"
}
]
}
Create

A successful response to the Collections POST operation is an HTTP status code.

Requirement4 /req/mf-collection/collections-post-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE response requirement /req/create-
replace-delete/insert-response and /req/create-replace-
delete/insert-response-rid.

7.3.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General

24

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

7.4. Resource Collection

7.4.1. Overview

A Collection information object is the set of metadata that describes a single collection. An
abbreviated copy of this information is returned for each Collection in the {root}/collections GET
response.

The schema for the collection information object presented in this clause is an extension of the
collection schema defined in OGC API — Common and OGC API — Features.

Table 6 defines the set of properties that may be used to describe a collection.

Table 6. Table of collection properties

Property Require Description
ment

id M A unique identifier to the collection.

title 0 A human-readable name given to the collection.

description 0] A free-text description of the collection.

links M A list of links for navigating the API (e.g. link to previous or
next pages; links to alternative representations, etc.)

extent 0 The spatiotemporal coverage of the collection.

itemType M Fixed to the value "movingfeature".

updateFrequency 0] A time interval of sampling location. The time unit of this
property is millisecond.

NOTE The id, title, description, links, extent, and itemsType properties were inherited from

OGC API — Common and OGC API — Features.

An update frequency is one of the most important properties of moving feature
NOTE collection. The update frequency can be used to handle the continuity of the moving
feature’s trajectory.

Requirement5 /req/mf-collection/mandatory-collection

A A collection object SHALL contain all the mandatory properties
listed in Table 6.

7.4.2. Operation

Retrieve

The retrieve operation is defined in the OGC API — Common Collection conformance class. No

25

http://docs.opengeospatial.org/DRAFTS/20-024.html#collection-description
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_collection_
http://docs.ogc.org/DRAFTS/20-024.html#collections-metadata
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_collection_
https://docs.ogc.org/DRAFTS/20-024.html#collection-description

modifications are required to support MovingFeature resources.
1. Issue a GET request on the {root}/collections/{collectionld} path

The {collectionld} parameter is the unique identifier for a single collection offered by an API
implementation instance. The list of valid values for {collectionId} is provided in the /collections
response.

Support for the {root}/collections/{collectionId} path is required by OGC API — Common.

Requirement 6 /req/mf-collection/collection-get

A An implementation of OGC API — MF SHALL comply with the

OGC API — Common Collection operation requirement
http://www.opengis.net/spec/ogcapi-common-

2/1.0/req/collections/src-md-op.

Replace

The replace operation is defined in the REPLACE conformance class of OGC API — Features. This
operation targeted Collection resource.

1. Issue a PUT request on {root}/collections/{collectionld} path

Support for the HTTP PUT method is specified as a requirement in OGC API — Features.
~~ < A "'

Requirement 7 /req/mf-collection/collection-put

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature PUT operation requirement /req/create-
replace-delete/update-put-op.

B An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature PUT request body requirements /req/create-
replace-delete/update-put-body and /req/create-replace-
delete/update-put-content-type.

C The content of the request body SHALL be based upon the
Collection request body schema, except updateFrequency.
If the updateFrequency is included in the request body, the server
SHALL ignore it.

NOTE Once set, the update frequency cannot be changed.

The following example replaces the feature created by the Create Example with a new feature
(collection information without an update frequency). Once again, the replacement feature is
represented as a JSON payload. A pseudo-sequence diagram notation is used to illustrate the details
of the HTTP communication between the client and the server.

An Example of Replacing an Existing Collection:

Client Server

26

https://docs.ogc.org/DRAFTS/20-024.html#_operation_2
https://docs.ogc.org/DRAFTS/20-024.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#replace
http://docs.ogc.org/DRAFTS/20-002.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2

I
| PUT /collections/mfc_1 HTTP/1.1

| Content-Type: application/json

I
|
|
| |
| { I
| "title": "MovingFeatureCollection_2", |
| "description": "Title 1is changed" |
I |

|

|

|

Delete
The delete operation is defined in the DELETE conformance class of OGC API — Features.
1. Issue a DELETE request on {root}/collections/{collectionId} path

Support for the HTTP DELETE method is specified as a requirement in OGC API — Features.

Requirement 8 /req/mf-collection/collection-delete

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature DELETE operation requirement /req/create-
replace-delete/delete/delete-op.

The following example deleteral.\rA:Ated b; tle Creathample and replaced with a new

feature in the Replace Example. A pseudo-sequence diagram notation is used to illustrate the details
of the HTTP communication between the client and the server.

An Example of Deleting an Existing Collection:
Client Server

I I
| DELETE /collections/mfc_1 HTTP/1.1 |

7.4.3. Response

Retrieve

A successful response to the Collection GET operation is a set of metadata that describes the
collection identified by the {collectionId} parameter.

27

http://docs.ogc.org/DRAFTS/20-002.html#delete
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

Requirement9 /req/mf-collection/collection-get-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Common Collection response requirement
/req/collections

B The response SHALL only include collection metadata selected by
the request.

C The content of that response SHALL be based upon the Collection
response schema.

D The itemType property of the response schema SHALL be
'movingfeature'.

Collection GET Response Schema (collection.yaml)

type: object
required:
- id
- links
- itemType
properties:
id:
description: identifier of the collection used, for example, in URIs
type: string
example: address
title:
description: human readable title of the collection
type: string
example: address
description:
description: a description of the features in the collection
type: string
example: An address.
links:
type: array
items:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/link.yaml
example:
- href: https://data.example.com/buildings
rel: item
- href: https://example.com/concepts/buildings.html
rel: describedby
type: text/html
extent:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/extent.yaml
itemType:
description: indicator about the type of the items in the collection
type: string

28

https://docs.ogc.org/DRAFTS/20-024.html#_response_2

default: movingfeature
crs:
description: the list of coordinate reference systems supported by the service
type: array
items:
type: string
default:
- https://www.opengis.net/def/crs/0GC/1.3/CRS84
example:
- https://www.opengis.net/def/crs/0G6C/1.3/CRS84
- https://www.opengis.net/def/crs/EPSG/0/4326
updateFrequency:
description: a time interval of sampling location. The unit is millisecond.
type: number

The following JSON payload is an example of a response to an OGC API — Moving Features
Collection GET operation.

An Example of Collection GET Operation:

{
"id": "mfc-1",
“title": "moving_feature_collection_sample",
"itemType": "movingfeature",
"updateFrequency": 1000,
"extent": {
"spatial": {
"bbox": [
-180, -90, 190, 90
1.
“ers": [
"http://www.opengis.net/def/crs/06C/1.3/CRS84"
]
e
"temporal”: {
"interval": [
"2011-11-11T12:22:112","2012-11-24T12:32:437"
1,
"trs": [
"http://www.opengis.net/def/uom/I50-8601/0/Gregorian"
]
}
¥
"links": [
{
"href": "https://data.example.org/collections/mfc-1",
"rel": "self",
"type": "application/json"
}
]

29

Replace

A successful response to the Collection PUT operation is an HTTP status code.

Requirement 10 /req/mf-collection/collection-put-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature PUT response requirement /req/create-
replace-delete/update-put-response.

B An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature PUT exception requirement /req/create-
replace-delete/update-put-rid-exception.

Delete

A successful response to the Collection DELETE operation is an HTTP status code.

Requirement 11 /req/mf-collection/collection-delete-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature DELETE response requirement /req/create-
replace-delete/delete/response.

B If no resource with the identifier exists in the collection, the
server SHALL respond with a not-found exception (404).

7.4.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General
guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

30

http://docs.ogc.org/DRAFTS/20-002.html#_response_2
http://docs.ogc.org/DRAFTS/20-002.html#_response_2
http://docs.ogc.org/DRAFTS/20-002.html#_exceptions_2
http://docs.ogc.org/DRAFTS/20-002.html#_exceptions_2
http://docs.ogc.org/DRAFTS/20-002.html#_response_3
http://docs.ogc.org/DRAFTS/20-002.html#_response_3

Chapter 8. Requirements Class
"MovingFeatures"

8.1. Overview

Requirements Class

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/movingfeatures

Target type Web API

Dependency http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core

Dependency http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-
delete

Dependency http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory

Dependency http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism

The MovingFeatures requirements class defines the requirements for a moving feature. A moving
feature is an object that provide information about and access to a TemporalGeometryCollection
and TemporalPropertyCollection.

8.2. Informatio e
The seven resources defined ui s Classf@re summharized in Table 7.

Table 7. MovingFeatures Resources

Resource URI HTTP Method
MovingFeatures {root}/collections/{collect GET, POST
ionId}/items
MovingFeature {root}/collections/ GET, DELETE
{collectionId}/items/
{mfeatureld}
TemporalGeometryCollectio {root}/collections/ GET, POST

{collectionId}/items/

n
{mFeatureld}/tgeometries

TemporalGeometry {root}/collections/ DELETE
{collectionId}/items/

{mFeatureld}/tgeometries/
{tGeometryId}

TemporalGeometryQuery ~ {root}/collections/ GET
{collectionId}/items/

{mFeatureld}/tgeometries/
{tGeometryId}/{queryType}

TemporalPropertyCollection {root}/collections/ GET, POST
{collectionId}/items/

{mFeatureld}/tproperties

31

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/movingfeatures
http://www.opengis.net/spec/ogcapi-features-1/1.0/req/core
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/req/create-replace-delete
http://www.opengis.net/spec/movingfeatures/json/1.0/req/trajectory
http://www.opengis.net/spec/movingfeatures/json/1.0/req/prism

Resource URI HTTP Method

TemporalProperty {root}/collections/ GET, POST
{collectionId}/items/

{mFeatureld}/tproperties/
{tPropertiesName}

8.3. Resource MovingFeatures

8.3.1. Overview

The MovingFeatures resource supports retrieving and creating operations via GET and POST HTTP
methods respectively.

1. Aretrieve operation returns a set of features which describes the moving feature available from
this API.

2. A create operation post a new MovingFeature resource instance to a specific Collection
(specified by {collectinold} with this API.

The OGC API — MF Items query is an OGC API — Features endpoint that may be used to catalog pre-
existing moving features. If a mFeatureID is not specified, the query will return a list of the available
moving features. The list of moving features returned to the response can be limited using the
bbox, datetime, and limit parameters. This behavior is specified in OGC API — Features. All

parameters for use with the ue defiped by atures.
8.3.2. Operation I 2 A
Retrieve

The retrieve operation is defined in the MovingFeatures conformance class of OGC API — Features.
No modifications are needed to support MovingFeature resources.

1. Issue a GET request on {root}/collections/{collledctionID}/items path

Support for GET on the {root}/collections/{collledctionID}/items path is required by OGC API —
Features.

Requirement 12 /req/movingfeatures/features-get

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Features Features operation requirement
/req/core/fc-op.

Create

The create operation is defined in the CREATE conformance class of OGC API — Features. This
operation targeted MovingFeature resource.

1. Issue a POST request on {root}/collections/{collledctionID}/items path

32

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_operation_6
http://docs.ogc.org/DRAFTS/20-002.html#create

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

Requirement 13 /req/movingfeatures/features-post

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE operation requirement /req/create-
replace-delete/insert-post-op.

B An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature C(REATE request body requirements
/req/create-replace-delete/insert-body and /req/create-replace-
delete/insert-content-type.

C The content of the request body SHALL be based upon the
MovingFeature object and MovingFeatureCollection object in OGC
Moving Features JSON encoding standard schema.

The following example adds a new feature (MovingFeature object in MF-JSON) to the specific
Collection. The feature is represented as MovingFeature object (or MovingFeatureCollection object)
in MF-JSON, which is a kind of extension of the GeoJSON. A pseudo-sequence diagram notation is
used to illustrate the details of the HTTP communication between the client and the server.

An Example of Creating a New MovingFeature Object:

Client Server
| |
| POST /collections/mfc_1/items HTTP/1.1
| Content-Type: application/geo+json

{
"type": "Feature",
"id": "mf_1",
"properties": {
"name": "car1",
"state": "test1",
"video": "http://.../example/video.mpeg"

3
"ers": {
“type": "Name",
}
b
"trs": {
"type": "Link",
"properties": {
"type": "ogcdef",
"href": "http://www.opengis.net/def/uom/I1S0-8601/0/Gregorian"
}
¥

"temporalGeometry": {

|
I
|
|
I
|
I
I
I
I
|
I
|
"properties": {
|
|
I
|
I
I
I
I
|
I
|
"type": "MovingPoint",

I
I
|
I
|
I
|
I
I
|
I
|
| "name": "urn:ogc:def:crs:0GC:1.3:CRS84"
I
|
I
|
I
|
I
I
|
I
|

33

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeature
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeaturecollection
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#mfeature
https://datatracker.ietf.org/doc/html/rfc7946#section-3.2

34

"datetimes": [

]

"2011-07-14T722:01:01.000Z",
"2011-07-14722:01:02.000Z",
"2011-07-14T722:01:03.000Z",
"2011-07-14722:01:04.000Z",
"2011-07-14722:01:05.0002"

I
oordinates": [

[139.757083,35.627701,0.5],
[139.757399,35.627701,2.0],
[139.757555,35.627688,4.0],
[139.757651,35.627596,4.0],
[139.757716,35.627483,4.0]

1
"interpolation": "Linear",
"base": {

"type": "ngF"'

}

]
}I

"href": "http://.../example/car3dmodel.gltf"

I
rientations": [

{"scales": [1,1,1],"angles": [0,0,0]},

{"scales": [1,1,1],"angles": [@,355,0]},
{"scales": [1,1,1],"angles": [0,0,330]},
{"scales": [1,1,1],"angles": [0,0,300]},
{"scales": [1,1,1],"angles": [0,0,270]},

"temporalProperties": [

{

"datetimes": [
"2011-07-14722:01:01.4507",
"2011-07-14723:01:01.4507",
"2011-07-15700:01:01.4502"

1
"length": {
"type": "Measure",
"form": "http://www.qudt.org/qudt/owl/1.0.0/quantity/Length",
"values": [1,2.4,1],
"interpolation": "Linear",
"description”: "description1”

¥

"discharge": {

"type": "Measure",
“form": "MQS",
"values": [3,4,5],
"interpolation": "Step"

"datetimes": [
"2011-07-15T23:01:01.450Z",

"2011-07-16T00:01:01.450Z"

| == >

I
| HTTP/1.1 201 Created

| Location: /collections/mfc_1/items/mf_1

8.3.3. Response D R AI I
Retrieve

A successful response to the MovingFeatures GET operation is a document that contains the static
data for a set of moving features. In a typical deployment of the OGF API — MF, the MovingFeatures
GET response will list features of all offered resource types.

I |

I]r |

| "camera": { |

| "type": "Image",

| "values": [|

| "http://.../example/image1",

| "\/BORWOKGgoAAAANSUREU. "

I 1, |

| "interpolation": "Discrete"

| }l |

| "labels": { |

| "type": "Text",

| "values": ["car","human"],

| "interpolation": "Discrete"

I } |

| |

I |

| |
|
|
|

Requirement 14 /req/movingfeatures/features-get-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Features Features response requirement /req/core/fc-
response.

B The response SHALL only include moving features selected by the

request with parameters.

C Each moving feature in the response SHALL include the
mandatory properties listed in Table 8.

MovingFeatures GET Response Schema (movingFeatureCollection.yaml):

type: object
required:

- type

- features
properties:

35

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_response_6
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_response_6

type:
type: string
enum:
- FeatureCollection
features:
type: array
items:
$ref: movingFeature.yaml
crs:
$ref: crs.yaml
trs:
$ref: trs.yaml
links:
type: array
items:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/1link.yaml
timeStamp:
type: string
format: date-time
numberMatched:
type: integer
minimum: 0
numberReturned:
type: integer
minimum: @

= 1 \/7 \1 |

crs.yaml

type: object
required:
- type
- properties
properties:
oneOf:
- - type:
type: string
enum:
- "Name"

- properties:
type: object
required:

- name
properties:
- name:
type: string
default: "urn:ogc:def:crs:0GC:1.3:CRS84"
- - type:
type: string
enum:

36

- "Link"
- properties:
type: object
required:
- href
- type
properties:
- href:
type: string
format: uri
- type:
type: string

trs.yaml

type: object
required:
- type
- properties
properties:
oneOf:
- - type:
type: string
enum:
- "Name"
- properties:
type: object
required:
- name
properties:
- name:
type: string
default: "urn:ogc:data:time:is08601"
- - type:
type: string
enum:
- "Link"
- properties:
type: object
required:
- href
- type
properties:
- href:
type: string
format: uri
- type:
type: string

The following JSON payload is an example of a response to an OGC API — Moving Features

37

MovingFeatures GET operation.

An Example of a MovingFeatures GET Operation:

{

"type": "FeatureCollection",
"features":[
{
"id": "mf-1",
"type": "Feature",
"geometry":{
"type": "LineString",
"coordinates": [

[139.757083, 35.627701,
[139.757399, 35.627701,
[139.757555, 35.627688,
[139.757651, 35.627596,
[139.757716, 35.627483,

]

}

"properties":{
"label": "car",
"state": "test1",

"video":

"http://www.opengis.net/spec/movingfeatures/json/1

}I
"bbox": [

0.5],
2.0],
4.01,
4.0],
4.0]

139.757083, 35.627483, 0.0,

139.757716, 35.627701, 4.5

1,

"time":[
"2011-07-14T722:01:012",
"2011-07-15T701:11:22Z2"

"properties": "urn:ogc:def:crs:06C:1.3:CRS84"

"properties": "urn:ogc:data:time:iso8601"

"properties": "urn:ogc:def:crs:06C:1.3:CRS84"

1,
"ers": {
"type": llName"’
+
"trs": {
"type“: IlName"’
}
}
1,
"ers": {
"type": "Name"'
+
"trs": {

lltype": IlNamell'

“properties": "urn:ogc:data:time:iso8601"

38

.0/prism/example/video

.mpeg"

b
"links":[
{
"href": "https://data.example.org/collections/mfc-1/items",
"rel": "self",
"type": "application/geo+json”

his

{
"href": "https://data.example.org/collections/mfc-1/items&offset=1&limit=1",
"rel": "next",
"type": "application/geo+json”

}

1,

"timeStamp": "2020-01-01712:00:00Z",
"numberMatched": 100,
"numberReturned": 1

Create

A successful response to the MovingFeatures POST operation is an HTTP status code.

Requirement 15 /req/movingfeatures/features-post-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE response requirement /req/create-
replace-delete/insert-response and /req/create-replace-
delete/insert-response-rid.

8.3.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General
guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

8.4. Resource MovingFeature

8.4.1. Overview

A MovingFeature object consists of the set of static information that describes a single moving
feature and the set of temporal object information, such as temporal geometry and temporal
property. An abbreviated copy of this information is returned for each MovingFeature in the
{root}/collections/{collectionld}/items GET response.

The schema for the moving feature object presented in this clause is an extension of the GeoJSON
Feature Object defined in GeoJSON. Table 8 defines the set of properties that may be used to
describe a moving feature.

Table 8. Table of the properties related to the moving feature

39

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
https://datatracker.ietf.org/doc/html/rfc7946#section-3.2

Property Require Description

ment
id M A unique identifier to the moving feature.
type M The GeoJSON feature type (i.e., one of 'Feature' or
'FeatureCollection’).
geometry M Projective geometry of the moving feature.
properties M A set of property of GeoJSON.
bbox 0 Bounding box information for the moving feature.
time 0 Life span information for the moving feature.
Crs 0 Coordinate reference system (CRS) information for the moving
feature.
trs 0 Temporal reference system information for the moving feature.
temporalGeometry 0] A set of temporal geometry for a moving feature.
temporalProperties 0] A set of temporal properties of the moving feature.

The properties id, type, geometry, properties, and bbox were inherited from
Geo]JSON.

NOTE

Requirement 16 /req/movingfeatures/mf-mandatory

A A moving feature object SHALL contain all the mandatory
properties listed in Table 8.

8.4.2. Operation

Retrieve

The retrieve operation is defined in the Feature conformance class of OGC API — Features. No
modifications are needed to support MovingFeature resources.

1. Issue a GET request on the {root}/collections/{collectionId}/items/{mFeatureld} path

The {mFeatureld} parameter is the unique identifier for a single moving feature offered by the APIL
The list of valid values for {mFeatureId} is provided in the {root}/collections/{collectionId}/items
GET response.

Support for GET on the {root}/collections/{collledctionID}/items/{mFeatureld} path is required
by OGC API — Features.

Requirement 17 /req/movingfeatures/mf-get

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Features Feature operation requirement /req/core/f-
op.

40

https://datatracker.ietf.org/doc/html/rfc7946#section-3.2
http://docs.ogc.org/is/17-069r3/17-069r3.html#_operation_7
http://docs.ogc.org/is/17-069r3/17-069r3.html#_operation_7

Requirement 17 /req/movingfeatures/mf-get

B For every moving feature in a moving feature collection (path
{root}/collections/{collectionld}), the server SHALL support the
HTTP GET operation at the path
{root}/collections/{collectionId}/items/{mFeatureld}

C The path parameter collectionId is each id property in the
Collection GET operation response where the value of the
itemType property is specified as movingfeature. The path
parameter mFeatureld is an id property of the moving feature.

Delete
The delete operation is defined in the DELETE conformance class of OGC API — Features.
1. Issue a DELETE request on {root}/collections/{collectionId}/items/{mFeatureld} path

Support for the HTTP DELETE method is required by OGC API — Features.

Requirement 18 /req/movingfeatures/mf-delete

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature DELETE operation requirement req/create-
replace-delete/delete/delete-op.

B For every moving feature in a moving feature collection (path
{root}/collections/{collectionld}), the server SHALL support the
HTTP DELETE operation at the path
{root}/collections/{collectionId}/items/{mFeatureld}

C The path parameter collectionId is each id property in the
Collection GET operation response where the value of the
itemType property is specified as movingfeature. The path
parameter mFeatureld is an id property of the moving feature.

8.4.3. Response

Retrieve

A successful response to the MovingFeature GET operation is a set of metadata that describes the
moving feature identified by the {mFeatureld} parameter. This response does not include a set of
temporal object information. The temporal object information may be accessed using
TemporalGeometries and TemporalPropertiesCollection operations.

Requirement 19 /req/movingfeatures/mf-get-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

B The content of that response SHALL include the set of moving
feature’s metadata that defined in the response schema.

41

http://docs.ogc.org/DRAFTS/20-002.html#delete
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

MovingFeature GET Response Schema (movingFeature.yaml):

type: object
required:
- id
- type
- geometry
- properties
properties:
id:
type: string
type:
type: string
enum:
- Feature
geometry:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/geometryGeo]SON.
yaml
properties:
type: object
nullable: true
bbox:
type: array
minltems: 1
items:
type: array
oneOf:
- minItems:
maxItems:
- minltems:
maxItems:
items:
type: number
time:
type: array
minltems: 1
items:
type: array
minItems: 2
maxItems: 2
items:
type: string
format: date-time
nullable: true

(= B e R e

crs:

$ref: crs.yaml
trs:

$ref: trs.yaml
links:

type: array

42

items:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/1link.yaml

The interval property of the MovingFeature response represents a particular period of moving
feature existence.

The following JSON payload is an example of a response to an OGC API — MovingFeatures
MovingFeature operation.

An Example of a MovingFeature [SON Payload:

{
"id": "mf-1",
"type": "Feature",
"geometry":{
“type": "LineString",
"coordinates": [
[139.757083, 35.627701, 0.5],
[139.757399, 35.627701, 2.0],
[139.757555, 35.627688, 4.0],
[139.757651, 35.627596, 4.0],
[139.757716, 35.627483, 4.0]
]
}
"properties":{
"name": "car1",
"state": "test1",
"video":
"http://www.opengis.net/spec/movingfeatures/json/1.0/prism/example/video.mpeg”
I
"bbox":[
139.757083, 35.627483, 0.0,
139.757716, 35.627701, 4.5
1,
"time":[
"2011-07-14722:01:012",
"2011-07-15T01:11:22Z2"

1,
"ers": {
“type": "Name",
"properties": "urn:ogc:def:crs:06C:1.3:CRS84"
H
"trs": {
“type": "Name",
“properties": "urn:ogc:data:time:iso8601"
}

}

43

Delete
A successful response to the Collection DELETE operation is an HTTP status code.

Requirement 20 /req/movingfeatures/mf-delete-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Features DELETE response requirement /req/create-
replace-delete/delete/response.

B If no resource with the identifier exists in the collection, the
server SHALL respond with a not-found exception (404).

8.4.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General
guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

8.5. Resource TemporalGeometryCollection

8.5.1. Overview

The TemporalGeometryCollection resource supports retrieving and creating operations via GET and
POST HTTP methods respectively.

1. A retrieve operation re E object which is included in the

te al etr
cafircirme t of te
the response can be limited using the 1imit, bbox, datetime, and leaf parameters.

MovingFeature that speci oral geometry object returned to

2. A create operation post a new TemporalGeometry resource to the MovingFeature that specified
by {mFeatureld}.

8.5.2. Parameters

Parameter leaf

The leaf parameter is a sequence of monotonic increasing instants represented by date-time strings
(ex. "2018-02-12T23:20:50Z") whose content structure adheres to IETF RFC3339. Example 1 shows
valid expression examples of the leaf parameter.

Example 1. Leaf valid (and invalid) Examples
(0) "2018-02-12T23:20:50Z"
(0) "2018-02-12T23:20:50Z", "2018-02-12T23:30:50Z"
(0) "2018-02-12T23:20:50Z", "2018-02-12T23:30:50Z", "2018-02-12T23:40:50Z"

(X) "2018-02-12T23:20:50Z", "2018-02-12T23:20:50Z"

44

http://docs.ogc.org/DRAFTS/20-002.html#_response_3
http://docs.ogc.org/DRAFTS/20-002.html#_response_3
https://datatracker.ietf.org/doc/html/rfc3339

(X) "2018-02-12T23:20:50Z", "2018-02-12T22:40:50Z"

If the leaf parameter is provided by the client, the endpoint returns only geometry coordinate (or
temporal property value) with the leaf query at each time included in the leaf parameter, similar to
pointAtTime operation in the OGC Moving Feature Access standard. And interpolation property in
the response shall be 'Discrete’.

If datetime= If leaf=[
. "2021-09-14T12%3A00%3A15Z%2F "2021-09-14T12:00:15Z",
y 1 t 2021-09-14T12%3A00%3A30Z", theri2021-09-14T12:00:30Z"], then
10s 155 20s 395 40s > temporal g try object> <TG ies query resp <TG ies query resp
{ "temporalGeometries": ["temporalGeometries": [
"id": "tgeom", t t
"type": "MovingPoint", "id": "tgeom”, "id": "tgeom”,
"datetimes"; ["type": "MovingPoint", "type": "MovingPoint",
"2021-09-14T12:00:10Z", "datetimes": ["datetimes": [

"2021-09-14T712:00:20Z",
"2021-09-14T712:00:40Z"

"coordinates": [1

[1,1], "coordinates": [
[2,2], [1,1],
[4,2] [2,2],

1 [4,2]

“interpolation": "Linear", I
} "interpolation": "Linear",

> }

(0,0 1 15 2

4 1,

3 4 X

"2021-09-14712:00:10Z",
"2021-09-14T12:00:20Z",
1 ""2021-09-14T12:00:40Z"

"2021-09-14T12:00:152",
"2021-09-14T12:00:30Z"
I
"coordinates": [
[1.5,1.5],
[3,2]
1

}

,
"interpolation": "Discrete",

Figure 2. Example of response result with leaf parameter

Requirement 21

A

/req/movingfeatures/param-leaf-definition

The operation SHALL support a parameter leaf with the
following characteristics (using an OpenAPI Specification 3.0

fragment):

name: leaf
in: query
required: false
schema:
type: array
uniqueltems: true,
minItems: 1
items:
type: string
format: date-time
style: form
explode: false

The 1leaf parameter SHALL be a sequence of monotonic

increasing instants with date-time strings.

The syntax of date-time is specified by RFC 3339, 5.6.

45

https://docs.opengeospatial.org/is/16-120r3/16-120r3.html#12
https://datatracker.ietf.org/doc/html/rfc3339#section-5.6

Requirement 22 /req/movingfeatures/param-leaf-response

A If the leaf parameter is provided by the client and supported by
the server, then only resources that have a temporal information
(i.e., datetimes property) that intersects the temporal information
in the leaf parameter SHALL be part of the result set.

B The leaf parameter SHALL match all resources in the moving
feature that are associated with temporal information.

C If the leaf parameter is provided by the client and supported by
the server, the endpoint SHALL return only temporal geometry
coordinate (or temporal property value) with the PointAtTime
query at each time included in the leaf parameter, using
interpolated trajectory according to the interpolation property.

D If the leaf parameter is provided by the client and supported by
the server, the interpolation property in the response SHALL be
'Discrete’.

8.5.3. Operation

Retrieve

1. Issue a GET request on the {root}/collections/{collectionId}/items/{mFeatureld}/tgeometries

" NNDALCT

Requirement 23 /req/movingfeatures/tgeometries-get

A For every moving feature identified in the MovingFeatures GET
response (path {root}/collections/{collectionId}/items), the

server SHALL support the HTTP GET operation at the path
{root}/collections/{collectionId}/items/{mFeatureld}/tgeometri
es

B The path parameter collectionId is each id property in the
Collection GET response where the value of the itemType property
is specified as movingfeature. The path parameter mFeatureld is
each id property in the MovingFeatures GET response.

Create

The create operation is defined in the CREATE conformance class of OGC API — Features. This
operation targeted TemporalGeometry resource.

1. Issue a POST request on {root}/collections/{collectionId}/items/{mFeatureld}/tgeometries path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

46

http://docs.ogc.org/DRAFTS/20-002.html#create

Requirement 24

The following example adds a new feature (TemporalGeometry object in MF-JSON) to the feature

A

[req/movingfeatures/tgeometries-post

An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE operation requirement /req/create-
replace-delete/insert-post-op.

An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature C(REATE request body requirements
/req/create-replace-delete/insert-body and /req/create-replace-
delete/insert-content-type.

The content of the request body SHALL be based upon the
TemporalGeometry object in OGC Moving Features JSON encoding
standard schema.

The ending date-time instance (¢_end) in the temporal geometry
object in MovingFeature, determined by mFeatureId, SHALL be
earlier than the beginning date-time instance (t¢_new) in the
temporal geometry object in the request body, i.e., t_end < t_new.

created by the Creation a MovingFeature Example. The feature is represented as
TemporalGeometry object in MF-JSON, which is a kind of extension of the JSON. A pseudo-sequence
diagram notation is used to illustrate the details of the HTTP communication between the client and

the server.
An Example of Creating a New %ltry At: I I
Client

Server

| POST /collections/mfc_1/items/mf_1/tgeometries HTTP/1.1
| Content-Type: application/json

{

"id": "tg
"type": "
"datetime
"2011-
"2011-
"2011-
1,
"coordina
[139.7
[139.7
[139.7
1,
"interpol
"base": {
"type"
"href"
s

"orientat

1",
MovingPoint",

s": [
07-14722:01:06.0002",
07-14722:01:07.0002",
07-14722:01:08.0002"

tes": [

57716,35.627483,4.0],
57782,35.627483,4.0],
57843,35.627483,4.0]

ation": "Linear",

: "qLTF",
: "http://.../example/car3dmodel.gltf"

jons": [

47

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tgeometry
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tgeometry

| {"scales": [1,1,1],"angles": [0,0,270]},
| {"scales": [1,1,1],"angles": [0,0,270]},
| {"scales": [1,1,1],"angles": [0,0,270]}
|
I

| HTTP/1.1 201 Created
| Location: /collections/mfc_1/items/mf_1/tgeometries/tg_1

8.5.4. Response

Retrieve

A successful response to the TemporalGeometryCollection GET operation is a document that contains
the set of temporal geometry of the moving feature identified by the {mFeatureId} parameter.

Requirement 25 /req/movingfeatures/tgeometries-get-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature Features response requirement /req/core/fc-
response.

B The response SHALL only include temporal geometries selected

by the request with limit, bbox, datetime, and leaf parameters.

C Each temporal geometry in the response SHALL include the
mandatory properties listed in Table 9.

TemporalGeometries GET Response Schema (temporalGeometryCollection.yaml):

type: object
required:
- type
- prisms
properties:
type:
type: string
default: MovingGeometryCollection

prisms:

type: array

items:

$ref: temporalGeometry.yaml

crs:

$ref: crs.yaml
trs:

$ref: trs.yaml
links:

type: array

items:

48

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_response_6
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_response_6

$ref:

https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/link.yaml

timeStamp:
type: string
format: date-time

numberMatched:
type: integer
minimum: 0

numberReturned:
type: integer
minimum: 0

TemporalGeometry Schema (temporalGeometry.yaml):

type: object
required:
- id
- type
- coordinates
- datetimes
- interpolation
properties:
id:
type: string
type:
type: string
enum:
- MovingPoint
- MovinglLineString
- MovingPolygon
- MovingPointCloud
coordinates:
type: array
minltems: 2
items:
one0f:
- $ref: pointCoordinates.yaml
- $ref: lineStringCoordinates.yaml
- $ref: polygonCoordinates.yaml
- $ref: multiPointCoordinates.yaml
datetimes:
type: array
uniqueltems: true,
minltems: 2
items:
type: string
format: date-time

interpolation:
type: string
enum:

49

Discrete
Step
Linear
Quadratic
- Cube
base:
type: object
required:
- href
- type
properties:
href:
type: string
format: uri
type:
type: string
orientations:
type: array
minItems: 2
items:
type: object
required:
- scales
- angles
properties:
scales:
type: array
oneOf:
- minItems:
maxItems:
- minItems:
maxItems:
items:
type: number
angles:
type: array
one0f:
- minItems:
maxItems:
- minItems:
maxItems:
items:
type: number

w W NN

w W NN

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalGeometryCollection GET operation.

An Example of a TemporalGeometryCollection GET operation:

{

50

“type": "MovingGeometryCollection",
"prisms": [
{

"id": "tg-1",

"type": "MovingPoint",

"datetimes": [
"2011-07-14722:01:022",
"2011-07-14722:01:032",
"2011-07-14722:01:042"

1,

"coordinates": [
[139.757399, 35.627701, 2.0],
[139.757555, 35.627688, 4.0],
[139.757651, 35.627596, 4.0]

1,

"interpolation”: "Linear",

"base": {
"type": "glTF",
"href":

"https://www.opengis.net/spec/movingfeatures/json/1.0/prism/example/car3dmodel.gltf"
}

rientations":[
{
"scales": [1,1,11,
"angles": [0,355,0]
b
{
"scales": [1,1,11,
"angles": [0,0,330]
i
{
"scales": [1,1,11,
"angles": [0,0,300]

}
]

}
1,
"ers": {

“type": "Name",

"properties": "urn:ogc:def:crs:06C:1.3:CRS84"
H
"trs": {

“type": "Name",

“properties": "urn:ogc:data:time:iso8601"
I
"links": [

{

"href": "https://data.example.org/collections/mfc-1/items/mf-1/tgeometries"”,
"rel": "self",
"type": "application/json"

¥

31

{
"href": "https://data.example.org/collections/mfc-1/items/mf-
1/tgeometries&offset=10&1imit=1",
"rel": "next",
"type": "application/json"
}
],
"timeStamp": "2021-09-01712:00:007",
"numberMatched": 100,
“numberReturned": 1

Create

A successful response to the TemporalGeometryCollection POST operation is an HTTP status code.

Requirement 26 /req/movingfeatures/tgeometries-post-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE response requirement /req/create-
replace-delete/insert-response and /req/create-replace-
delete/insert-response-rid.

@ c Ir ts ovifled in the HTTP Response. General
S 2@ hoW th ouldgbefhandled @ provided in HTTP Status Codes.

8.6. Resource TemporalGeometry

8.5.5. Error situations

The requirements for handl
guidance on HTTP status cod

8.6.1. Overview

A temporal geometry object represents the movement of a moving feature with various types of
moving geometry, i.e., MovingPoint, MovingLineString, MovingPolygon, and MovingPointCloud. It can
also represent the movement of a 3D object with its orientation.

The schema for the temporal geometry object presented in this clause is an extension of the
TemporalGeometry Object defined in MF-JSON standard. Table 9 defines the set of properties that
may be used to describe a temporal geometry.

Table 9. Table of the properties related to the temporal geometry

Property Requiremen Description

t
id M A unique identifier to the temporal geometry.
type M A primitive geometry type of MF-JSON (i.e., one of

'MovingPoint', 'MovingLineString', 'MovingPolygon',
'MovingPointCloud', or 'MovingGeometryCollection').

32

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tgeometry

Property Requiremen Description

t
datetimes M A sequence of monotonically increasing instants.
coordinates M A sequence of leaf geometries of a temporal geometry, having
the same number of elements as "datetimes".
interpolation M A predefined type of motion curve (i.e., one of 'Discrete’, 'Step’,
'Linear’, 'Quadratic' or 'Cubic’).
type: A type of 3D file format, such as 'STL', 'OBJ', 'PLY’, and
'gITF".
base 0]
href: A URL to address a 3D model data which represents a
base geometry of a 3D shape.
scales: An array value of numbers along the X, y, and z axis in
order as three scale factors.
orientations 0

angles: An array value of numbers along the x, y, and z axis in
order as Euler angles in degree.

The detailed information and requirements for each property are described in the

NOTE . .
OGC Moving Feature JSON encoding standard.

Requirement 27 /req/movingfeatures/tgeometry-mandatory

A A temporal geometry object SHALL contain all the mandatory
properties listed in Table 9.

8.6.2. Operation

Delete

The delete operation is defined in the DELETE conformance class of API — Features.

1. Issue a DELETE request on
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometries/{tGeometryId} path

The {tGeometryld} parameter is the unique identifier for a single temporal geometry offered by the
API. The list of wvalid wvalues for {tGeometryId} is provided in the
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometries GET response.

Support for the HTTP DELETE method is specified as a requirement in OGC API — Features.

Requirement 28 /req/movingfeatures/tgeometry-delete

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature DELETE operation requirement /req/create-
replace-delete/delete/delete-op.

33

http://docs.ogc.org/DRAFTS/20-002.html#delete
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

Requirement 28 /req/movingfeatures/tgeometry-delete

B For every temporal geometry in a moving feature (path
{root}/collections/{collectionId}/items/{mFeatureld}), the

server SHALL support the HTTP DELETE operation at the path
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometri
es/{tGeometryId}

C The path parameter collectionId is each id property in the
Collection GET operation response where the value of the
itemType property is specified as movingfeature.

The path parameter mFeatureld is an id property of the moving
feature. The path parameter tGeometryId is an id property of the
temporal geometry.

8.6.3. Response

Delete
A successful response to the TemporalGeometry DELETE operation is an HTTP status code.

Requirement 29 /req/movingfeatures/tgeometry-delete-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature DELETE response requirement /req/create-
replace-delete/delete/response.

B If no resource with the identifier exists in the collection, the
server SHALL respond with a not-found exception (404).

8.6.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General
guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

8.7. TemporalGeometry Query Resources

8.7.1. Overview

TemporalGeometry Query resources are spatiotemporal queries that support operations for the
accessing TemporalGeometry resources. The OGC API — MF Standard identifies an initial set of
common query types to implement. These are described in this clause. This list may change as the
Standard is used and experience is gained.

Query resources related to the TemporalGeometry resource can be exposed using the path
templates:

* {root}/collections/{collectionId}/items/{mFeatureld}/tgeometries/{tGeometryId}/{queryType}

Where:

54

http://docs.ogc.org/DRAFTS/20-002.html#_response_3
http://docs.ogc.org/DRAFTS/20-002.html#_response_3

e {root} = Base URI for the API server
* {collectionId} = An identifier for a specific Collection of data
» {mFeatureld} = An identifier for a specific MovingFeature of a specific Collection of data

» {tGeometryId} = An identifier for a specific TemporalGeometry of a specific MovingFeatures of
data

» {quertyType} = An identifier for the query pattern performed by an implementation instance of
the OGC API — MF.

Table 10 provides a mapping of the initial query types proposed for the OGC API — MF.

Table 10. Table of the query resources

Path Template Query Description

Type
{root}/collections/{collectionld}/items/ Distance Return a graph of the time to distance
{mFeatureld}/tgeometries/{tGeometryld}/d function as a form of the
istance TemporalProperty.
{root}/collections/{collectionId}/items/ Velocity Return a graph of the time to velocity
{mFeatureld}/tgeometries/{tGeometryld}/v function as a form of the
elocity TemporalProperty.
{root}/collections/{collectionId}/items/ Accelerati Return a graph of the time to acceleration
{mFeatureld}/tgeometries/{tGeometryld}/a on function as a form of the
cceleration TemporalProperty.

LI\ \ 1

8.7.2. Shared query parameters

Query parameters are used in URLs to define the resources which are returned on a GET request.
The following are defined as standard shared parameters for use.

Parameter datetime

For datetime parameter, see Clause 10.1.3.

8.7.3. Distance Query

The Distance query returns a time to distance curve of the TemporalGeometry object as a form of
the TemporalProperty. Figure 3 shows an example of time to distance curve.

55

Distance

&

(t3r d])

» T1me

(t;. 0)
Figure 3. Example of time to distance curve [OGC 16-120r3, OGC Moving Features Access]

The filter constraints are defined by the following query parameter:

Parameter datetime

The datetime parameter defines the specified date and time to return the distance value from the
time to distance graph. When 'datetime’ is not specified, an implementation instance (endpoint) of
the API returns data from all available times of the specified TemporalGeometry resource.

8.7.4. Velocity Query D A F I
The Velocity query returns a o v&oci rve ot Tempo®alGeometry object as a form of the

TemporalProperty.

The filter constraints are defined by the following query parameter:

Parameter datetime

The datetime parameter defines the specified date and time to return the velocity value from the
time to velocity graph. When 'datetime’ is not specified, an implementation instance (endpoint) of
the API returns data from all available times of the specified TemporalGeometry resource.

8.7.5. Acceleration Query

The Acceleration query returns a time to acceleration curve of the TemporalGeometry object as a
form of the TemporalProperty.

The filter constraints are defined by the following query parameter:

Parameter datetime

The datetime parameter defines the specified date and time to return the acceleration value from
the time to acceleration graph. When 'datetime' is not specified, an implementation instance
(endpoint) of the API returns data from all available times of the specified TemporalGeometry
resource.

36

8.7.6. Operation Requirements

Requirement 30 /req/movingfeatures/tgeometry-query

A For every temporal geometry identified in the

TemporalGeometryCollection GET response (path
{root}/collections/{collectionId}/items/{mFeatureld}/tgeometri

es), the server SHALL support the HTTP GET operation at the path
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometri
es/{tGeometryId}/{queryType}

B The path parameter collectionId is each id property in the
Collection GET operation response where the value of the
itemType property is specified as movingfeature.

The path parameter mFeatureld is an id property of the moving
feature.

The path parameter tGeometryId is an id property of the temporal
geometry.

C The path parameter queryType SHALL be one of the predefined
query type (distance, velocity, and acceleration)

Permission 1 /per/movingfeatures/tgeometry-query
A A distance query GET operation MAY include a datetime query
parameter.
B A velocity query GET operation MAY include a datetime query
parameter.
C An acceleration query GET operation MAY include a datetime
query parameter.

8.7.7. Response Requirements

Requirement 31 /req/movingfeatures/tgeometry-query-success

A A successful execution of the distance, velocity, and acceleration
query GET operation SHALL be reported as a response with an
HTTP status code 200.

B The content of that response SHALL include the parametric value
that defined in the response schema.

C The type property SHALL be TFloat

8.8. Resource TemporalPropertyCollection

8.8.1. Overview

A TemporalPropertyCollection object consists of the set of TemporalProperty which is included in
the MovingFeature that is specified by {mFeatureld}. The TemporalPropertyCollection resource
supports the retrieve and create operations via the HTTP GET and POST methods respectively.

57

1. A retrieve operation returns a list of the available abbreviated copy of TemporalProperty object
in the specified moving feature.

2. A create operation posts a new TemporalProperty object to the MovingFeature that is specified by
{mFeatureld}.

8.8.2. Operation

Retrieve

1. Issue a GET request on the {root}/collections/{collectionId}/items/{mFeatureld}/tproperties
path

Requirement 32 /req/movingfeatures/tproperties-collection-get

A For every moving feature identified in the MovingFeatures GET
response (path {root}/collections/{collectionId}/items), the
server SHALL support the HTTP GET operation at the path
{root}/collections/{collectionId}/items/{mFeatureld}/tproperti
es

B The path parameter collectionId is each id property in the
Collection GET response where the value of the itemType property
is specified as movingfeature.

The path parameter mFeatureld is each id property in the
MovingFeatures GET response.

- DUKAF|

The create operation is defined in the CREATE conformance class in the OGC API — Features. This
operation targeted TemporalProperty resource.

1. Issue a POST request on {root}/collections/{collectionId}/items/{mFeatureld}/tproperties path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

Requirement 33 /req/movingfeatures/tproperties-collection-post

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE operation requirement /req/create-
replace-delete/insert-post-op.

B An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE request body requirements
/req/create-replace-delete/insert-body and /req/create-replace-
delete/insert-content-type.

C The content of the request body SHALL be based upon the
TemporalProperties or ParametricValues object schema.

TemporalPropertyCollection Request Body Schema (temporalProperty.yaml):

type: object

38

http://docs.ogc.org/DRAFTS/20-002.html#create
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#pvalues

required:
- name
- type
properties:
name:
type: string
type:
type: string
enum:
- TBoolean
- TText
TInteger
TReal
TImage

form:
oneOf:
- type: string
format: uri
- type: string
minLength: 3
maxLength: 3
description:
type: string

The following example adds operty @bject and ParametricValues object
in MF-JSON) to the feature vir@Feature Example. The feature is
represented as a JSON paylo@il4gPse ‘nce @lagham notdtion is used to illustrate the details

of the HTTP communication between the client and the server.

An Example of Creating a New TemporalProperty Object:

Client Server

I |
| POST /collections/mfc_1/items/mf_1/tproperties HTTP/1.1

| Content-Type: application/json

I

| {

| "name": "speed",
| "type": "TFloat",
I

| }

| HTTP/1.1 201 Created

|
|
|
|
|
|
"fOI'm": IIKMHII |
|
|
|
|
| Location: /collections/mfc_1/items/mf_1/tproperties/speed |

An Example of Creating a New TemporalProperty Object with ParametricValues as a MF-JSON Encoding:

Client Server

39

https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#pvalues

POST /collections/mfc_1/items/mf_1/tproperties HTTP/1.1
Content-Type: application/json

| |
| |
| |
| |
| { |
| "datetimes": [|
| "2011-07-14722:01:06.000Z", |
| "2011-07-14T22:01:07.0007",

| "2011-07-14722:01:08.000Z", |
|]r |
| "speed": { |
| "type": "Measure",

| "form": "KMH",

| "values": [65.0, 70.0, 80.0],

| “interpolation”: "Linear"

|}

|

| HTTP/1.1 201 Created
| Location: /collections/mfc_1/items/mf_1/tproperties/speed

8.8.3. Response
Retrieve D I ! A I I

A successful response to the TemporalPropertyCollection GET operation is a document that contains
the set of TemporalProperty of the moving feature identified by the {mFeatureld} parameter.

Requirement 34 /req/movingfeatures/tproperties-collection-get-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature Features response requirement /req/core/fc-
response.

B Each temporal properties object in the response SHALL include

the mandatory properties listed in Table 11.
TemporalPropertyCollection GET Response Schema (temporalPropertyCollection.yaml):

type: object
required:
- temporalProperties
properties:
temporalProperties:
type: array
items:
one0f:
- $ref: temporalProperty.yaml
- $ref: temporalValue.yaml

60

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_response_6
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html#_response_6

links:
type: array
items:
$ref:
https://schemas.opengis.net/ogcapi/features/part1/1.0/openapi/schemas/1link.yaml
timeStamp:
type: string
format: date-time
numberMatched:
type: integer
minimum: @
numberReturned:
type: integer
minimum: @

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalPropertyCollection GET operation.

An Example of a TemporalPropertyCollection GET Operation:

{
"temporalProperties": [
{
"name": "length",
"type": "TReal",
"form": "http://www.qudt.org/qudt/owl/1.0.0/quantity/Length"
I
{
"name": "speed",
"type": "TReal",
“form": "KHM"
}
1,
"links": [
{

"href": "https://data.example.org/collections/mfc-1/items/mf-1/tproperties"”,
"rel": "self",
"type": "application/json"

}

{
"href": "https://data.example.org/collections/mfc-1/items/mf-
1/tproperties&offset=2&1imit=2",
"rel": "next",
"type": "application/json"
}
1,
"timeStamp": "2021-09-01712:00:007",
"numberMatched": 10,
“numberReturned": 2

61

Create
A successful response to the TemporalPropertyCollection POST operation is an HTTP status code.

Requirement 35 /req/movingfeatures/tproperties-collection-post-success
A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE response requirement /req/create-
replace-delete/insert-response and /req/create-replace-
delete/insert-response-rid.

8.8.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General
guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

8.9. Resource TemporalProperty

8.9.1. Overview

The TemporalProperty resource supports the retrieve and create operations via the HTTP GET and
POST methods respectively.

1. A retrieve operation returns a TemporalProperé resource which is included in the

t
TemporalPropertyCollecti S d by @ProgertyNarnge}. The TemporalProperty resource
li usi lig™SYate@me, and leaf parameters.
temp valu ect to tfe TemporalPropertyCollection that

returned to the response G
ew

2. A create operation post
specified by {tPropertyName}.

A temporal property object is a collection of dynamic non-spatial attributes and their temporal
values with time. An abbreviated copy of this information is returned for each TemporalProperty in
the {root}/collections/{collectionld}/items/{mFeatureld}/tproperties response.

The schema for the temporal property object presented in this clause is an extension of the
TemporalProperty Object defined in MF-JSON standard. Table 11 defines the set of property that may
be used to describe a temporal property.

Table 11. Table of the properties related to the temporal property

Property Requiremen Description
t
name M An identifier for the resource assigned by an external entity.
type M A predefined temporal property type (i.e., one of 'TBoolean’,
'TText', 'TInteger', 'TReal’, and 'TImage").
values M A sequence of temporal value
form 0 A unit of measure.
description 0 A short description.

62

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
https://docs.opengeospatial.org/is/19-045r3/19-045r3.html#tproperties

Table 12. Table of the properties related to the temporal value

Property Requiremen Description
t
datetimes M A sequence of monotonic increasing instants.
values M A sequence of dynamic value, having the same number of

elements as "datetimes".

interpolation M A predefined type for a dynamic value (i.e., one of 'Discrete’,
'Step’, 'Linear’, or 'Regression’).

The detailed information and requirements for each property are described in the

NOTE . .
OGC Moving Feature JSON Encoding Standard.

Requirement 36 /req/movingfeatures/tproperties-mandatory

A A temporal property object SHALL contain all the mandatory
properties listed in Table 11 and Table 12.

8.9.2. Operation

Retrieve

1. Issue a on the
{root}/collections/{colld} /ﬂe }/tprop@rties/{tPropertyName} path

The {tPropertyName} parame gfthe Wniqie Mlentifigr @or a single temporal property value offered

by an implementation instance (endpoint) of the OGC API — MF. The list of valid values for

{tPropertyName} is provided in the
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties GET response.

Requirement 37 /req/movingfeatures/tproperties-get

A For every temporal properties in a moving feature (path
{root}/collections/{collectionId}/items/{mFeatureld}/tproperti

es), the server SHALL support the HTTP GET operation at the path
{root}/collections/{collectionId}/items/{mFeatureld}/tproperti
es/{tPropertiesName}

B The path parameter collectionId is each id property in the
Collection GET response where the value of the itemType property
is specified as movingfeature.

The path parameter mFeatureld is each id property in the
MovingFeatures GET response.
tPropertiesName is a local identifier of the temporal properties.

Create

The create operation is defined in the CREATE conformance class in the OGC API — Features. This
operation targeted the new temporal values object defined in Table 12.

63

http://docs.ogc.org/DRAFTS/20-002.html#create

1. Issue a POST request
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties/{tPropertyName} path

Support for the HTTP POST method is specified as a requirement in OGC API — Features.

Requirement 38 /req/movingfeatures/tproperties-post

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE operation requirement /req/create-
replace-delete/insert-post-op.

B An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE request body requirements
/req/create-replace-delete/insert-body and /req/create-replace-
delete/insert-content-type.

C The content of the request body SHALL be based upon the
TemporalValue schema.

D The ending date-time instance (¢_end) in the temporal value
object in TemporalProperty, determined by tPropertyName, SHALL
be earlier than the beginning date-time instance (¢_new) in the
temporal value object in the request body, i.e., t_end < t_new.

TemporalProperty Request Body Schema (temporalValue.yaml):

type: object
required:
- datetimes
- values
- interpolation
properties:
datetimes:
type: array
uniqueltems: true,
minItems: 2
items:
type: string
format: date-time
values:
oneOf:
- type: number
- type: string
- type: boolean
interpolation:
type: string
enum:
Discrete
Step
Linear
Regression

64

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body

The following example adds a new feature (TemporalValue object) to the feature created by the
Creation a New TemporalProperty Object Example. The feature is represented as a JSON payload. A
pseudo-sequence diagram notation is used to illustrate the details of the HTTP communication
between the client and the server.

An Example of Creating a New TemporalValue Object:

Client Server

| |
| POST /collections/mfc_1/items/mf_1/tproperties/speed HTTP/1.1

| Content-Type: application/json

| == >

I
| HTTP/1.1 201 Created

| Location: /collections/mfc_1/items/mf_1/tproperties/speed

|

|
| |
| { |
| "datetimes": [|
| "2011-07-14122:01:09.000Z", |
| "2011-07-14722:01:010.0002", |
|]r |
| "values": [|
| 99.0, |
| 95.0, |
I]r |
| "interpolation": "Linear" |
| } |

I

|

|

8.9.3. Response

Retrieve

A successful response to the TemporalProperty GET operation is a temporal property identified by
the {tPropertyName} parameter.

Requirement 39 /req/movingfeatures/tproperties-get-success

A A successful execution of the operation SHALL be reported as a
response with an HTTP status code 200.

B The response SHALL only include temporal properties selected by
the request with 1imit, datetime, and leaf parameters.

C The content of that response SHALL include the parametric value
that defined in the response schema.

The following JSON payload is an example of a response to an OGC API — Moving Features
TemporalProperty GET operation.

65

An Example of TemporalProperty GET Operation:

{
"temporalProperties": [
{

"datetimes":[
"2011-07-14T722:01:027",
"2011-07-14722:01:032",
"2011-07-14722:01:042"

1

"values":[

65.0,
70.0,
80.0
1,
"interpolation”: "Linear"
¥
{

"datetimes": [
"2011-07-15T08:00: 002",
"2011-07-15T08:00:012",
"2011-07-15T708:00:022"

1.

"values":[

0.0,
20.0,
50.0
1.
"interpolation": "Linear"
}
1
"links": [
{

"href": "https://data.example.org/collections/mfc-1/items/mf-
1/tproperties/speed",
"rel": "self",
"type": "application/json"
o

{
"href": "https://data.example.org/collections/mfc-1/items/mf-
1/tproperties/speed&offset=2&1limit=2",
"rel": "next",
"type": "application/json"
}
1,
"timeStamp": "2021-09-01712:00:007",
"numberMatched": 20,
"numberReturned": 2

66

Create

A successful response to the TemporalProperty POST operation is an HTTP status code.

Requirement 40 /req/movingfeatures/tproperties-post-success

A An implementation of the OGC API — MF SHALL comply with the
OGC API — Feature CREATE response requirement /req/create-
replace-delete/insert-response and /req/create-replace-
delete/insert-response-rid.

8.9.4. Error situations

The requirements for handling unsuccessful requests are provided in the HTTP Response. General
guidance on HTTP status codes and how they should be handled is provided in HTTP Status Codes.

DRAFT

67

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

Chapter 9. Common Requirements

9.1. Parameters

The query parameters bbox, datetime and limit are inherited from OGC API — Common. All
requirements and recommendations in API — Common regarding these parameters also apply to
OGC API — MF. No modifications are required.

9.1.1. Parameter limit

Requirement 41 /req/common/param-limit

A An implementation instance of the OGC API — MF SHALL support
the Limit parameter for the operation.

B Requests which include the Limit parameter SHALL comply with
OGC API — Common requirement /req/collections/rec-limit-
definition.

C Responses to Limit requests SHALL comply with OGC API —

Common requirements /req/collections/rc-limit-response

9.1.2. Parameter bbox
—> [— LA [— =

Requirement 42 /req/common/param-bbox

A An implementation instance of the OGC API — MF SHALL support
the Bounding Box (bbox) parameter for the operation.

B Requests which include the Bounding Box parameter SHALL
comply with OGC API — Common requirement

/req/collections/rc-bbox-definition.

C Responses to Bounding Box requests SHALL comply with OGC API
— Common requirement /req/collections/rc-bbox-response.

9.1.3. Parameter datetime

Requirement 43 /req/common/param-datetime

A An implementation instance of the OGC API — MF SHALL support
the DateTime (datetime) parameter for the operation.

B Requests which include the DateTime parameter SHALL comply
with OGC API — Common requirement /req/collections/rc-time-
definition.

C Responses to DateTime requests SHALL comply with OGC API —

Common requirement /req/collections/rc-time-response.

68

http://docs.opengeospatial.org/DRAFTS/20-024.html#bbox-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#datetime-parameter-requirements
http://docs.opengeospatial.org/DRAFTS/20-024.html#limit-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#limit-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#limit-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#limit-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#bbox-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#bbox-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#datetime-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#datetime-parameter-requirements
https://docs.ogc.org/DRAFTS/20-024.html#datetime-parameter-requirements

9.2. HTTP Response

Each HTTP request shall result in a response that meets the following requirement.

Requirement 44 /req/common/http-response

A An HTTP operation SHALL return a response which includes a
status code and an optional description element.

B If the status code is not equal to 200, then the description
element SHALL be populated.

The YAML schema for these results is provided in HTTP Response Schema.

An Example of the HTTP Response Schema:

title: Exception Schema
description: JSON schema for exceptions based on RFC 7807
type: object
required:
- type
properties:
type:
type: string
title:
type: string
status:
type: integer
detail:
type: string
instance:
type: string

9.3. HTTP Status Codes

Table 13 lists the main HTTP status codes that clients should be prepared to receive. This includes
support for specific security schemes or URI redirection. In addition, other error situations may
occur in the transport layer outside of the server.

Table 13. Typical HTTP status codes

Status code Description

200 A successful request.
201 The server has been fulfilled the operation and a new resource has been created.
202 A successful request, but the response is still being generated. The response will

include a Retry-After header field giving a recommendation in seconds for the
client to retry.

69

Status code
204

304

308

400

401

403

404

405

406

413

500

70

Description

A successful request, but the resource has no data resulting from the request. No
additional content or message body is provided.

An entity tag was provided in the request and the resource has not been changed
since the previous request.

The server cannot process the data through a synchronous request. The response
includes a Location header field which contains the URI of the location the result
will be available at once the query is complete Asynchronous queries.

The server cannot or will not process the request due to an apparent client error.
For example, a query parameter had an incorrect value.

The request requires user authentication. The response includes a WWW-Authenticate
header field containing a challenge applicable to the requested resource.

The server understood the request, but is refusing to fulfill it. While status code 401
indicates missing or bad authentication, status code 403 indicates that
authentication is not the issue, but the client is not authorized to perform the
requested operation on the resource.

The requested resource does not exist on the server. For example, a path parameter
had an incorrect value.

The request method is not supported. For example, a POST request was submitted,
but the resource only supports GET requests.

Content negotiation failed. For example, the Accept header submitted in the request
did not support any of the media types supported by the server for the requested
resource.

Request entity too large. For example the query would involve returning more data
than the server is capable of processing, the implementation should return a
message explaining the query limits imposed by the server implementation.

An internal error occurred in the server.

Annex A: Conformance Class Abstract Test
Suite (Normative)

A.1. Introduction

The Abstract Test Suite (ATS) is a compendium of test assertions applicable to implementations of
the OGC API — MF. An ATS provides a basis for developing an Executable Test Suite to verify that
the implementation under test conforms to all the relevant functional specifications.

The abstract test cases (assertions) are organized into test groups that correspond to distinct
conformance test classes defined in the OGC API — MF Standard.

OGC APIs are not Web Services in the traditional sense. Rather, they define the behavior and
content of a set of Resources exposed through a Web Application Programming Interface (Web API).
Therefore, an API may expose resources in addition to those defined by the standard. A test engine
shall traverse the API, identify and validate test points, and ignore resource paths which are not to
be tested.

The Conformance Classes addressed by this Abstract Test Suite are the:

* MovingFeature Collection Catalog Conformance Class

* MovingFeature Conform as
A.2. ConformanDlR\A\l;eaIre Collection
Catalog

Conformance Class
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-collection
Target type Web API

Requirements http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/mf-
Class collection

Dependency http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html

Dependency http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json

Dependency http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections

Dependency http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson

Dependency http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-
delete

A.2.1. MovingFeature Collections

71

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/mf-collection
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/mf-collection
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/mf-collection
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

HTTP GET Operation

Abstract Test 1 /conf/mf-collection/collections-get

Requirement /req/mf-collection/collections-get
/reqg/mf-collection/collections-get-success

Test purpose Validate that the MovingFeature Collections can be retrieved from the
expected location.

Test method 1. Issue an HTTP GET request to the URL {root}/collections
2. Validate that a document was returned with a status code 200

3. Validate the contents of the returned document using test /conf/mf-
collection/collections-get-success

Abstract Test 2 /conf/mf-collection/collections-get-success
Requirement /req/mf-collection/collections-get-success

Test purpose Validate that the MovingFeature Collections complies with the required
structure and contents.

Test method 1. Validate that all response documents comply with OGC API — Common
/conf/collections/rc-md-success
2. Validate the Collections resource for all supported media types using the
resources and tests identified in Table 14
3. Verify that the response document contains a itemType property and its
value is 'movingfeature'

The Collections content mutrmhbl of difflrent formats. The following table

identifies the applicable schema document for each format and the test to be used to validate the
against that schema. All supported formats should be exercised.

Table 14. Schema and Tests for MovingFeature Collections content

Format Schema Document Test ID

HTML collections.yaml /conf/html/content
JSON collections.yaml /conf/json/content
HTTP POST Operation

Abstract Test 3 /conf/mf-collection/collections-post

Requirement /req/mf-collection/collections-post
/req/mf-collection/collections-post-success

Test purpose Validate that the MovingFeature Collections can be created at the expected
location.

72

http://docs.ogc.org/DRAFTS/20-024.html#_collections_rootcollections_tests
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content

Test method 1. Validate that the server complies with OGC API — Features POST operation
requirements
2. Validate that a body of a POST request using for all supported media types
using the resources and tests identified in Table 15
3. Validate that the request body complies OGC API — Features POST request
body requirements
4. Issue an HTTP POST request to the URL {root}/collections

5. Validate the contents of the response using test /conf/mf-
collection/collections-post-success

Table 15. Schema and Tests for Request Body of {root}/collections POST

Format Schema Document Test ID
HTML collection_requestbody.yaml /conf/html/content
JSON collection_requestbody.yaml /conf/json/content

Abstract Test 4 /conf/mf-collection/collections-post-success
Requirement /req/mf-collection/collections-post-success

Test purpose Validate that the response of {root}/collections POST request complies with
the required structure and contents.

Test method 1. Validate that a document was returned with a status code 201 or 202
2. Validate that all response documents comply with OGC API — Features POST
response requirements

A.2.2. MovingFeature k{cti!)n\ \ I I

HTTP GET Operation

Abstract Test 5 /conf/mf-collection/collection-get

Requirement /req/mf-collection/collection-get
/req/mf-collection/collection-get-success

Test purpose Validate that the MovingFeature Collection can be retrieved from the
expected location.

Test method For every Collection described in the Collections content, issue an HTTP GET
request to the URL {root}/collections/{collectionId} where {collectionId} is
the id property for the collection

1. Validate that a Collection was returned with a status code 200

2. Validate the contents of the returned document using test /conf/mf-
collection/collection-get-success

Abstract Test 6 /conf/mf-collection/collection-get-success

Requirement /req/mf-collection/collection-get-success /req/mf-collection/mandatory-
collection

73

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

Test purpose Validate that the MovingFeature Collection complies with the required
structure and contents.

Test method 1. Validate that all response documents comply with OGC API — Common
/conf/collections/src-md-success
2. Validate the Collection resource for all supported media types using the
resources and tests identified in Table 16 and Table 6

Table 16. Schema and Tests for MovingFeature Collection content

Format Schema Document Test ID

HTML collection.yaml /conf/html/content
JSON collection.yaml /conf/json/content
HTTP PUT Operation

Abstract Test 7 /conf/mf-collection/collection-put

Requirement /req/mf-collection/collection-put
/req/mf-collection/collection-put-success

Test purpose Validate that the MovingFeature Collection can be replaced at the expected
location.

Test method 1. Validate that the server complies with OGC API — Features PUT operation
requirements
2. Validate that a body of a PUT request using for all supported media types
using the resources and tests identified in Table 15
3. Validate that the request body complies OGC API — Features PUT request
body requirements
4.Issue an HTTP PUT request to the URL {root}/collections/{collectionId}

5. Validate the contents of the response using test /conf/mf-
collection/collections-put-success

Abstract Test 8 /conf/mf-collection/collections-put-success
Requirement /req/mf-collection/collection-put-success

Test purpose Validate that the response of {root}/collections/{collectionId} PUT request
complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 200, 202, or 204
2. Validate that all response documents comply with OGC API — Features PUT
response requirements

HTTP DELETE Operation

Abstract Test 9 /conf/mf-collection/collection-delete

Requirement /req/mf-collection/collection-delete
/req/mf-collection/collection-delete-success

74

http://docs.ogc.org/DRAFTS/20-024.html#_collection_rootcollectionscollectionid_tests
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#_operation_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_request_body_2
http://docs.ogc.org/DRAFTS/20-002.html#_response_2
http://docs.ogc.org/DRAFTS/20-002.html#_response_2

Test purpose Validate that the MovingFeature Collection can be deleted at the expected

location.

Test method 1. Validate that the server complies with OGC API — Features DELETE

operation requirements
2.Issue an HTTP DELETE request to the URL
{root}/collections/{collectionId}

3. Validate the contents of the response using test /conf/mf-
collection/collections-put-success

Abstract Test 10 /conf/mf-collection/collections-delete-success

Requirement /req/mf-collection/collection-delete-success

Test purpose Validate that the response of {root}/collections/{collectionId} DELETE

request complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 200, 202, or 204

2. Validate that all response documents comply with OGC API — Features
DELETE response requirements

A.3. Conformance Class MovingFeatures

Conformance Class

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/movingfeatures

Target type

Requirements
Class

Dependency
Dependency
Dependency
Dependency
Dependency
Dependency
Dependency

Web API

http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/
movingfeatures

http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/simple-query
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson

http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-
delete

A.3.1. MovingFeatures

HTTP GET Operation

Abstract Test 11 /conf/movingfeatures/features-get

Requirement /req/movingfeatures/features-get

/ref/movingfeatures/features-get-success

75

http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/conf/movingfeatures
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/movingfeatures
http://www.opengis.net/spec/ogcapi-movingfeatures-1/1.0/req/movingfeatures
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/html
http://www.opengis.net/spec/ogcapi-common-1/1.0/conf/json
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/collections
http://www.opengis.net/spec/ogcapi-common-2/1.0/conf/simple-query
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/core
http://www.opengis.net/spec/ogcapi-features-1/1.0/conf/geojson
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete
http://www.opengis.net/spec/ogcapi-features-4/1.0/conf/create-replace-delete

Test purpose Validate that MovingFeatures can be identified and extracted from a
MovingFeature Collection using query parameters.

Test method For every MovingFeature Collection identified in MovingFeature
Collections, issue an HTTP GET request to the URL
{root}/collections/{collectionld}/items where {collectionId} is the id
property for a MovingFeature Collection described in the MovingFeature
Collections content

1. Validate that a document was returned with a status code 200
2. Validate the contents of the returned document using test
/conf/movingfeatures/features-get-success

Repeat these tests using the following parameter tests that defined in the OGC
API — Common:

- Bounding Box: Bounding Box Tests

- Limit: Limit Tests

- Date-Time: Date-Time Tests

Execute requests with combinations of the "bbox" and "datetime" query
parameters and verify that only features are returned that match both
selection criteria.

Abstract Test 12 /conf/movingfeatures/features-get-success
Requirement /ref/movingfeatures/features-get-success

Test purpose Validate that the MovingFeatures complies with the required structure and
contents.

Test method 1. Validate that all response documents comply with OGC API — Features
/conf/core/fc-response
2. Validate the Collections resource for all supported media types using the
resources and tests identified in Table 17

The MovingFeatures content may be retrieved in a number of different formats. The following
table identifies the applicable schema document for each format and the test to be used to validate
the against that schema. All supported formats should be exercised.

Table 17. Schema and Tests for MovingFeatures content

Format Schema Document Test ID

HTML movingFeatureCollection.ya /conf/html/content
ml

GeoJSON movingFeatureCollection.ya /conf/geojson/content
ml

HTTP POST Operation

Abstract Test 13 /conf/movingfeatures/features-post

76

http://docs.ogc.org/DRAFTS/20-024.html#_bounding_box_tests
http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-response
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#_geojson_content

Requirement /req/movingfeatures/mf-mandatory
/req/movingfeatures/features-post
/req/movingfeatures/features-post-success

Test purpose Validate that the MovingFeature can be created at the expected location.

Test method 1. Validate that the server complies with OGC API — Features POST operation
requirements
2. Validate that a body of a POST request using for all supported media types
using the resources and tests identified in Table 18 and Table 8
3. Validate that the request body complies OGC API — Features POST request
body requirements
4. Issue an HTTP POST request to the URL
{root}/collections/{collectionId}/items

5. Validate the contents of the response using test
/conf/movingfeatures/features-post-success

Table 18. Schema and Tests for Request Body of {root}/collections/{collectionId}/items POST
Format Schema Document Test ID

JSON MF-JSON_Prism.schema.json /conf/json/content

Abstract Test 14 /conf/movingfeatures/features-post-success
Requirement /req/movingfeatures/features-post-success

Test purpose Validate that the response of {root}/collections/{collectionId}/items POST
request complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 201 or 202
2. Validate that all response documents comply with OGC API — Features POST
response requirements

A.3.2. MovingFeature

HTTP GET Operation

Abstract Test 15 /conf/movingfeatures/mf-get

Requirement /req/movingfeatures/mf-get
/ref/movingfeatures/mf-get-success

Test purpose Validate that the MovingFeature can be retrieved from the expected location.

77

http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.json
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

Test method For every MovingFeature identified in MovingFeature Collection, issue an
HTTP GET request to the URL
{root}/collections/{collectionId}/items/{mFeaturesId} where {collectionId}
is the id property for a MovingFeature Collection described in the
MovingFeature Collections content and {mFeatureld} is the id property for
the MovingFeature

1. Validate that a document was returned with a status code 200

2. Validate the contents of the returned document using test
/conf/movingfeatures/features-get-success

Abstract Test 16 /conf/movingfeatures/mf-get-success
Requirement /ref/movingfeatures/mf-get-success

Test purpose Validate that the MovingFeature complies with the required structure and
contents.

Test method 1. Validate that all response documents comply with OGC API — Features
/conf/core/f-success
2. Validate the Collections resource for all supported media types using the
resources and tests identified in Table 19

The MovingFeature content may be retrieved in a number of different formats. The following table

identifies the applicable sch h fo test to be used to validate the
e efrcised.

against that schema. All supp

Table 19. Schema and Tests for

Format Schema Document Test ID

HTML movingFeature.yaml /conf/html/content
Geo]JSON movingFeature.yaml /conf/geojson/content
HTTP DELETE Operation

Abstract Test 17 /conf/movingfeatures/mf-delete

Requirement /req/movingfeatures/mf-delete
/req/movingfeatures/mf-delete-success

Test purpose Validate that the MovingFeature can be deleted at the expected location.

Test method 1. Validate that the server complies with OGC API — Features DELETE
operation requirements
2.Issue an HTTP DELETE request to the URL
{root}/collections/{collectionId}/items/{mFeatureld}

3. Validate the contents of the response using test /conf/mf-
collection/collections-put-success

Abstract Test 18 /conf/movingfeatures/mf-delete-success

Requirement /req/movingfeatures/mf-delete-success

78

https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_f-success
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#_geojson_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

Test purpose Validate that the response of
{root}/collections/{collectionld}/items/{mFeatureld} DELETE request
complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 200, 202, or 204
2. Validate that all response documents comply with OGC API — Features
DELETE response requirements

A.3.3. Parameter Leaf

Abstract Test 19 /conf/movingfeatures/param-leaf-definition
Requirement /req/movingfeatures/param-leaf-definition
Test purpose Validate that the leaf query parameter is constructed correctly.

Test method Verify that the leaf query parameter complies with the definition (using an
OpenAPI Specification 3.0 fragment)

Abstract Test 20 /conf/movingfeatures/param-leaf-response

Requirement /req/movingfeatures/param-leaf-definition
/req/movingfeatures/param-leaf-response

Test purpose Validate that the leaf query parameter is processed correctly.

Test method DO FOR each Resource which have datetimes property:

1. Calculate a temporal geometry coordinate (or temporal property value) with
the PointAtTime query at each time included in the leaf parameter, using
interpolated trajectory according to the interpolation property

2. Verify that the temporal geometry coordinate (or temporal property value)
intersects the interpolated trajectory according to the interpolation property,
using datetime value defined by the leaf parameter

A.3.4. TemporalGeometryCollection

HTTP GET Operation

Abstract Test 21 /conf/movingfeatures/tgeometries-get

Requirement /req/movingfeatures/tgeometries-get
/req/movingfeatures/tgeometries-get-success

Test purpose Validate that the TemporalGeometryCollection can be identified and
extracted from a MovingFeature object using query parameters.

79

http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

Test method For every TemporalGeometry identified in MovingFeature, issue an HTTP
GET request to the URL
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometries where
{collectionld} is the id property for a MovingFeature Collection described in
the MovingFeature Collections content and {mFeatureId} is the id property
for the MovingFeature

1. Validate that a document was returned with a status code 200
2. Validate the contents of the returned document using test
/conf/movingfeatures/tgeometries-get-success

Repeat these tests using the following parameter tests that defined in the OGC
API — Common and OGC API — MF:

- Bounding Box: Bounding Box Tests

- Limit: Limit Tests

- Date-Time: Date-Time Tests

- Leaf: Leaf Definition Test and Leaf Response Test

Execute requests with combinations of the "bbox", "datetime", and "leaf"
query parameters and verify that only features are returned that match both
selection criteria.

Abstract Test 22 /conf/movingfeatures/tgeometries-get-success
Requirement /req/movingfeatures/tgeometries-get-success

Test purpose Validate that the TemporalGeometryCollection complies with the required
structure and contents.

Test method 1. Validate that the type property is present and has a value of
MovingGeometryCollection
2. Validate the prism property is present and that it is populated with an array
of TemporalGeometry items
3. Validate that only temporalGeometries which match the selection criteria are
included in the MovingFeature
4. If the links property is present, validate that all entries comply with OGC
API — Features /conf/core/fc-links
5. If the timeStamp property is present, validate that it complies with OGC API
— Features /conf/core/fc-timeStamp
6. If the numberMatched property is present, validate that it complies with OGC
API — Features /conf/core/fc-numberMatched
7. If the numberReturned property is present, validate that it complies with OGC
API — Features /conf/core/fc-numberReturned
8. Validate the TemporalGeometryCollection resource for all supported media
types using the resources and tests identified in Table 20

The TemporalGeometryCollection content may be retrieved in a number of different formats. The

following table identifies the applicable schema document for each format and the test to be used
to validate the against that schema. All supported formats should be exercised.

80

http://docs.ogc.org/DRAFTS/20-024.html#_bounding_box_tests
http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberMatched
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberReturned

Table 20. Schema and Tests for TemporalGeometryCollection content

Format Schema Document Test ID

HTML temporalGeometryCollectio /conf/html/content
n.yaml

JSON temporalGeometryCollectio /conf/json/content
n.yaml

HTTP POST Operation

Abstract Test 23 /conf/movingfeatures/tgeometries-post

Requirement /reg/movingfeatures/tgeometries-mandatory
/req/movingfeatures/tgeometries-post
/req/movingfeatures/tgeometries-post-success

Test purpose Validate that the TemporalGeometry can be created at the expected location.

Test method 1. Validate that the server complies with OGC API — Features POST operation
requirements
2. Validate that a body of a POST request using for all supported media types
using the resources and tests identified in Table 21 and Table 9
3. Validate that the request body complies OGC API — Features POST request
body requirements
4. Issue an HTTP POST request to the URL
{root}/collections/{collectionId}/items/{mFeatureld}/tgeometries

5. Validate the contents of the response using test
/conf/movingfeatures/tgeometries-post-success

Table 21. Schema and Tests for Request Body of
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometries POST
Format Schema Document Test ID

JSON MF-JSON_Prism.schema.json /conf/json/content

Abstract Test 24 /conf/movingfeatures/tgeometries-post-success
Requirement /req/movingfeatures/tgeometries-post-success

Test purpose Validate that the response of
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometries POST
request complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 201 or 202
2. Validate that all response documents comply with OGC API — Features POST
response requirements

A.3.5. TemporalGeometry

81

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.json
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

HTTP DELETE Operation

Abstract Test 25 /conf/movingfeatures/tgeometry-delete

Requirement /req/movingfeatures/tgeometry-delete
/reg/movingfeatures/tgeometry-delete-success

Test purpose Validate that the TemporalGeometry can be deleted at the expected location.

Test method 1. Validate that the server complies with OGC API — Features DELETE
operation requirements

2.Issue an HTTP DELETE request to the URL
{root}/collections/{collectionId}/items/{mFeatureld}/tgeometries/{tgeometry

Id}

3. Validate the contents of the response using test /conf/mf-
collection/collections-put-success

Abstract Test 26 /conf/mf-collection/collections-delete-success
Requirement /req/movingfeatures/tgeometry-delete-success

Test purpose Validate that the response of
{root}/collections/{collectionld}/items/{mFeatureld}/tgeometries/{tgeometry

Id} DELETE request complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 200, 202, or 204
2. Validate that all response documents comply with OGC API — Features
DELETE response requirements

A.3.6. TemporalGeomUuI}‘l \I_ I

HTTP GET Operation

Abstract Test 27 /conf/movingfeatures/tgeometry-query-distance

Requirement /req/movingfeatures/tgeometry-query
/req/movingfeatures/tgeometry-query-success

Test purpose Validate that resources can be identified and extracted from a
TemporalGeometry with a Distance query using query parameters.

82

http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3
http://docs.ogc.org/DRAFTS/20-002.html#_operation_3

Test method IF a query parameter datetime is not empty, validate that the query parameter
datetime with the following parameter tests that defined in the OGC API —
Common:
- Date-Time: Date-Time Tests

1. Issue an HTTP GET request to the URL
{root}/collections/{collectionId}/items/

{mFeatureld}/tgeometries/{tGeometryId}/distance
2. Validate that a document was returned with a status code 200
3. Verify the type is "TFloat"

IF a query parameter datetime is not empty: Execute requests with datetime
query parameter and verify the correctly calculated value is returned.

IF a query parameter datetime is empty: Verify that a time-to-distance curve is
correctly returned according to the specified TemporalGeometry resource by
{tgeometryld}.

Abstract Test 28 /conf/movingfeatures/tgeometry-query-velocity

Requirement /req/movingfeatures/tgeometry-query
/req/movingfeatures/tgeometry-query-success

Test purpose Validate that resources can be identified and extracted from a
TemporalGeometry with a Velocity query using query parameters.

Test method IF a query parameter datetime is not empty, validate that the query parameter
datetime with the following parameter tests that defined in the OGC API —
Common:
- Date-Time: Date-Time Tests

1. Issue an HTTP GET request to the URL
{root}/collections/{collectionId}/items/

{mFeatureld}/tgeometries/{tGeometryId}/velocity
2. Validate that a document was returned with a status code 200
3. Verify the type is "TFloat"

IF a query parameter datetime is not empty: Execute requests with datetime
query parameter and verify the correctly calculated value is returned.

IF a query parameter datetime is empty: Verify that a time-to-velocity curve is
correctly returned according to the specified TemporalGeometry resource by

{tgeometryId}.

Abstract Test 29 /conf/movingfeatures/tgeometry-query-acceleration

83

http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests

Requirement /req/movingfeatures/tgeometry-query

/reg/movingfeatures/tgeometry-query-success

Test purpose Validate that resources can be identified and extracted from a

TemporalGeometry with a Acceleration query using query parameters.

Test method IF a query parameter datetime is not empty, validate that the query parameter

datetime with the following parameter tests that defined in the OGC API —
Common:
- Date-Time: Date-Time Tests

1. Issue an HTTP GET request to the URL
{root}/collections/{collectionId}/items/

{mFeatureld}/tgeometries/{tGeometryIld}/acceleration
2. Validate that a document was returned with a status code 200
3. Verify the type is "TFloat"

IF a query parameter datetime is not empty: Execute requests with datetime
query parameter and verify the correctly calculated value is returned.

IF a query parameter datetime is empty: Verify that a time-to-acceleration
curve is correctly returned according to the specified TemporalGeometry
resource by {tgeometryId}.

A.3.7. TemporalPropeLJllIti‘J \I_ I

HTTP GET Operation

84

Abstract Test 30 /conf/movingfeatures/tproperties-collection-get

Requirement /req/movingfeatures/tproperties-collection-get

/req/movingfeatures/tproperties-collection-get-success

Test purpose Validate that the TemporalPropertyCollection can be identified and

extracted from a MovingFeature object using query parameters.

http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests

Test method For every TemporalProperty identified in MovingFeature, issue an HTTP
GET request to the URL
{root}/collections/{collectionId}/items/{mFeatureld}/tproperties where
{collectionld} is the id property for a MovingFeature Collection described in
the MovingFeature Collections content and {mFeatureId} is the id property
for the MovingFeature

1. Validate that a document was returned with a status code 200
2. Validate the contents of the returned document using test
/conf/movingfeatures/tproperties-collection-get-success

Repeat these tests using the following parameter tests that defined in the OGC
API — Common:

- Limit: Limit Tests

- Date-Time: Date-Time Tests

Execute requests with combinations of the "datetime" query parameters and
verify that only features are returned that match both selection criteria.

Abstract Test 31 /conf/movingfeatures/tproperties-collection-get-success
Requirement /req/movingfeatures/tproperties-collection-get-success

Test purpose Validate that the TemporalPropertyCollection complies with the required
structure and contents.

Test method 1. Validate the temporalProperties property is present and that it is populated
with an array of TemporalProperty items
2. Validate that the name and type property is present
3. Validate the type property is present and its value is one of the predefined
value (i.e., one of 'TBoolean’, 'TText', 'TInteger', 'TReal’, and 'TImage")
4. If the links property is present, validate that all entries comply with OGC
API — Features /conf/core/fc-links
5. If the timeStamp property is present, validate that it complies with OGC API
— Features /conf/core/fc-timeStamp
6. If the numberMatched property is present, validate that it complies with OGC
API — Features /conf/core/fc-numberMatched
7. If the numberReturned property is present, validate that it complies with OGC
API — Features /conf/core/fc-numberReturned
8. Validate the TemporalPropertyCollection resource for all supported media
types using the resources and tests identified in Table 22

The TemporalPropertyCollection content may be retrieved in a number of different formats. The
following table identifies the applicable schema document for each format and the test to be used
to validate the against that schema. All supported formats should be exercised.

Table 22. Schema and Tests for TemporalPropertyCollection content

85

http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberMatched
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberReturned

Format Schema Document Test ID

HTML temporalPropertyCollection. /conf/html/content
yaml

JSON temporalPropertyCollection. /conf/json/content
yaml

HTTP POST Operation

Abstract Test 32 /conf/movingfeatures/tproperties-collection-post

Requirement /req/movingfeatures/tproperties-mandatory
/reg/movingfeatures/tproperties-collection-post
/req/movingfeatures/tproperties-collection-post-success

Test purpose Validate that the TemporalProperty can be created at the expected location.

Test method 1. Validate that the server complies with OGC API — Features POST operation
requirements
2. Validate that a body of a POST request using for all supported media types
using the resources and tests identified in Table 23 and Table 11
3. Validate that the request body complies OGC API — Features POST request
body requirements
4. Issue an HTTP POST request to the URL
{root}/collections/{collectionId}/items/{mFeatureld}/tproperties

5. Validate the contents of the response using test
/conf/movingfeatures/tproperties-collection-post-success

-’ 1 \J \l1 U

Table 23. Schema and Tests for Request Body of
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties POST

Format Schema Document Test ID

HTML tproperty_requestbody.yaml /conf/html/content
JSON tproperty_requestbody.yaml /conf/json/content
JSON MF-JSON_Prism.schema.json /conf/json/content

Abstract Test 33 /conf/movingfeatures/tproperties-collection-post-success
Requirement /req/movingfeatures/tproperties-collection-post-success

Test purpose Validate that the response of
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties POST
request complies with the required structure and contents.

Test method 1. Validate that a document was returned with a status code 201 or 202
2. Validate that all response documents comply with OGC API — Features POST
response requirements

A.3.8. TemporalProperty

86

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
https://schemas.opengis.net/movingfeatures/1.0/MF-JSON_Prism.schema.json
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

HTTP GET Operation

Abstract Test 34

Requirement

Test purpose

Test method

Abstract Test 35
Requirement

Test purpose

Test method

/conf/movingfeatures/tproperties-get

/req/movingfeatures/tproperties-get
/req/movingfeatures/tproperties-get-success

Validate that the TemporalProperty can be identified and extracted from a
TemporalPropertyCollection using query parameters.

For every TemporalProperty identified in MovingFeature, issue an HTTP

GET request to the URL
{root}/collections/{collectionId}/items/{mFeatureld}/tproperties/{tproperty

Name} where {collectionId} is the id property for a MovingFeature Collection
described in the MovingFeature Collections content, {mFeatureld} is the id
property for the MovingFeature, {tpropertyName} is the name property for the
TemporalProperty

1. Validate that a document was returned with a status code 200
2. Validate the contents of the returned document using test
/conf/movingfeatures/tproperties-get-success

Repeat these tests using the following parameter tests that defined in the OGC
API — Common and OGC API — MF:

- Limit: Limit Tests

- Date-Time: Date-Time Tests

- Leaf: Leaf Definition Test and Leaf Response Test

Execute requests with combinations of the "datetime" and "leaf" query
parameters and verify that only features are returned that match both
selection criteria.

/conf/movingfeatures/tproperties-get-success
/req/movingfeatures/tproperties-get-success

Validate that the TemporalProperty complies with the required structure and
contents.

1. Validate the temporalProperties property is present and that it is populated
with an array of TemporalValue items

2. If the links property is present, validate that all entries comply with OGC
API — Features /conf/core/fc-links

3. If the timeStamp property is present, validate that it complies with OGC API
— Features /conf/core/fc-timeStamp

4. If the numberMatched property is present, validate that it complies with OGC
API — Features /conf/core/fc-numberMatched

5. If the numberReturned property is present, validate that it complies with OGC
API — Features /conf/core/fc-numberReturned

6. Validate the TemporalProperty resource for all supported media types using
the resources and tests identified in Table 24

87

http://docs.ogc.org/DRAFTS/20-024.html#_limit_tests
http://docs.ogc.org/DRAFTS/20-024.html#_date_time_tests
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-links
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-timeStamp
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberMatched
https://docs.opengeospatial.org/is/17-069r4/17-069r4.html#ats_core_fc-numberReturned

The TemporalProperty content may be retrieved in a number of different formats. The following
table identifies the applicable schema document for each format and the test to be used to validate
the against that schema. All supported formats should be exercised.

Table 24. Schema and Tests for TemporalProperty content

Format Schema Document Test ID

HTML temporalPropertyCollection. /conf/html/content
yaml

JSON temporalPropertyCollection. /conf/json/content
yaml

HTTP POST Operation

Abstract Test 36 /conf/movingfeatures/tproperties-post

Requirement /req/movingfeatures/tproperties-mandatory
/req/movingfeatures/tproperties-post
/req/movingfeatures/tproperties-post-success

Test purpose Validate that the TemporalValue can be created at the expected location.

Test method 1. Validate that the server complies with OGC API — Features POST operation
requirements
2. Validate that a body of a POST request using for all supported media types
using the resources and tests identified in Table 25 and Table 12
3. Validate that the request body complies OGC API — Features POST request
body requirements

4.Issue an HTTP POST request to the URL
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties/{tProperty

Name}

5. Validate the contents of the response using test
/conf/movingfeatures/tproperties-post-success

Table 25. Schema and Tests for Request Body of
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties/{tPropertyName} POST

Format Schema Document Test ID
HTML tvalue_requestbody.yaml /conf/html/content
JSON tvalue_requestbody.yaml /conf/json/content

Abstract Test 37 /conf/movingfeatures/tproperties-post-success
Requirement /req/movingfeatures/tproperties-post-success

Test purpose Validate that the response of
{root}/collections/{collectionld}/items/{mFeatureld}/tproperties/{tProperty

Name} POST request complies with the required structure and contents.

88

https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_operation
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
http://docs.ogc.org/DRAFTS/20-002.html#_request_body
https://docs.ogc.org/is/19-072/19-072.html#ats_html_content
https://docs.ogc.org/is/19-072/19-072.html#ats_json_content

Test method 1. Validate that a document was returned with a status code 201 or 202
2. Validate that all response documents comply with OGC API — Features POST
response requirements

DRAFT

89

http://docs.ogc.org/DRAFTS/20-002.html#_response
http://docs.ogc.org/DRAFTS/20-002.html#_response

Annex B: Relationship with other OGC/ISO
Standards (Informative)

This specification is built upon the following OGC/ISO standards. The geometry concept is presented
first, followed by the feature concept. Note that a feature is not a geometry. However, a feature
often contains a geometry as one of its attributes. However, it is legal to build features without a
geometry attribute, or with more than one geometry attributes.

B.1. Static geometries, features and accesses

The following standards define static objects, without time-varying properties.

B.1.1. Geometry (ISO 19107)

The ISO 19107, Geographic information — Spatial schema standard defines a GM_Object base type
which is the root of all geometric objects. Some examples of GM_Object subtypes are GM_Point,
GM_Curve, GM_Surface and GM_Solid. A GM_Object instance can be regarded as an infinite set of points
in a particular coordinate reference system. The standard provides a GM_CurveInterpolation code
list to identify how those points are computed from a finite set of points. Some interpolation
methods listed by ISO 19107 are (non-exhaustive list):

@ Rco] A tivF of Introl points.

Positions on a geodesic curve between each consecutive pair of control points. A geodesic curve
is a curve of shortest length. The geodesic shall be determined in the coordinate reference
system of the curve.

linear

Positions on a straight ling

geodesic

circularArc3Points

For each set of three consecutive control points, a circular arc passing from the first point
through the middle point to the third point. Note: if the three points are co-linear, the circular
arc becomes a straight line.

elliptical

For each set of four consecutive control points, an elliptical arc passing from the first point
through the middle points in order to the fourth point. Note: if the four points are co-linear, the
arc becomes a straight line. If the four points are on the same circle, the arc becomes a circular
one.

cubicSpline

The control points are interpolated using initial tangents and cubic polynomials, a form of
degree 3 polynomial spline.

The UML below shows the GM_0Object base type with its operations (e.g. distance(::+) for computing
the distance between two geometries). GM_Curve (not shown in this UML) is a subtype of

90

GM_Primitive. All operations assume static objects, without time-varying coordinates or attributes.

<<Interface>>) . . . [
TransfiniteSet<DirectPosition= {dimension(} > boundary().dimension}
(from Coordinate geometry) {boundary().notEmply() implies
boundary().dimension() = dimension() -1}
A T {boundary().isEmpty() = isCycle()}
| :
<<Type>>
GM_Object

+ mbRegion() : GM_Object

+ representativePoint() : DirectPosition
+ boundary() : GM_Boundary

+ closure() : GM_Complex

+ isSimple() : Boolean

+ isCycle() : Boolean

+ distance(geometry : GM_Object) : Distance +object Coordinate Reference System
+ dimension(point : DirectPosition = NULL) : Integer 0..n
+ coordinateDimension() : Integer
+ maximalComplex() : Set<GM_Complex> {Reference}
+ transform(newCRS : SC_CRS) : GM_Object 0.1 +CRS
+ envelope() : GM_Envelope
+ centroid() : DirectPosition <<Abstract>>
+ convexHull() : GM_Object SC_CRS
+ buffer(radius : Distance) : GM_Object (from Spatial Referencing by Coordinates)
<<Type>> <<Type>> <<Type>>
GM Primitive GM_Complex GM_Aggregate
(from Geometric primitive) (from Geometric complex) (from Geometric aggregates)

Figure 4. GM_Object from I1SO 19107:2003 figure 6
Geometry, topology and te bj GM_ t, T jectMM_Object) are not abstractions of
e§e tygfs dan Ko

real-world phenomena. Th for featlire properties as described in the
next section but cannot be specialized to features.

B.1.2. Features (ISO 19109)

The ISO 19109, Geographic information — Rules for application schema standard defines types for
the definition of features. A feature is an abstraction of a real-world phenomena. The terms
“feature type” and “feature instance” are used to separate the following concepts of “feature”:

Feature type

The whole collection of real-world phenomena classified in a concept. For example the “bridge”
feature type is the abstraction of the collection of all real-world phenomena that is classified into
the concept behind the term “bridge”.

Feature instance

A certain occurrence of a feature type. For example “Tower Bridge” feature instance is the
abstraction of a certain real-world bridge in London.

In object-oriented modelling, feature types are equivalent to classes and feature instances are
equivalent to objects,

The UML below shows the General Feature Model. FeatureType is a metaclass that is instantiated as
classes that represent individual feature types. A FeatureType instance contains the list of properties
(attributes, associations and operations) that feature instances of that type can contain. Geometries

91

are properties like any other, without any special treatment. All properties are static, without time-
varying values.

+euparType 0..*~,|;

Kentifled Type
tmataciassy
FaatursType S
Itlmeim'clamw + IsAbstract :Boalean = false +mbT aa\,\\
ridentifledTyps LN
+ name :GenadcName [0.1] + name :GenefcName [0.1] G
+ deafinition :LocallsedCharactarSting [1.."] + definltion :Locallsed CharactarSting [1..*]
+ designation :LocalisedCh AerString [0..7] + desdgnatlon :LocalissdCharacterSidng [0..]] e etaclassy
+ descriptlon :LocellsedCharacterStiring [0..%] 1+ domcripllon :LacalisedChamctarStrng [0.."] InheritanceRslation
InadBy :Ch tarStd Y :
+ constralnedBy :ChamactarSting [0..%] + constralnedBy :CharacterSting [0.."] + description :CharacterString [0..1]
constralnts + nama Charactarting [0..1]
{nams Ismandatory} + unlqueinstance :Boolean [0..1] = frue
+theFeatureTypa % /1..*
ametaclasey | .
ValusAssign ¢ +camaer0iChameteriglics))|/0..
IdentifiedTyps MantiffadType
+ lype ValysAslgnmeniType
«metaclass <meataclassy
PropertyTyps FeatursAssoclaionTypa
sCodellsty zkientified Typs identifledType
ValusAssignmentType + name :GenercNama [0..1] + name :GensrcName [0..1]
+ ametion + definition :LocalisedCharacterString [1..*] + definilien :LocalissdCharacterSiring [1..%]
+ dedvation + designation :LocalisedCheragter3ting [0..%] + designation :LocalisedChamcierGtring [0..4]
+ inherifance + description :LocalleedCharacterSting [0..”] + description :LocallsedCharacterString [0..7]
+ absarvafion + congtralnedBy :CharacterString [0..4] + constralnedBy :Characterstring |0.."]
+rleName
1.2
ametaclassy emetaclasss «metaclassy
AfiributeTypa Oparafion FaatursAssoclationRole
+ valueType :TypaName + @gnature :CharacterString + valusType :TypeName
+ valyeDomaln :CharacterString + candinallty :Multlpliclty
+chamctarze 0..1 + cardinallty :Multiplicity conabints
constralnts {nama Iz mandatory}
{name ls mandatory}
AtfribuisOfAktribute +characterizeBy 0..*
Figure 5. General Feature Model from I1SO 19109:2009 figure 5
B.1.3. Simple Features SQL
The Simple Feature Access — Part 2: SQL Option Standard describes a feature access

implementation in SQL based on a profile of ISO 19107. This standard defines feature table as a
table where the columns represent feature attributes, and the rows represent feature instances.
The geometry of a feature is one of its feature attributes.

B.1.4. Filter Encoding (ISO 19143)

The ISO 19143, Geographic information — Filter encoding standard (also OGC Standard) provides
types for constructing queries. These objects can be transformed into a SQL “SELECT ... FROM ...
WHERE ... ORDER BY ...” statement to fetch data stored in a SQL-based relational database.
Similarly, the same objects can be transformed into a XQuery expression in order to retrieve data
from XML document. The UML below shows the objects used for querying a subset based on spatial
operations such as “contains” or “intersects”.

92

https://portal.ogc.org/files/?artifact_id=25354
https://portal.ogc.org/files/?artifact_id=39968

SpatialOperator

{operatorType<>#BBOX implies
operand1->notEmpty() and
operatorType=#BBOX implies

operand2.envelope->notEmpty()}
5 ,
e
e
DistanceOperator BinarySpatialOperator
+ valueReference : ValueReference + operatorType : SpatialOperatorName
+ operatorType : DistanceOperatorName + operand1 [0..1] : ValueReference
+ geometry : GM_Object + operand2 : SpatialDescription
+ distance : Measure
<<CodelList>> <<Codelist>> <<Union>>
DistanceOperatorName SpatialOperatorName SpatialDescription
+ Beyond + BBOX + geometry : GM_Object
+ DWithin + Equals + envelope : GM_Envelope
+ Disjoint + valueReference : ValueReference
+ Intersects
+ Touches
+ Crosses
+ Within
+ Contains
+ Overlaps

Figure 6. Spatial operators from 1SO 19143 figure 6

B.1.5. Features web API

The OGC 17-069, Features — Part 1: Core Standard specifies the fundamental building blocks for
interacting with features using a Web API pattern. This Draft Standards defines how to get all
features available on a server, or to get feature instances by their identifier.

B.1.6. Features Filteriﬂl R A I I
The draft OGC TBD, Feature rt 8 Filgré#hg an@t/@ Comm@n Query Language (CQL) standard

extends the Feature web API with capabilities to encode more sophisticated queries. The conceptual
model is close to ISO 19143.

B.2. Temporal Geometries and Moving Features

B.2.1. Moving Features (ISO 19141)

The ISO 19141, Geographic information — Schema for moving features standard extends the ISO
19107 spatial schema for addressing features whose locations change over time. Despite the
“Moving Features” name, that standard is more about “Moving geometries”. The UML below shows
how the MF_Trajectory type extends the “static” types from ISO 19107.

93

http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
http://docs.opengeospatial.org/is/17-069r3/17-069r3.html
https://portal.ogc.org/files/96288
https://portal.ogc.org/files/96288

<<Type>> <<Type>>

GM_Object GM_Curve
(from Geometry root) (from Geometric primitive)

<<Type>> P — <<Type>>
MF_OneParamGeometry MF_Trajectory

<<Type>> Qi <<Type>>
MF_TemporalGeometry MF_TemporalTrajectory

Figure 7. Trajectory type from ISO 19141 figure 3

Trajectory inherits operations shown below. Those operations are in addition to the operations
inherited from GM_0Object. For example the distance(::-) operation from ISO 19107 is now completed
by a nearestApproach(::+) operation.

<<Type>>
MF_OneParamGeometry

f

<<Type>>
MF_TemporalGeometry

+ leafGeometry(m : TM_Coordinate) : GM_Object

+ trajectory(point : DirectPosition, p : TM_Coordinate) : MF_TemporalTrajectory

+ startTime() : TM_Coordinate

+ endTime() : TM_Coordinate

+ nearestApproach(object : GM_Object, timelnterval : TM_Period) : Distance, TM_GeometricPrimitive[1..*]
+ intersection(object : GM_Object, timelnterval : TM_Period) : TM_TemporalGeometry

i

<<Type>>
MF_TemoporalTrajectory

Figure 8. Temporal geometry le 5|4-1\MH

B.2.2. Moving Features XML encoding (OGC 18-075)

<<Type>>
MF_PrismGeometry
(from Prism Geometry)

The OGC 18-075 Moving Features Encoding Part I: XML Core Standard takes a subset of the ISO
19141 Standard and defines an XML encoding. That standard also completes ISO 19141 by allowing
to specify attributes whose value change over time. This extension to the above General Feature
Model is shown below:

GML Moving Features Type Modol/

«metaclass» «metaclassy

1SO-19101:: Q— MovingFeatureType

GF_FeatureType
3 0.+

«metaclass»
DynamicAttribute Type

Figure 9. Dynamic attribute from OGC 18-075 figure 3

B.2.3. Moving Features JSON encoding (OGC 19-045)

The OGC 19-045 Moving Features Encoding Extension — JSON Standard takes a subset of the ISO
19141 Standard and defines a JSON encoding. The Standard provides various UML diagrams
summarizing ISO 19141.

94

http://docs.opengeospatial.org/is/18-075/18-075.html
http://docs.opengeospatial.org/is/18-075/18-075.html
http://docs.opengeospatial.org/is/19-045r3/19-045r3.html
http://docs.opengeospatial.org/is/19-045r3/19-045r3.html

Annex C: Revision History

Date

2021-09-14

2022-03-01

2022-10-09

2023-02-21

2023-05-19

2023-07-10

Release

0.1

0.2

0.3

0.9

0.9.9

1.0.draft

Editor

Taehoon Kim,
Kyoung-Sook
Kim, and Martin
Desruisseaux

Taehoon Kim,
Kyoung-Sook
Kim

Taehoon Kim,
Kyoung-Sook
Kim

Taehoon Kim,
Kyoung-Sook
Kim, Mahmoud,
and Esteban

Taehoon Kim,
Kyoung-Sook
Kim, Mahmoud,
and Esteban

Taehoon Kim,
Kyoung-Sook
Kim, Mahmoud,
and Esteban

Primary
clauses
modified

all

all

all

all

all

all

Description

first draft
version

revised sections
related to
resources to add
CRUD operations

added
TemporalGeome

try Query
resources

finalize draft
version

finalize draft
version

finalize draft
version

95

Annex D: Bibliography

[1] OGC: OGC Moving Features Encoding Extension — JSON. (2020).

[2] OGC: OGC Moving Features Access. (2017).

[3] OGC: OGC API — Features — Part 1: Core. (2019).

[4] OGC: OGC API — Features — Part 2: Coordinate Reference Systems by Reference. (2020).
[5] OGC: OGC API — Features — Part 4: Create, Replace, Update and Delete. (2020).

[6] OGC: OGC API — Features, https://ogcapi.ogc.org/features/

[7] OGC: OGC API — Common, https://ogcapi.ogc.org/common/

[8] OGC: OGC API, https://ogcapi.ogc.org/

[9] OpenAPI, https://www.openapis.org/

DRAFT

96

https://ogcapi.ogc.org/features/
https://ogcapi.ogc.org/common/
https://ogcapi.ogc.org/
https://www.openapis.org/

	Untitled
	Table of Contents
	Chapter 1. Scope
	Chapter 2. Conformance
	Chapter 3. References
	Chapter 4. Terms and Definitions
	Chapter 5. Conventions
	5.1. Identifiers
	5.2. Use of HTTPS

	Chapter 6. Overview
	6.1. General
	6.2. Search
	6.3. Dependencies

	Chapter 7. Requirements Class "MovingFeature Collection Catalog"
	7.1. Overview
	7.2. Information Resources
	7.3. Resource Collections
	7.3.1. Overview
	7.3.2. Operation
	7.3.3. Response
	7.3.4. Error situations

	7.4. Resource Collection
	7.4.1. Overview
	7.4.2. Operation
	7.4.3. Response
	7.4.4. Error situations

	Chapter 8. Requirements Class "MovingFeatures"
	8.1. Overview
	8.2. Information Resources
	8.3. Resource MovingFeatures
	8.3.1. Overview
	8.3.2. Operation
	8.3.3. Response
	8.3.4. Error situations

	8.4. Resource MovingFeature
	8.4.1. Overview
	8.4.2. Operation
	8.4.3. Response
	8.4.4. Error situations

	8.5. Resource TemporalGeometryCollection
	8.5.1. Overview
	8.5.2. Parameters
	8.5.3. Operation
	8.5.4. Response
	8.5.5. Error situations

	8.6. Resource TemporalGeometry
	8.6.1. Overview
	8.6.2. Operation
	8.6.3. Response
	8.6.4. Error situations

	8.7. TemporalGeometry Query Resources
	8.7.1. Overview
	8.7.2. Shared query parameters
	8.7.3. Distance Query
	8.7.4. Velocity Query
	8.7.5. Acceleration Query
	8.7.6. Operation Requirements
	8.7.7. Response Requirements

	8.8. Resource TemporalPropertyCollection
	8.8.1. Overview
	8.8.2. Operation
	8.8.3. Response
	8.8.4. Error situations

	8.9. Resource TemporalProperty
	8.9.1. Overview
	8.9.2. Operation
	8.9.3. Response
	8.9.4. Error situations

	Chapter 9. Common Requirements
	9.1. Parameters
	9.1.1. Parameter limit
	9.1.2. Parameter bbox
	9.1.3. Parameter datetime

	9.2. HTTP Response
	9.3. HTTP Status Codes

	Annex A: Conformance Class Abstract Test Suite (Normative)
	A.1. Introduction
	A.2. Conformance Class MovingFeature Collection Catalog
	A.2.1. MovingFeature Collections
	A.2.2. MovingFeature Collection

	A.3. Conformance Class MovingFeatures
	A.3.1. MovingFeatures
	A.3.2. MovingFeature
	A.3.3. Parameter Leaf
	A.3.4. TemporalGeometryCollection
	A.3.5. TemporalGeometry
	A.3.6. TemporalGeometryQuery
	A.3.7. TemporalPropertyCollection
	A.3.8. TemporalProperty

	Annex B: Relationship with other OGC/ISO Standards (Informative)
	B.1. Static geometries, features and accesses
	B.1.1. Geometry (ISO 19107)
	B.1.2. Features (ISO 19109)
	B.1.3. Simple Features SQL
	B.1.4. Filter Encoding (ISO 19143)
	B.1.5. Features web API
	B.1.6. Features Filtering web API

	B.2. Temporal Geometries and Moving Features
	B.2.1. Moving Features (ISO 19141)
	B.2.2. Moving Features XML encoding (OGC 18-075)
	B.2.3. Moving Features JSON encoding (OGC 19-045)

	Annex C: Revision History
	Annex D: Bibliography

