
1 
Copyright © 2022 Open Geospatial Consortium 

Open Geospatial Consortium  
Submission Date: 2022-04-15 

Approval Date:   2022-06-17 

Publication Date:   2022-06-30  

External identifier of this OGC® document: <http://www.opengis.net/doc/CS/zarr/2.0> 

Internal reference number of this OGC® document:    21-050r1  

Version: 2.0 

Category: OGC® Community Standard 

Editor:   Zarr Developers  

 

 

Zarr Storage Specification 2.0 Community Standard 
 

Copyright notice 

Copyright © 2022 Open Geospatial Consortium, Zarr Developers 
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/. 

 

Warning 

This document is an OGC Member endorsed international Community Standard. This 
Community Standard was developed outside of the OGC and the originating party may 
continue to update their work; however, this document is fixed in content. This document 
is available on a royalty free, non-discriminatory basis. Recipients of this document are 
invited to submit, with their comments, notification of any relevant patent rights of which 
they are aware and to provide supporting documentation. 

 

Document type:    OGC® Community Standard 
Document subtype:     
Document stage:    Approved 
Document language:  English 
  



2 
Copyright © 2022 Open Geospatial Consortium 

License Agreement 

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below, 
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property 
without restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish, 
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to 
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual 
Property is furnished agrees to the terms of this Agreement. 

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above 
copyright notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR. 

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS 
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD. 

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, 
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR 
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED 
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL 
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE 
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT 
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF 
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY 
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING 
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF 
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH 
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY. 

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all 
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as 
provided in the following sentence, no such termination of this license shall require the termination of any third party end-user 
sublicense to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual 
Property, or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, 
copyright, trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license 
without any compensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or 
cause to be destroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party. 

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual 
Property shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without 
prior written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may 
authorize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any 
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The 
application to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly 
excluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be 
modified so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No 
decision, action or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it. 

  



3 
Copyright © 2022 Open Geospatial Consortium 

Preface	
1. Introduction to Zarr 

Multidimensional array data (a.k.a. N-dimensional arrays, ND-arrays, “tensors”) is 
ubiquitous in scientific research and engineering. Zarr is an open-source specification for 
the storage of ND-arrays and associated metadata. Zarr stores metadata using .json text 
files and array data as [optionally] compressed binary chunks. The Zarr specification 
details the contents and layout of these elements. Zarr can store data into any storage 
system that can be described as a key/value store. In a standard filesystem, the keys are 
filenames within a directory hierarchy, and the values are the file contents. In a cloud 
object store (e.g., Amazon S3), the keys are the object IDs and the values are the object 
data. This flexibility allows implementations to experiment with novel storage 
technologies while maintaining a uniform API for downstream libraries and users. 

Zarr arose in genomics research in 2016. It was created by Alistair Miles of Oxford as a 
library optimized for massively parallel array analytics. It has since grown into a 
community project with a range of developers and users from fields such as genomics, 
bioimaging, astronomy, physics, quantitative finance, oceanography, atmospheric 
science, climate science, and geospatial imaging. Because it can represent very large 
array datasets in a simple, scalable way, and is compatible with cloud object storage, Zarr 
is an ideal format for analysis-ready geospatial data in the cloud. A prominent example is 
the Google Cloud CMIP6 Public Dataset, which currently comprises over 800 TB of Zarr 
data. While Zarr is not inherently a geospatial-specific format, because of its rapid 
growth and adoption in geospatial and related fields, we are proposing it as an OGC 
community standard. 

The Zarr project is open source and practices open development on GitHub. The project 
is governed by a steering council. NumFocus has been the fiscal and legal sponsor of Zarr 
since 2019. In 2020, Zarr received a Chan-Zuckerberg Essential Open Source Software 
grant. 

2. The Zarr V2 Specification 

This Community Standard refers to the Zarr V2 Specification. The Zarr V2 Specification 
is hosted on the Zarr website at https://zarr.readthedocs.io/en/stable/spec/v2.html. The 
Zarr V2 Specification is the OGC Community Standard. Everything that follows is a 
non-normative, informal description of Zarr usage written for the benefit of the geospatial 
community. 

Work is underway on a Zarr V3 specification, which will include a mechanism for 
optional spec extensions. A new OGC Standard is planned to be filed for Zarr V3 in the 
future. 



4 
Copyright © 2022 Open Geospatial Consortium 

 

3. Zarr Storage Systems 

The Zarr V2 Specification is agnostic regarding the underlying storage system. The 
specification states: 

“A Zarr array can be stored in any storage system that provides a key/value interface, 
where a key is an ASCII string and a value is an arbitrary sequence of bytes, and the 
supported operations are read (get the sequence of bytes associated with a given key), 
write (set the sequence of bytes associated with a given key) and delete (remove a 
key/value pair).” 

For the purposes of this OGC Community Standard, it is helpful to enumerate some of 
the most common storage systems (“Zarr Stores”) that are supported by most Zarr 
implementations. 

● Directory Store - A directory within a filesystem can be a Zarr Store. The Zarr 
keys are the paths relative to the directory root. Chunk keys are separated with the 
“.” character, such that the chunks for each array all live within a single directory. 

● Nested Directory Store - Same as Directory Store, but the chunk keys are 
separated with a “/”, leading to a nesting of chunk keys for each array. 

● Zipfile Store - A Directory Store that has been zipped into a .ZIP file 
(https://pkware.cachefly.net/webdocs/casestudies/APPNOTE.TXT). This allows a 
Zarr Array or Zarr Group to be stored in a single logical file. 

● Object Store - Cloud object storage (e.g., Amazon S3, Google Cloud Storage, 
Azure Blog Storage, etc.) can act as a Zarr Store. The store location is specified as 
a bucket and key prefix. The Zarr keys are paths relative to the prefix. 

● HTTP Store - An HTTP[S] URL can be the root of a Zarr Store. The Zarr keys 
are the paths relative to the root URL. This type of store is most commonly used 
in a read-only configuration, e.g., to serve public data over the internet. The 
ability to access Zarr over vanilla HTTP means that, rather than just a file format, 
Zarr can become a generic protocol for remote data access, with the underlying 
data served either statically (from files) or dynamically (generated on demand).  
This has been demonstrated by the Xpublish project.  

Many other stores have been implemented (e.g., DBM, MongoDB, Redis). The ability to 
easily experiment with new storage systems is a key part of the Zarr design. 

4. Geospatial Data in Zarr 

Zarr is not inherently a geospatial format, and thus the Zarr V2 Specification makes no 
reference to any geospatial concepts. However, several common practices have emerged 
regarding geospatial data. The forthcoming GeoZarr specification will formalize these 



5 
Copyright © 2022 Open Geospatial Consortium 

best practices into a more explicit proposal for an OGC Standard. For the purposes of this 
community standard, here we aim to simply document existing practices. 

4.1 Named Dimensions 

In the Zarr V2 Specification, arrays have a shape, encoded as a tuple of integers, e.g., 
(100, 200, 300). The dimensionality of the array is determined by the length of the tuple. 
These dimensions do not have names. 

An ad-hoc convention for named dimension emerged from the Xarray python library 
(http://xarray.pydata.org/en/stable/internals/zarr-encoding-spec.html). The names of 
dimensions of a Zarr Array are encoded within the Array’s custom attributes (“.zattrs”) 
under the “_ARRAY_DIMENSIONS” key. The value of this key is a tuple of strings, 
e.g., (“time”, “lat”, “lon”). Downstream applications which can leverage named 
dimensions can parse this information in order to define dimension names for each Array. 
This approach to named dimensions is optional and fully compatible with the Zarr V2 
Specification. 

We recommend geospatial data stored in Zarr to use this named dimension convention to 
identify dimension names. 

4.2 NetCDF / CF Data Model 

Because Zarr is a generic container for multidimensional arrays, similar to HDF5, 
together with 4.1 (Named Dimensions) Zarr can be used to store the NetCDF data model. 
The semantic mapping from the NetCDF Data Model to Zarr Data Model is as follows 

NetCDF Data Model Zarr V2 Data Model 

File Store 

Group Group 

Variable Array 

Attribute User Attribute 

Dimension Not supported natively. (See 4.1) 

 

Note that this mapping excludes the NetCDF concept of “user-defined types”, which are 
not supported by Zarr. 

The Climate / Forecast (CF) Conventions sit on top of the NetCDF data model, defining 
required and recommended metadata to be placed in the Attribute fields. Software which 



6 
Copyright © 2022 Open Geospatial Consortium 

understands these conventions and can read both formats can thus interoperate with both 
NetCDF and properly encoded Zarr dataset using the same data model. The python 
Xarray package is a primary example. 

4.3 NCZarr 

Beginning with NetCDF-C version 4.8.0, Unidata introduced experimental Zarr support 
into the NetCDF-C library. This was accomplished via creating a new specification - 
NCZarr - which is “similar to, but not identical with the Zarr Version 2 Specification.” 
Specifically, NCZarr adds two additional metadata files (“.nczarray" and ".nczattr”), 
which are not part of the Zarr V2 Spec. Since NCZarr stores are not fully compatible and 
interoperable with Zarr V2, this Community Standard excludes NCZarr. Work is ongoing 
to reconcile NCZarr and the architectural reasons that motivated its development with the 
forthcoming Zarr V3 Specification. 

Fortunately, the NetCDF-C library also supports reading / writing of data using the 
simpler Named Dimension convention described in 4.1. 

4.4 Coordinate Reference Systems 

Since much existing Zarr geospatial data is from global and regional climate / weather 
models, rectangular or curvilinear lat / lon coordinates are common, without explicit 
reference to a CRS. 

For geospatial raster datasets stored in Zarr, there are currently two different approaches 
being used to explicitly encode CRS information in Zarr 

4.4.1 CF Conventions Approach 

Leveraging the NetCDF / CF compatibility described in 4.2, it is possible to store 
Coordinate Reference System CRS information about arrays inside Zarr groups. The 
relevant CF conventions regarding CRS are described in Section 5.6 of the CF 
Conventions document, specifically, the “grid_mapping” variable and associated 
“crs_wkt” attribute. This is the approach is endorsed by the forthcoming GeoZarr spec. 

4.4.2 GDAL Approach 

In implementing the Zarr driven for GDAL, the developers took a different approach: 
CRS is stored as a nested JSON data structure in the “_CRS” attribute on a Zarr array: 
 
“GDAL uses a _CRS attribute that is a dictionary that may contain one or several of the 
following keys: url (using a OGC CRS URL), wkt (WKT:2019 used by default on writing, 
WKT1 also supported on reading.), projjson. On reading, it will use url by default, if not 
found will fallback to wkt and then projjson.” 



7 
Copyright © 2022 Open Geospatial Consortium 

The forthcoming GeoZarr Spec should seek to reconcile these discrepancies in CRS 
encoding in Zarr. 

4.5 Overviews / Pyramids / Multiscale Data 

A common need in geospatial raster data is to store the same image at multiple different 
resolutions. The Zarr V2 specification does not explicitly address this scenario; however, 
given the flexibility of the format, it can easily be accommodated. A convention called 
Multiscale Arrays 0.1 was defined by the bioimaging community. This convention 
specifies how multiscale arrays can be stored, described, and discovered within standard 
Zarr Groups. Carbonplan leveraged this convention to develop a new toolkit for data-
driven maps, which includes a Javascript front end and a python utility for generating 
image pyramids. It is recommended that new applications that require multiscale data 
attempt to follow this existing convention when feasible. 

The forthcoming Zarr V3 specification will likely address multiscale explicitly via an 
extension mechanism. 

5. Relationship of Zarr to other OGC standards 

Zarr is a new, standalone standard, without dependencies on existing OGC Standards. 
However, because of its generic nature, other OGC Standards could easily be 
implemented on top of Zarr. For example: 

● Zarr may be a container format for Coverage data made available to a Web 
Coverage Service, similar to the OGC CF-netCDF 3.0 encoding using GML 
Coverage Application Schema (OGC 14-100r2); 

● The NetCDF library supports Zarr as a storage container since version 4.8.0; 
Unidata developed a standard called NCZarr which specifies how to encode the 
NetCDF data model into Zarr; and 

● WKT representation of coordinate reference systems can be placed in Zarr 
metadata. 

6. Alignment of Zarr with the OGC Standards Baseline 

As a generic storage format for multidimensional array data + metadata, Zarr will play a 
similar role to HDF5 within the OGC ecosystem. Many different types of data and 
metadata can be stored using Zarr, targeting a wide range of storage technologies 
(filesystems, databases, cloud object store). We anticipate Zarr to be particularly popular 
for cloud-native data storage and processing. Also, because Zarr can store arbitrarily 
large arrays, without constraints related to individual file sizes, it will likely prove useful 
for creating homogeneous analysis-ready datasets from many individual granules 



8 
Copyright © 2022 Open Geospatial Consortium 

Zarr has already been adopted by several OGC communities as a format for cloud-
optimized, analysis-ready geospatial data. Examples at the time of publication include the 
following. 

● Climate Science: The CMIP6 Google Cloud Public Dataset  
● Oceanography: The ECCOv4r3 Ocean State Estimate 
● Atmospheric Science: Global cloud-resolving aquaplanet simulations with the 

System for Atmospheric Modeling 
  



9 
Copyright © 2022 Open Geospatial Consortium 

 

 

 

Zarr storage specification version 2 

 



Docs  » Specifica�ons  » Zarr storage specifica�on version 2

Zarr storage specification version 2

This document provides a technical specifica�on of the protocol and format used for storing Zarr
arrays. The key words “MUST”, “MUST NOT”, “REQUIRED”, “SHALL”, “SHALL NOT”, “SHOULD”,
“SHOULD NOT”, “RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be
interpreted as described in RFC 2119.

Status

This specifica�on is the latest version. See Specifica�ons for previous versions.

Storage

A Zarr array can be stored in any storage system that provides a key/value interface, where a key
is an ASCII string and a value is an arbitrary sequence of bytes, and the supported opera�ons are
read (get the sequence of bytes associated with a given key), write (set the sequence of bytes
associated with a given key) and delete (remove a key/value pair).

For example, a directory in a file system can provide this interface, where keys are file names,
values are file contents, and files can be read, wri�en or deleted via the opera�ng system.
Equally, an S3 bucket can provide this interface, where keys are resource names, values are
resource contents, and resources can be read, wri�en or deleted via HTTP.

Below an “array store” refers to any system implemen�ng this interface.

Arrays

Metadata

Each array requires essen�al configura�on metadata to be stored, enabling correct
interpreta�on of the stored data. This metadata is encoded using JSON and stored as the value
of the “.zarray” key within an array store.

The metadata resource is a JSON object. The following keys MUST be present within the object:

zarr_format

https://zarr.readthedocs.io/en/stable/index.html
https://zarr.readthedocs.io/en/stable/spec.html
https://www.ietf.org/rfc/rfc2119.txt
https://zarr.readthedocs.io/en/stable/spec.html#spec


An integer defining the version of the storage specifica�on to which the array store adheres.

shape

A list of integers defining the length of each dimension of the array.

chunks

A list of integers defining the length of each dimension of a chunk of the array. Note that all
chunks within a Zarr array have the same shape.

dtype

A string or list defining a valid data type for the array. See also the subsec�on below on data
type encoding.

compressor

A JSON object iden�fying the primary compression codec and providing configura�on
parameters, or null  if no compressor is to be used. The object MUST contain an "id"  key
iden�fying the codec to be used.

fill_value

A scalar value providing the default value to use for unini�alized por�ons of the array, or
null  if no fill_value is to be used.

order

Either “C” or “F”, defining the layout of bytes within each chunk of the array. “C” means row-
major order, i.e., the last dimension varies fastest; “F” means column-major order, i.e., the first
dimension varies fastest.

filters

A list of JSON objects providing codec configura�ons, or null  if no filters are to be applied.
Each codec configura�on object MUST contain a "id"  key iden�fying the codec to be used.

Other keys MUST NOT be present within the metadata object.

For example, the JSON object below defines a 2-dimensional array of 64-bit li�le-endian
floa�ng point numbers with 10000 rows and 10000 columns, divided into chunks of 1000 rows
and 1000 columns (so there will be 100 chunks in total arranged in a 10 by 10 grid). Within each
chunk the data are laid out in C con�guous order. Each chunk is encoded using a delta filter and
compressed using the Blosc compression library prior to storage:



{ 
    "chunks": [ 
        1000, 
        1000 
    ], 
    "compressor": {
        "id": "blosc", 
        "cname": "lz4", 
        "clevel": 5, 
        "shuffle": 1 
    }, 
    "dtype": "<f8", 
    "fill_value": "NaN", 
    "filters": [ 
        {"id": "delta", "dtype": "<f8", "astype": "<f4"} 
    ], 
    "order": "C", 
    "shape": [ 
        10000, 
        10000 
    ], 
    "zarr_format": 2 
} 

Data type encoding

Simple data types are encoded within the array metadata as a string, following the NumPy array
protocol type string (typestr) format. The format consists of 3 parts:

One character describing the byteorder of the data ( "<" : li�le-endian; ">" : big-endian;
"|" : not-relevant)

One character code giving the basic type of the array ( "b" : Boolean (integer type where all
values are only True or False); "i" : integer; "u" : unsigned integer; "f" : floa�ng point;
"c" : complex floa�ng point; "m" : �medelta; "M" : date�me; "S" : string (fixed-length

sequence of char); "U" : unicode (fixed-length sequence of Py_UNICODE); "V" : other (void
* – each item is a fixed-size chunk of memory))
An integer specifying the number of bytes the type uses.

The byte order MUST be specified. E.g., "<f8" , ">i4" , "|b1"  and "|S12"  are valid data type
encodings.

For date�me64 (“M”) and �medelta64 (“m”) data types, these MUST also include the units within
square brackets. A list of valid units and their defini�ons are given in the NumPy documenta�on
on Date�mes and Timedeltas. For example, "<M8[ns]"  specifies a date�me64 data type with
nanosecond �me units.

https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface
https://numpy.org/doc/stable/reference/arrays.datetime.html#arrays-dtypes-dateunits


Structured data types (i.e., with mul�ple named fields) are encoded as a list of lists, following
NumPy array protocol type descrip�ons (descr). Each sub-list has the form
[fieldname, datatype, shape]  where shape  is op�onal. fieldname  is a string, datatype  is a

string specifying a simple data type (see above), and shape  is a list of integers specifying
subarray shape. For example, the JSON list below defines a data type composed of three single-
byte unsigned integer fields named “r”, “g” and “b”:

[["r", "|u1"], ["g", "|u1"], ["b", "|u1"]] 

For example, the JSON list below defines a data type composed of three fields named “x”, “y”
and “z”, where “x” and “y” each contain 32-bit floats, and each item in “z” is a 2 by 2 array of
floats:

[["x", "<f4"], ["y", "<f4"], ["z", "<f4", [2, 2]]] 

Structured data types may also be nested, e.g., the following JSON list defines a data type with
two fields “foo” and “bar”, where “bar” has two sub-fields “baz” and “qux”:

[["foo", "<f4"], ["bar", [["baz", "<f4"], ["qux", "<i4"]]]] 

Fill value encoding

For simple floa�ng point data types, the following table MUST be used to encode values of the
“fill_value” field:

Value JSON encoding

Not a Number "NaN"

Posi�ve Infinity "Infinity"

Nega�ve Infinity "-Infinity"

If an array has a fixed length byte string data type (e.g., "|S12" ), or a structured data type, and if
the fill value is not null, then the fill value MUST be encoded as an ASCII string using the
standard Base64 alphabet.

Chunks

https://numpy.org/doc/stable/reference/arrays.interface.html#arrays-interface


Each chunk of the array is compressed by passing the raw bytes for the chunk through the
primary compression library to obtain a new sequence of bytes comprising the compressed
chunk data. No header is added to the compressed bytes or any other modifica�on made. The
internal structure of the compressed bytes will depend on which primary compressor was used.
For example, the Blosc compressor produces a sequence of bytes that begins with a 16-byte
header followed by compressed data.

The compressed sequence of bytes for each chunk is stored under a key formed from the index
of the chunk within the grid of chunks represen�ng the array. To form a string key for a chunk,
the indices are converted to strings and concatenated with the period character (“.”) separa�ng
each index. For example, given an array with shape (10000, 10000) and chunk shape (1000,
1000) there will be 100 chunks laid out in a 10 by 10 grid. The chunk with indices (0, 0) provides
data for rows 0-1000 and columns 0-1000 and is stored under the key “0.0”; the chunk with
indices (2, 4) provides data for rows 2000-3000 and columns 4000-5000 and is stored under the
key “2.4”; etc.

There is no need for all chunks to be present within an array store. If a chunk is not present then
it is considered to be in an unini�alized state. An uni�alized chunk MUST be treated as if it was
uniformly filled with the value of the “fill_value” field in the array metadata. If the “fill_value” field
is null  then the contents of the chunk are undefined.

Note that all chunks in an array have the same shape. If the length of any array dimension is not
exactly divisible by the length of the corresponding chunk dimension then some chunks will
overhang the edge of the array. The contents of any chunk region falling outside the array are
undefined.

Filters

Op�onally a sequence of one or more filters can be used to transform chunk data prior to
compression. When storing data, filters are applied in the order specified in array metadata to
encode data, then the encoded data are passed to the primary compressor. When retrieving
data, stored chunk data are decompressed by the primary compressor then decoded using filters
in the reverse order.

Hierarchies

Logical storage paths

Mul�ple arrays can be stored in the same array store by associa�ng each array with a different
logical path. A logical path is simply an ASCII string. The logical path is used to form a prefix for
keys used by the array. For example, if an array is stored at logical path “foo/bar” then the array

https://github.com/Blosc/c-blosc/blob/master/README_HEADER.rst


metadata will be stored under the key “foo/bar/.zarray”, the user-defined a�ributes will be
stored under the key “foo/bar/.za�rs”, and the chunks will be stored under keys like
“foo/bar/0.0”, “foo/bar/0.1”, etc.

To ensure consistent behaviour across different storage systems, logical paths MUST be
normalized as follows:

Replace all backward slash characters (“\”) with forward slash characters (“/”)
Strip any leading “/” characters
Strip any trailing “/” characters
Collapse any sequence of more than one “/” character into a single “/” character

The key prefix is then obtained by appending a single “/” character to the normalized logical
path.

A�er normaliza�on, if spli�ng a logical path by the “/” character results in any path segment
equal to the string “.” or the string “..” then an error MUST be raised.

N.B., how the underlying array store processes requests to store values under keys containing
the “/” character is en�rely up to the store implementa�on and is not constrained by this
specifica�on. E.g., an array store could simply treat all keys as opaque ASCII strings; equally, an
array store could map logical paths onto some kind of hierarchical storage (e.g., directories on a
file system).

Groups

Arrays can be organized into groups which can also contain other groups. A group is created by
storing group metadata under the “.zgroup” key under some logical path. E.g., a group exists at
the root of an array store if the “.zgroup” key exists in the store, and a group exists at logical path
“foo/bar” if the “foo/bar/.zgroup” key exists in the store.

If the user requests a group to be created under some logical path, then groups MUST also be
created at all ancestor paths. E.g., if the user requests group crea�on at path “foo/bar” then
groups MUST be created at path “foo” and the root of the store, if they don’t already exist.

If the user requests an array to be created under some logical path, then groups MUST also be
created at all ancestor paths. E.g., if the user requests array crea�on at path “foo/bar/baz” then
groups must be created at path “foo/bar”, path “foo”, and the root of the store, if they don’t
already exist.

The group metadata resource is a JSON object. The following keys MUST be present within the
object:



zarr_format

An integer defining the version of the storage specifica�on to which the array store adheres.

Other keys MUST NOT be present within the metadata object.

The members of a group are arrays and groups stored under logical paths that are direct children
of the parent group’s logical path. E.g., if groups exist under the logical paths “foo” and “foo/bar”
and an array exists at logical path “foo/baz” then the members of the group at path “foo” are the
group at path “foo/bar” and the array at path “foo/baz”.

Attributes

An array or group can be associated with custom a�ributes, which are simple key/value items
with applica�on-specific meaning. Custom a�ributes are encoded as a JSON object and stored
under the “.za�rs” key within an array store. The “.za�rs” key does not have to be present, and if
it is absent the a�ributes should be treated as empty.

For example, the JSON object below encodes three a�ributes named “foo”, “bar” and “baz”:

{ 
    "foo": 42, 
    "bar": "apples", 
    "baz": [1, 2, 3, 4] 
} 

Examples

Storing a single array

Below is an example of storing a Zarr array, using a directory on the local file system as storage.

Create an array:

>>> import zarr 
>>> store = zarr.DirectoryStore('data/example.zarr') 
>>> a = zarr.create(shape=(20, 20), chunks=(10, 10), dtype='i4', 
...                 fill_value=42, compressor=zarr.Zlib(level=1), 
...                 store=store, overwrite=True) 

No chunks are ini�alized yet, so only the “.zarray” and “.za�rs” keys have been set in the store:



>>> import os 
>>> sorted(os.listdir('data/example.zarr')) 
['.zarray'] 

Inspect the array metadata:

>>> print(open('data/example.zarr/.zarray').read()) 
{ 
    "chunks": [ 
        10, 
        10
    ], 
    "compressor": { 
        "id": "zlib", 
        "level": 1 
    }, 
    "dtype": "<i4", 
    "fill_value": 42, 
    "filters": null, 
    "order": "C", 
    "shape": [ 
        20, 
        20
    ], 
    "zarr_format": 2 
} 

Chunks are ini�alized on demand. E.g., set some data:

>>> a[0:10, 0:10] = 1 
>>> sorted(os.listdir('data/example.zarr')) 
['.zarray', '0.0'] 

Set some more data:

>>> a[0:10, 10:20] = 2 
>>> a[10:20, :] = 3 
>>> sorted(os.listdir('data/example.zarr')) 
['.zarray', '0.0', '0.1', '1.0', '1.1'] 

Manually decompress a single chunk for illustra�on:



>>> import zlib 
>>> buf = zlib.decompress(open('data/example.zarr/0.0', 'rb').read()) 
>>> import numpy as np 
>>> chunk = np.frombuffer(buf, dtype='<i4') 
>>> chunk 
array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
       1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 
       1, 1, 1, 1, 1, 1, 1, 1], dtype=int32) 

Modify the array a�ributes:

>>> a.attrs['foo'] = 42 
>>> a.attrs['bar'] = 'apples' 
>>> a.attrs['baz'] = [1, 2, 3, 4] 
>>> sorted(os.listdir('data/example.zarr')) 
['.zarray', '.zattrs', '0.0', '0.1', '1.0', '1.1'] 
>>> print(open('data/example.zarr/.zattrs').read()) 
{ 
    "bar": "apples", 
    "baz": [ 
        1,
        2,
        3,
        4 
    ], 
    "foo": 42 
} 

Storing multiple arrays in a hierarchy

Below is an example of storing mul�ple Zarr arrays organized into a group hierarchy, using a
directory on the local file system as storage. This storage implementa�on maps logical paths
onto directory paths on the file system, however this is an implementa�on choice and is not
required.

Setup the store:

>>> import zarr 
>>> store = zarr.DirectoryStore('data/group.zarr') 

Create the root group:

>>> root_grp = zarr.group(store, overwrite=True) 



The metadata resource for the root group has been created:

>>> import os 
>>> sorted(os.listdir('data/group.zarr')) 
['.zgroup'] 

Inspect the group metadata:

>>> print(open('data/group.zarr/.zgroup').read()) 
{ 
    "zarr_format": 2 
} 

Create a sub-group:

>>> sub_grp = root_grp.create_group('foo') 

What has been stored:

>>> sorted(os.listdir('data/group.zarr')) 
['.zgroup', 'foo'] 
>>> sorted(os.listdir('data/group.zarr/foo')) 
['.zgroup'] 

Create an array within the sub-group:

>>> a = sub_grp.create_dataset('bar', shape=(20, 20), chunks=(10, 10)) 
>>> a[:] = 42 

Set a custom a�ributes:

>>> a.attrs['comment'] = 'answer to life, the universe and everything' 

What has been stored:



>>> sorted(os.listdir('data/group.zarr')) 
['.zgroup', 'foo'] 
>>> sorted(os.listdir('data/group.zarr/foo')) 
['.zgroup', 'bar'] 
>>> sorted(os.listdir('data/group.zarr/foo/bar')) 
['.zarray', '.zattrs', '0.0', '0.1', '1.0', '1.1'] 

Here is the same example using a Zip file as storage:

>>> store = zarr.ZipStore('data/group.zip', mode='w') 
>>> root_grp = zarr.group(store) 
>>> sub_grp = root_grp.create_group('foo') 
>>> a = sub_grp.create_dataset('bar', shape=(20, 20), chunks=(10, 10)) 
>>> a[:] = 42 
>>> a.attrs['comment'] = 'answer to life, the universe and everything' 
>>> store.close() 

What has been stored:

>>> import zipfile 
>>> zf = zipfile.ZipFile('data/group.zip', mode='r') 
>>> for name in sorted(zf.namelist()): 
...     print(name) 
.zgroup 
foo/.zgroup 
foo/bar/.zarray 
foo/bar/.zattrs 
foo/bar/0.0 
foo/bar/0.1 
foo/bar/1.0 
foo/bar/1.1 

Changes

Version 2 clarifications

The following changes have been made to the version 2 specifica�on since it was ini�ally
published to clarify ambigui�es and add some missing informa�on.

The specifica�on now describes how bytes fill values should be encoded and decoded for
arrays with a fixed-length byte string data type (#165, #176).
The specifica�on now clarifies that units must be specified for date�me64 and �medelta64
data types (#85, #215).
The specifica�on now clarifies that the ‘.za�rs’ key does not have to be present for either
arrays or groups, and if absent then custom a�ributes should be treated as empty.

https://github.com/zarr-developers/zarr-python/issues/165
https://github.com/zarr-developers/zarr-python/issues/176
https://github.com/zarr-developers/zarr-python/issues/85
https://github.com/zarr-developers/zarr-python/issues/215


The specifica�on now describes how structured datatypes with subarray shapes and/or with
nested structured data types are encoded in array metadata (#111, #296).

Changes from version 1 to version 2

The following changes were made between version 1 and version 2 of this specifica�on:

Added support for storing mul�ple arrays in the same store and organising arrays into
hierarchies using groups.
Array metadata is now stored under the “.zarray” key instead of the “meta” key.
Custom a�ributes are now stored under the “.za�rs” key instead of the “a�rs” key.
Added support for filters.
Changed encoding of “fill_value” field within array metadata.
Changed encoding of compressor informa�on within array metadata to be consistent with
representa�on of filter informa�on.

https://github.com/zarr-developers/zarr-python/issues/111
https://github.com/zarr-developers/zarr-python/issues/296

	21-050r1.pdf
	21-050r1_Zarr.pdf

