
 1 Copyright © 2017 Open Geospatial Consortium

Open Geospatial Consortium
Submission Date: 2019-06-06

Approval Date: 2019-06-27

Publication Date: 2019-10-28

External identifier of this OGC® document: http://www.opengis.net/doc/cis/1.1.1

Internal reference number of this OGC® document: 09-146r8

Version: 1.1.1

Category: OGC® Interface Standard

Editors: Peter Baumann, Eric Hirschorn, Joan Masó

OGC Coverage Implementation Schema with Corrigendum

Copyright notice

Copyright © 2019 Open Geospatial Consortium
To obtain additional rights of use, visit http://www.opengeospatial.org/legal/.

Warning

This document is an OGC Member approved international standard. This document is availa-
ble on a royalty free, non-discriminatory basis.

Recipients of this document are invited to submit, with their comments, notification of any
relevant patent rights of which they are aware and to provide supporting documentation.

Document type: OGC® Interface Standard
Document subtype: Implementation Schema
Document stage: Approved
Document language: English

 2 Copyright © 2017 Open Geospatial Consortium

License Agreement

Permission is hereby granted by the Open Geospatial Consortium, ("Licensor"), free of charge and subject to the terms set forth below,
to any person obtaining a copy of this Intellectual Property and any associated documentation, to deal in the Intellectual Property with-
out restriction (except as set forth below), including without limitation the rights to implement, use, copy, modify, merge, publish,
distribute, and/or sublicense copies of the Intellectual Property, and to permit persons to whom the Intellectual Property is furnished to
do so, provided that all copyright notices on the intellectual property are retained intact and that each person to whom the Intellectual
Property is furnished agrees to the terms of this Agreement.

If you modify the Intellectual Property, all copies of the modified Intellectual Property must include, in addition to the above copy-
right notice, a notice that the Intellectual Property includes modifications that have not been approved or adopted by LICENSOR.

THIS LICENSE IS A COPYRIGHT LICENSE ONLY, AND DOES NOT CONVEY ANY RIGHTS UNDER ANY PATENTS
THAT MAY BE IN FORCE ANYWHERE IN THE WORLD.

THE INTELLECTUAL PROPERTY IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED,
INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR
PURPOSE, AND NONINFRINGEMENT OF THIRD PARTY RIGHTS. THE COPYRIGHT HOLDER OR HOLDERS INCLUDED
IN THIS NOTICE DO NOT WARRANT THAT THE FUNCTIONS CONTAINED IN THE INTELLECTUAL PROPERTY WILL
MEET YOUR REQUIREMENTS OR THAT THE OPERATION OF THE INTELLECTUAL PROPERTY WILL BE
UNINTERRUPTED OR ERROR FREE. ANY USE OF THE INTELLECTUAL PROPERTY SHALL BE MADE ENTIRELY AT
THE USER’S OWN RISK. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR ANY CONTRIBUTOR OF
INTELLECTUAL PROPERTY RIGHTS TO THE INTELLECTUAL PROPERTY BE LIABLE FOR ANY CLAIM, OR ANY
DIRECT, SPECIAL, INDIRECT OR CONSEQUENTIAL DAMAGES, OR ANY DAMAGES WHATSOEVER RESULTING
FROM ANY ALLEGED INFRINGEMENT OR ANY LOSS OF USE, DATA OR PROFITS, WHETHER IN AN ACTION OF
CONTRACT, NEGLIGENCE OR UNDER ANY OTHER LEGAL THEORY, ARISING OUT OF OR IN CONNECTION WITH
THE IMPLEMENTATION, USE, COMMERCIALIZATION OR PERFORMANCE OF THIS INTELLECTUAL PROPERTY.

This license is effective until terminated. You may terminate it at any time by destroying the Intellectual Property together with all
copies in any form. The license will also terminate if you fail to comply with any term or condition of this Agreement. Except as pro-
vided in the following sentence, no such termination of this license shall require the termination of any third party end-user sublicense
to the Intellectual Property which is in force as of the date of notice of such termination. In addition, should the Intellectual Property,
or the operation of the Intellectual Property, infringe, or in LICENSOR’s sole opinion be likely to infringe, any patent, copyright,
trademark or other right of a third party, you agree that LICENSOR, in its sole discretion, may terminate this license without any com-
pensation or liability to you, your licensees or any other party. You agree upon termination of any kind to destroy or cause to be de-
stroyed the Intellectual Property together with all copies in any form, whether held by you or by any third party.

Except as contained in this notice, the name of LICENSOR or of any other holder of a copyright in all or part of the Intellectual Prop-
erty shall not be used in advertising or otherwise to promote the sale, use or other dealings in this Intellectual Property without prior
written authorization of LICENSOR or such copyright holder. LICENSOR is and shall at all times be the sole entity that may author-
ize you or any third party to use certification marks, trademarks or other special designations to indicate compliance with any
LICENSOR standards or specifications. This Agreement is governed by the laws of the Commonwealth of Massachusetts. The appli-
cation to this Agreement of the United Nations Convention on Contracts for the International Sale of Goods is hereby expressly ex-
cluded. In the event any provision of this Agreement shall be deemed unenforceable, void or invalid, such provision shall be modified
so as to make it valid and enforceable, and as so modified the entire Agreement shall remain in full force and effect. No decision, ac-
tion or inaction by LICENSOR shall be construed to be a waiver of any rights or remedies available to it.

 3 Copyright © 2017 Open Geospatial Consortium

Contents Page

v. Submitters .. 6
1. Scope ... 8

1.1 Overview ... 8
1.2 Compatibility .. 8

2. Conformance ... 10
3. References ... 14
4. Terms and definitions .. 15

4.1 Coverage ... 16
4.2 Regular grid ... 16
4.3 Irregular grid ... 16
4.4 Displaced grid ... 16
4.5 Mesh ... 16
4.6 Partition [of a coverage] .. 16
4.7 Sensor model ... 16
4.8 Transformation grid .. 16

5. Conventions ... 16
5.1 UML notation .. 16
5.2 Namespace prefix conventions ... 17

6. Class coverage ... 17
6.1 Overview ... 17
6.2 Coverages .. 18
6.3 CoverageFunction ... 20
6.4 Envelope and DomainSet .. 20
6.5 RangeType .. 24
6.6 RangeSet ... 26
6.7 Metadata .. 27

7. Class grid-regular ... 27
7.1 Overview ... 27
7.2 General grid coverages .. 28

8. Class grid-irregular ... 32
8.1 Overview ... 32
8.2 Irregular independent grid axes ... 32
8.3 Irregular correlated grid axes .. 33

9. Class grid-transformation ... 36
9.1 Overview ... 36
9.2 General .. 36
9.3 Transformation .. 36
9.4 SensorML grid .. 38

10. Class discrete-pointcloud .. 41
11. Class discrete-mesh ... 42
12. Class gml-coverage ... 42

12.1 Overview ... 42
12.2 Coverage representation .. 44

13. Class json-coverage ... 44
14. Class rdf-coverage ... 45
15. Class other-format-coverage ... 49
16. Class multipart-coverage .. 49

16.1 Overview ... 49

 4 Copyright © 2017 Open Geospatial Consortium

16.2 Root part .. 50
16.3 Further parts .. 51

17. Class coverage-partitioning .. 51
17.1 Overview ... 51
17.2 Partitioning .. 51
17.3 CRS and partition envelope constraints .. 54
17.4 Domain set constraints .. 55
17.5 Range type constraints .. 56

18. Class container .. 56
Annex A (normative) Abstract Test Suite .. 58

A.1 Conformance Test Class: coverage ... 58
A.2 Conformance Test Class: grid-regular ... 62
A.3 Conformance Test Class: grid-irregular ... 63
A.4 Conformance Test Class: grid-transformation ... 64
A.5 Conformance Test Class: discrete-pointcloud .. 64
A.6 Conformance Test Class: discrete-mesh ... 65
A.7 Conformance Test Class: gml-coverage ... 65
A.8 Conformance Test Class: json-coverage ... 66
A.9 Conformance Test Class: rdf-coverage ... 66
A.10 Conformance Test Class: other-format-coverage ... 67
A.11 Conformance Test Class: multipart-coverage .. 67
A.12 Conformance Test Class: coverage-partitioning .. 69
A.13 Conformance Test Class: container .. 71

Annex B (non-normative) Revision History ... 72
Annex C (non-normative) Complete CIS::AbstractCoverage UML diagram

collection ... 73
Annex D (non-normative) Relation to Other Standards .. 75

D.1 Abstract Topic 6 / ISO 19123 ... 75
D.2 GML 3.2.1 ... 76
D.3 GML 3.3 .. 77
D.4 SWE Common .. 77
D.5 Further Standards .. 77

 5 Copyright © 2017 Open Geospatial Consortium

Tables Page
Table 1 Package URIs established in this standard .. 12

Table 2 Namespace mapping conventions ... 17

Table 3 CIS::AbstractCoverage data structure .. 19

Table 4 CIS::EnvelopeByAxis structure ... 21

Table 5 CIS::AxisExtent structure .. 23

Table 6 CIS::RangeType structure ... 24

Table 7 CIS::InterpolationRestriction structure 26

Table 8 CIS::GeneralGridCoverage structure ... 29

Table 9 CIS::GeneralGrid structure .. 29

Table 10 CIS::Axis structure ... 29

Table 11 CIS::GridLimits structure .. 30

Table 12 CIS::IndexAxis structure ... 30

Table 13 CIS::RegularAxis structure .. 31

Table 14 CIS::IrregularAxis structure ... 35

Table 15 CIS::DisplacementAxisNest structure .. 35

Table 16 CIS::TransformationModel structure ... 37

Table 17 CIS::TransformationBySensorModel structure 38

Table 18 CIS::MultiPointCoverage structure ... 42

Table 19 CIS::CoverageByPartitioning structure 53

Table 20 CIS::PartitionSet structure .. 53

Table 21 CIS::Partition structure ... 53

Table 22 CIS::PositionValuePair structure .. 54

Table 23 CIS::RangeTypeComponentTranslation structure 54

Table 24 Correspondence between ISO 19123 and CIS coverage types 76

 6 Copyright © 2017 Open Geospatial Consortium

i. Abstract
Coverages represent homogeneous collections of values located in space/time, such as spatio-
temporal sensor, image, simulation, and statistics data. Common examples include 1-D
timeseries, 2-D imagery, 3-D x/y/t image timeseries and x/y/z geophysical voxel models, as
well as 4-D x/y/z/t climate and ocean data. Generally, coverages encompass multi-dimen-
sional regular and irregular grids, point clouds, and general meshes.

This Coverage Implementation Schema (CIS) specifies the OGC coverage model by estab-
lishing a concrete, interoperable, conformance-testable coverage structure. It is based on the
abstract concepts of OGC Abstract Topic 6 [1] (which is identical to ISO 19123) which spec-
ifies an abstract model which is not per se interoperable – in other words, many different and
incompatible implementations of the abstract model are possible. CIS, on the other hand, is
interoperable in the sense that coverages can be conformance tested, regardless of their data
format encoding, down to the level of single “pixels” or “voxels”.

Coverages can be encoded in any suitable format (such as GML, JSON, GeoTIFF or Net-
CDF) and can be partitioned, e.g., for a time-interleaved representation. Coverages are inde-
pendent from service definitions and, therefore, can be accessed through a variety of OGC
services types, such as the Web Coverage Service (WCS) Standard [7]. The coverage struc-
ture can serve a wide range of coverage application domains, thereby contributing to harmon-
ization and interoperability between and across these domains.

ii. Keywords
The following are keywords to be used by search engines and document catalogues.

Ogcdoc, coverage, gridded data, datacube, timeseries, sensor model, point cloud, mesh

iii. Preface
Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. The Open Geospatial Consortium shall not be held responsible for
identifying any or all such patent rights.

Recipients of this document are requested to submit, with their comments, notification of any
relevant patent claims or other intellectual property rights of which they may be aware that
might be infringed by any implementation of the standard set forth in this document, and to
provide supporting documentation.

iv. Submitting organizations
The following organizations submitted this Document to Open Geospatial Consortium Inc.:

• Jacobs University Bremen
• Envitia Ltd
• European Union Satellite Center

v. Submitters

All questions regarding this submission should be directed to the editor or the submitters:

 7 Copyright © 2017 Open Geospatial Consortium

Name Organization
Peter Baumann

Eric Hirschorn
Joan Masó

Jacobs University Bremen,
rasdaman GmbH
KEYW Corp.
CREAF

 8 Copyright © 2017 Open Geospatial Consortium

1. Scope

1.1 Overview

This document specifies the concrete, implementable, conformance-testable coverage struc-
ture to be used by OGC standards.

Coverages represent homogeneous collections of values located in space/time, such as spatio-
temporal sensor, image, simulation, and statistics data. Common examples include 1-D
timeseries, 2-D imagery, 3-D x/y/t image timeseries and x/y/z geophysical voxel models, as
well as 4-D x/y/z/t climate and ocean data. Generally, coverages encompass multi-dimen-
sional regular and irregular grids, point clouds, and general meshes.

This Coverage Implementation Schema (CIS) specifies the OGC coverage model by estab-
lishing a concrete, interoperable, conformance-testable coverage structure. It is based on the
abstract concepts of OGC Abstract Topic 6 [1] (which is identical to ISO 19123) which spec-
ifies an abstract model which is not per se interoperable – in other words, many different and
incompatible implementations of the abstract model are possible. CIS, on the other hand, is
interoperable in the sense that coverages can be conformance tested, regardless of their data
format encoding, down to the level of single “pixels” or “voxels”.

Coverages can be encoded in any suitable data format, including formats as GML, JSON, Ge-
oTIFF, and NetCDF. Further, coverages can be represented by a single document (stream or
file) or by a hierarchically organised set of documents, each of which can be encoded individ-
ually – for example, the domain set, range type, and metadata may be encoded in easily par-
seable GML, JSON, or RDF while the range set is encoded in some compact binary format
like NetCDF or JPEG2000. Such partitioning allows for coverages tiled in space, time, or
mixed, thereby enabling mosaics, time-interleaved coverages, and efficiently subsettable
datacubes.

Coverages are independent from service definitions and, therefore, can be accessed through a
variety of OGC services types, such as the Web Coverage Service (WCS) Standard [7]. The
coverage structure can serve a wide range of coverage application domains, thereby contrib-
uting to harmonization and interoperability between and across these domains.

1.2 Compatibility
1.2.1 OGC Abstract Topic 6 / ISO 19123

The OGC coverage model introduced with GMLCOV/CIS 1.0 [5] and extended with CIS 1.1
is based on the abstract coverage specification of OGC Abstract Topic 6 [1] (which is identi-
cal to ISO 19123) and harmonized with the GML coverage model [2] and the SWE sensor
type description [4]. By way of normatively including GMLCOV/CIS 1.0 in CIS 1.1, every
GMLCOV/CIS 1.0 coverage is a valid CIS 1.1 coverage. See Annex D.1 for details.

1.2.2 GML

Like in GML, all coverage types in CIS 1.1 (as in GMLCOV/CIS 1.0) are derived from a
common AbstractCoverage type. GMLCOV/CIS 1.0 is strictly derived from the corre-
sponding GML type, so it is a GML Application Profile. CIS 1.1 is structurally equivalent,
but embodies novel concepts which do not allow a formal derivation in all cases; further,
modelling has been simplified over GML to make coverages easier to handle. Further, having

 9 Copyright © 2017 Open Geospatial Consortium

JSON and RDF next to GML had a design impact. As a consequence, CIS 1.1 formally
speaking is not a GML Application Profile. See Annexes D.2 and D.3 for details.

1.2.3 SWE Common

The coverage RangeType component (see Clause 6) utilizes the SWE Common [4] Data-
Record. Consequently, the semantics of sensor data acquired through SWE standards can be
carried over into coverages without information loss. See also Annex D.4.

1.2.4 Extensions over previous version of this standard

This document is the successor version of GML 3.2.1 Application Schema – Coverages ver-
sion 1.0.1 [5], abbreviated GMLCOV 1.0. This standard has been renamed to Coverage Im-
plementation Schema (CIS) in 2015 to remedy misunderstandings caused by the initial title,
such as that only a GML encoding is defined here (whereas in fact a format-independent im-
plementable coverage model is established). Therefore, GMLCOV 1.0 is identical to CIS 1.0.

The document on hand augments GMLCOV/CIS 1.0 as a backwards compatible extension:
any valid GMLCOV/CIS 1.0 coverage is also valid in CIS 1.1. This is accomplished through
Requirement 1 which declares any valid GMLCOV/CIS 1.0 coverage to also be a valid CIS
1.1 coverage; on XML Schema level, the CIS 1.1 schema explicitly includes the
GMLCOV/CIS 1.0 schema (although, given Requirement 1, this is not strictly necessary).

CIS 1.1 adds further coverage types over GMLCOV/CIS 1.0 – in particular for more grids –
and encoding options:

• CIS 1.1 adds comprehensive definitions for all possible types of irregular grids,
which has been left unspecified in the previous version. As such, CIS 1.1 also incor-
porates and generalizes the grid coverage concepts established in GML 3.3 [3].

• CIS 1.1 extends the physical representation schema of gridded coverages by allowing
an internal partitioning to accommodate different access patterns. One special case is
time-interleaved where a coverage is represented by a list of pairs (timestamp, time
slice). However, the partitioning schemes are not constrained and may include both
spatial and temporal axes.

• CIS 1.1 complements the GML coverage representation with equivalent JSON and
RDF representation.

To achieve this, CIS implements the following Change Requests on GMLCOV 1.0 [5]:

• Support for more general grid identifiers (with punctuation, national character sets,
etc.) [OGC 15-086].

• Support for general non-regular grids [OGC 15-088].

• Clear regulation for interpolation methods associated with grid coverages, thereby
also clarifying a long-standing confusion between discrete and continuous grid cover-
ages [OGC 15-087].

 10 Copyright © 2017 Open Geospatial Consortium

• Introduction of EnvelopeByAxis, an envelope type which allows for a convenient
handling of any type of coordinates together with a single CRS [OGC 15-093].

• Partitioned (“tiled”) coverages, allowing – among others – “interleaved representa-
tions” of coverages [OGC 15-091] and datacubes tiled for efficient subsetting.

• Renaming from the confusing title “GML 3.2.1 Application Schema – Coverages” to
“Coverage Information Schema” [OGC 15-094].

• Adding support for non-regularly gridded sensor models [OGC 15-092].

• Distinguish between grid dimension and the CRS dimension [OGC 15-089].

• Removal of a namespace ambiguity in ReferenceableGridCoverage [OGC 15-
090] (resolved by introduction of CIS::GeneralGridCoverage).

Further, some GML 3.2.1 schema definitions whose generality complicates coverage under-
standing unnecessarily have been extracted and condensed into the pertaining CIS 1.1 GML
schema. This remedies an often heard complaint about the complexity not of the coverage
model, but the underlying GML. As a consequence, the GML encoding of CIS 1.1 is not a
GML application schema any longer, but a compact, freestanding definition. Nevertheless, by
way of integrating GMLCOV/CIS 1.0 it is possible for implementers to remain in the realm
of a GML application schema.

Finally, as the new features make CIS substantially more expressive, not all implementers
will want to support all functionality. Therefore, a further subdivision into separate require-
ments classes has been performed isolating, for example, discrete and grid coverages.

In summary, CIS 1.1 is a backwards compatible extension of GMLCOV/CIS 1.0, also merg-
ing in GML 3.3 grid types. Note that irregular grid types in both GMLCOV and GML in fu-
ture may get deprecated in favour of the general grid type in CIS 1.1 which is more concise,
better to analyze by applications, and support cases not addressed by the previous grid ap-
proaches.

2. Conformance

This standard defines: coverages.

Standardisation target of this document are concrete coverage instance documents, as gen-
erated by some service and/or consumed by some client.

This document contains requirements for the following standardization target types (cf. Fig-
ure 1):

• The core class coverage (in red). This is the only abstract class – it establishes the
basic framework, while the concrete conformance classes listed below define how
concrete coverage instances can be built.

• The grid coverage classes (in green):
o Class grid-regular establishes multi-dimensional unreferenced and regular

referenced grids; in particular, GridCoverage and RectifiedGrid-

 11 Copyright © 2017 Open Geospatial Consortium

Coverage are provided here for backwards compatibility with version 1.0
of this standard.

o Class grid-irregular establishes multi-dimensional irregular referenced grids.
o Class grid-transformation establishes multi-dimensional referenced grids de-

fined by algorithmic transformations.
• The discrete coverage classes (in blue):

o Class discrete-pointcloud establishes point clouds.
o Class discrete-mesh establishes general multi-dimensional meshes.

• The format encoding classes (in yellow):
o Class json-coverage establishes JSON encoding of coverages.
o Class rdf-coverage establishes RDF encoding of coverages.
o Class gml-coverage establishes GML encoding of coverages.
o Class other-format-coverage establishes further encodings of coverages.
o Class multipart-coverage establishes a multipart encoding of coverages.

• Class coverage-partitioning (in grey) establishes coverages composed from several
sub-coverages.

• Class container (in white) establishes a general object capable of holding coverages
and any other structure.

Note Classes coverage, grid-regular, grid-irregular, grid-transformation, discrete-pointcloud, and
discrete-mesh together establish the conceptual coverage implementation model whereas classes gml-cover-
age, json-coverage, rdf-coverage, other-format-coverage, multipart-coverage, and coverage-partitioning
establish encoding and representation schemes.

Figure 1 show the requirements class dependencies depicted as a UML package diagram;
each package represents one class, the depends-on relationship represents the OGC require-
ments class dependency relationship.

Conformance with this standard shall be checked using all the relevant tests specified in An-
nex A (normative) of this document. The framework, concepts, and methodology for testing,
and the criteria to be achieved to claim conformance are specified in the OGC Compliance
Testing Policies and Procedures and the OGC Compliance Testing web site1.

In order to conform to this OGC™ CIS interface standard, a software implementation shall
choose to implement:

• the core class coverage plus

• at least one of the discrete or grid coverage classes plus

• at least one of the encoding classes json-coverage, gml-coverage and other-format-
coverage.

1 www.opengeospatial.org/cite

 12 Copyright © 2017 Open Geospatial Consortium

Figure 1: The Coverage class hierarchy as UML package diagram

Further classes can be implemented optionally as long as the dependencies set forth by this
standard are respected.

Each requirements class in this standard corresponds to a single conformance class. Abstract
conformance tests are listed in Annex A, whereby each test references back the requirement it
assesses. Concrete implementations of these tests shall be exercised on any software artefact
claiming to implement a conformance class of this standard.

Requirements and conformance tests are identified through URLs. Table 1 summarizes the
respective URLs. As a rule, requirements and conformance class URLs defined in this docu-
ment are relative to http://www.opengis.net/spec/CIS/1.1/.

All requirements-classes and conformance-classes described in this document are owned by
the standard(s) identified.

Table 1 Package URIs established in this standard

Class Description2
coverage Requirements class URI:

http://www.opengis.net/spec/CIS/1.1/req/coverage/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/coverage/req{req#}

discrete-pointcloud Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/discrete-
pointcloud/req{req#}

Conformance class URI:

2 {req#} denotes the requirement number in decimal notation, without leading zeroes.

pkg Cov erage Implementation Schema

coverage

grid-regular

grid-irregular

grid-transformation

discrete-pointcloud

discrete-mesh

gml-cov erage multipart-cov erage

other-format-cov erage

json-cov erage

cov erage-partitioning

rdf-coverage

«depends-on»

«depends-on»«depends-on»

«depends-on»

«depends-on»

«depends-on»

«depends-on» «depends-on»

 13 Copyright © 2017 Open Geospatial Consortium

http://www.opengis.net/spec/CIS/1.1/conf/discrete-
pointcloud/req{req#}

discrete-mesh Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/discrete-mesh/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/discrete-mesh/req{req#}

grid-regular Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/grid-regular/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/grid-regular/req{req#}

grid-irregular Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/grid-irregular/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/grid-irregular/req{req#}

grid-transformation Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/grid-
transformation/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/grid-
transformation/req{req#}

gml-coverage Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/gml-coverage/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/gml-coverage/req{req#}

json-coverage Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/json-coverage/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/json-coverage/req{req#}

rdf-coverage Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/rdf-coverage/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/rdf-coverage/req{req#}

other-format-cover-
age

Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/other-format-
coverage/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/other-format-
coverage/req{req#}

multipart-coverage Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/multipart-
coverage/req{req#}

 14 Copyright © 2017 Open Geospatial Consortium

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/multipart-
coverage/req{req#}

coverage-partition-
ing

Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/coverage-
partitioning/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/coverage-
partitioning/req{req#}

container Requirements class URI:
http://www.opengis.net/spec/CIS/1.1/req/container/req{req#}

Conformance class URI:
http://www.opengis.net/spec/CIS/1.1/conf/container/req{req#}

This OGC Coverage Implementation Schema consists of the UML diagrams and textual re-
quirements classes established in this document as well as an external file bundle consisting
of the corresponding XML Schema including Schematron constraints. The complete specifi-
cation is identified by OGC URI http://www.opengis.net/spec/CIS/1.1, the document has
OGC URI http://www.opengis.net/doc/AppSchema/CIS/1.1.

The complete standard is available at http://www.opengeospatial.net/standards/cis. The XML
Schema is posted online at http://schemas.opengis.org/cis/1.1 as part of the OGC schema re-
pository.

3. References

The following normative documents contain provisions that, through reference in this text,
constitute provisions of this document. The latest edition with the same major release num-
ber3 as the document referred below applies.

[1] OGC 07-011, Abstract Specification Topic 6: The Coverage Type and its Subtypes, ver-
sion 7.0 (identical to ISO 19123:2005)

[2] OGC 07-036, Geography Markup Language (GML) Encoding Standard, version 3.2.1

[3] OGC 10-129r1, OGC® Geography Markup Language (GML) – Extended schemas and
encoding rules (GML 3.3), version 3.3

[4] OGC 08-094, OGC® SWE Common Data Model Encoding Standard, version 2

[5] OGC 12-000, OGC® SensorML: Model and XML Encoding Standard, version 2

[6] OGC 09-146r2, GML 3.2.1 Application Schema – Coverages, version 1.0.1

3 In the standards numbering scheme x.y.z, x is called major release number, y minor, and z corrigendum. Revisions of
a standard where only the minor release number changes are backwards compatible. A major release number change
signals possibly incompatible changes over the previous edition.

 15 Copyright © 2017 Open Geospatial Consortium

[7] OGC 16-083, Coverage Implementation Schema – ReferenceableGridCoverage Exten-
sion, version 1

[8] OGC 09-110r3, Web Coverage Service (WCS) Core Interface Standard, version 2

[9] OGC 13-102r2, Name type specification – Time and index coordinate reference system
definitions (OGC Policy Document), version 1

[10] OGC 14-121, Web Information Service (WIS), version 1

[11] W3C Recommendation, XML Path Language (XPath), version 2, 2007

[12] W3C Recommendation, XML Linking Language (XLink), version 1, 2001

[13] W3C Working Draft, The app: URI scheme, 2013

[14] ISO/IEC 19757-3:2006 Information technology – Document Schema Definition Lan-
guages (DSDL) – Part 3: Rule-based validation – Schematron

[15] IETF RFC 2183, 1997

[16] IETF RFC 2387, 1998

[17] IETF RFC 2392, 1998

[18] IETF RFC 3986, 2005

[19] IETF RFC7159, The JavaScript Object Notation (JSON) Data Interchange Format.
https://www.ietf.org/rfc/rfc7159.txt

[20] W3C JSON-LD 1.0, A JSON-based Serialization for Linked Data.
http://www.w3.org/TR/json-ld/

[21] W3C JSON-LD 1.0 Processing Algorithms and API.
 http://www.w3.org/TR/json-ld-api

[22] W3C RDF 1.1 Concepts and Abstract Syntax.
https://www.w3.org/TR/2014/REC-rdf11-concepts-20140225/

4. Terms and definitions

This document uses the specification terms defined in Subclause 5.3 of OGC Web Service
Commons [OGC 06-121r9], which is based on the ISO/IEC Directives, Part 2, Rules for the
structure and drafting of International Standards. In particular, the word “shall” (not “must”)
is the verb form used to indicate a requirement to be strictly followed to conform to this
standard.

For the purposes of this document, the terms and definitions given in the above references ap-
ply. In addition, the following terms and definitions apply.

 16 Copyright © 2017 Open Geospatial Consortium

4.1 Coverage

feature that acts as a function to return values from its range for any direct position within its
spatiotemporal domain, as defined in OGC Abstract Topic 6 [1]

4.2 Regular grid

grid whose grid lines have a constant distance along each grid axis

4.3 Irregular grid

Grid whose grid lines have individual distances along each grid axis

4.4 Displaced grid

grid whose direct positions are topologically aligned to a grid, but whose geometric positions
can vary arbitrarily

4.5 Mesh

coverage consisting of a collection of curves, surfaces, or solids, respectively

4.6 Partition [of a coverage]

separately stored coverage acting, by being referenced in the coverage on hand, as one of its
components

4.7 Sensor model

mathematical model for estimating geolocations from recorded sensor data such as digital
imagery

4.8 Transformation grid

grid whose direct positions are given by some transformation algorithm not further specified
in this standard

5. Conventions

5.1 UML notation

Diagrams using the Unified Modeling Language (UML) static structure diagram, as de-
scribed in Subclause 5.2 of OGC Web Service Commons [OGC 06-121r9], adhere to the fol-
lowing conventions:

• UML elements having a package name of “GML“ are those defined in the UML model
of GML 3.2.1 [2].

• UML elements having a package name of “SWE Common” are those defined in the
UML model of SWE Common 2.0 [4].

• UML elements not qualified with a package name, or with “CIS”, are those defined
in this standard.

Further, in any class where an attribute name or association role name is identical to a name
in some superclass the local definition overrides the superclass definition.

 17 Copyright © 2017 Open Geospatial Consortium

5.2 Namespace prefix conventions

UML diagrams and XML code fragments adhere to the namespace conventions shown in Ta-
ble 2. The namespace prefixes used in this document are not normative and are merely cho-
sen for convenience. The namespaces to which the prefixes correspond are normative, how-
ever.

Whenever a data item from a CIS-external namespace is referenced this constitutes a norma-
tive dependency on the data structure imported together with all requirements defined in the
namespace referenced.

Table 2 Namespace mapping conventions

UML
prefix

GML
prefix

Namespace URL Description

CIS cis http://www.opengis.net/cis/1.1 Coverage Implementation
Schema 1.1

CIS10 cis10 http://www.opengis.net/gmlcov/1.0 Coverage Implementation
Schema 1.0

GML gml http://www.opengis.net/gml/3.2 GML 3.2.1

GML33 gml33 http://www.opengis.net/gml/3.3 GML 3.3

SWE Com-
mon

swe http://www.opengis.net/swe/2.0 SWE Common 2.0

SML sml http://www.opengis.net/sensorml/2.0 SensorML 2.0

6. Class coverage

6.1 Overview

Class coverage lays the foundation for the coverage implementation schema. It is the core
class of CIS, meaning that every coverage instance must conform to the requirements stated
here. Class coverage does not allow creating coverage instances, but rather provides the fun-
dament for the further classes (see next Clauses) which define various specializations of
which instance documents can be created.

Note Clause 6 establishes a concrete conceptual model of a coverage which is independent from any
particular encoding. While, in addition to UML, GML sometimes is used for establishing this (in particular
when concepts and definitions from GML 3.2.1 [2] are used where a UML representation is not provided
by that standard), CIS does not anticipate a GML encoding. Various encodings are established in Clauses
12 onwards.

This CIS 1.1 standard unifies OGC’s coverage implementation model. It does so by extend-
ing CIS 1.0 (also known as GMLCOV 1.0) with further ways to model and represent cover-
ages, and by integrating the GML 3.3 grid types.

Requirement 1 :
A coverage shall implement at least one of: this CIS 1.1 standard; the GMLCOV/CIS 1.0
standard; the GMLCOV/CIS 1.0 standard with the additional grid definitions provided with
GML 3.3.

 18 Copyright © 2017 Open Geospatial Consortium

With the introduction of the CIS GeneralGridCoverage type and its unified modelling of
all grid types, the gridded types of GMLCOV/CIS 1.0 [5], GML 3.3 [3], and Referencea-
bleGridCoverage Extension [7] may get deprecated in future.

6.2 Coverages

Coverages are represented by some binary or ASCII serialization, specified by some data (en-
coding) format. Coverage encoding is governed by specific standards. Some such encodings
are defined as part of this standard in the classes gml-coverage, json-coverage and rdf-cover-
age; further formats are allowed through class other-format-coverage. In any case, for an in-
stantiation of the general coverage definition given in this Clause 6 a concrete encoding
needs to be available in the implementation on hand.

Requirement 2 :
A coverage instantiating class coverage shall implement at least one of gml-coverage , json-
coverage, rdf-coverage, and other-format-coverage.

Note Not all encodings may be able to represent the full information making up a coverage, i.e.: not
all encodings are informationally complete.

A coverage contains a DomainSet component describing the coverage’s domain (the set of
“direct positions”, i.e., the locations for which values are stored in the coverage) and a
RangeSet component containing these stored values (often referred to as “pixels”, “voxels”)
of the coverage. Further, a coverage contains a RangeType element which describes the
coverage's range set data structure (in the case of images usually called the “pixel data type”).
Such a type often consists of one or more fields (also referred to as bands or channels or vari-
ables), however, much more general definitions are possible. For the description of the range
value structure, SWE Common [OGC 08-094] DataRecord is used. The metadata com-
ponent, finally, represents an extensible slot for metadata. The intended use is to hold any
kind of application-specific metadata structures.

Note In this requirements class, coverage, a domain set invariably consists of a domain/range repre-
sentation; requirements class coverage-partitioning (Clause 17) will add partitioning and position/value
pair list as alternatives. This is why coverage subtype CoverageByDomainAndRange is introduced
in Figure 2; while it may seem artificial in this requirements class, it will allow modelling the alternative
representations lateron.

Requirement 3 :
A coverage instantiating class coverage shall conform with Figure 2, Figure 3, Table 3, and
Table 7.

Note The Envelope item may be modelled differently in different encodings. In GML, for exam-
ple, the Envelope element is enclosed in a boundedBy element.

The id attribute is the same as in GML and GMLCOV, but its type is extended from NC-
Name to string to achieve a more human-readable style allowing for whitespace, special
characters, globally unique naming schemes, etc.

Coverages make heavy use of n-dimensional coordinates in a space that may be made up
from spatial and/or temporal and/or “abstract” (i.e., non-spatio/temporal) axes. For represent-
ing direct positions of coverages, such n-dimensional coordinates are modelled through type
CIS::DirectPosition. Each coordinate component is of the general type anySimple-
Type (in analogy to XML Schema) as it has to accommodate data types as diverse as

 19 Copyright © 2017 Open Geospatial Consortium

numbers (such as 1.23 degrees), dates (such as “2016-03-08”), and abstract categorical values
(such as “orange”, “apple”). The order of the coordinates is given by the axis order of the
CRS defined in the context in which the direct position is used.

Figure 2: CIS::AbstractCoverage structure (as per class coverage)

Table 3 CIS::AbstractCoverage data structure

Name Definition Data type Multiplicity
id Identifier of the coverage string One

(mandatory)

coverage-
Function

Function describing how range val-
ues at the coverage’s direct posi-
tions can be computed, as specified
in GML 3.2.1 [2] Subclause
19.3.11

GML::
Coverage-
Function

Zero or one
(optional)

class CIS::AbstractCov erage (as per cov erage)

Feature

«Feature Type»
AbstractCoverage

+ id :string
+ coverageFunction :GML::CoverageFunction [0..1]
+ envelope :EnvelopeByAxis [0..1]

«Data Type»
Metadata

+ any :any [0..*]

SWE Common :: DataRecord

«Data Type»
RangeType

«Data Type»
InterpolationRestriction

+ allowedInterpolation :anyURI [0..*]

«Data Type»
DomainSet

«Data Type»
RangeSet

refined in the
individual
coverage types

structure of values
defined by
RangeType,
multiplicity defined
by DomainSet

«Feature Type»
CoverageByDomainAndRange

+rangeSet +metadata 0..1

+interpolationRestriction0..1

+rangeType+domainSet

 20 Copyright © 2017 Open Geospatial Consortium

envelope Minimum bounding box of the cov-
erage, as specified in GML 3.2.1
[2] Subclause 10.1.4.6

CIS::
Envelope-
ByAxis

One
(mandatory)

domainSet Definition of coverage domain, i.e.,
its set of direct positions

CIS::
DomainSet

One
(mandatory)

rangeSet Coverage range values, each one
associated with a direct position

CIS::
RangeSet

One
(mandatory)

rangeType Structure definition of the coverage
range values, as specified in SWE
Common 2.0 [4] Clause 7 and 8

SWE Commmon
::DataRecord

One
(mandatory)

metadata Application specific metadata, al-
lowing for individual extensions

CIS::
Extension

Zero or one
(optional)

Figure 3: CIS::DirectPosition structure

6.3 CoverageFunction

The coverageFunction component is identical in its syntax and meaning to the corre-
sponding element defined in GML 3.2.1 [2] Subclause 19.3.11. It describes the mapping
function from the domain to the range of the coverage. For a grid coverage, it specifies the
serialization of the multi-dimensional grid in the range set.

Note 1 This becomes particularly relevant when defining encoding formats, such as GML or JSON.

Note 2 For the reader’s convenience, the default is copied from GML 3.2.1: If the gml:cover-
ageFunction property is omitted for a gridded coverage (including rectified gridded coverages) the
gml:startPoint is assumed to be the value of the gml:low property in the gml:Grid geome-
try, and the gml:sequenceRule is assumed to be linear and the gml:axisOrder property is as-
sumed to be "+1 +2".

6.4 Envelope and DomainSet

The domain set determines the exact locations of a coverage overall and its set of direct posi-
tions. The domain set is defined through an ordered list of axes whose lower and upper
bounds establish the extent along each axis. The axis sequence and their meaning is defined
by the CRS which is given by a GML::SRSReferenceGroup consisting of the URI identi-
fying the CRS. This domain set CRS is called the coverage’s Native CRS.

class CIS::DirectPosition

«Data Type»
DirectPosition

+ coordinate :anySimpleType [1..*] {ordered}

coordinate sequence equals axis order of
the CRS defined in the context in which
this DirectPosition is used

 21 Copyright © 2017 Open Geospatial Consortium

Additionally, some redundant information is present for efficiency reasons: the number of di-
mensions, axis labels, and UoM (Unit of Measure) labels simplify parsing the coverage as it
does not have to retrieve the CRS definition, such as from the OGC CRS resolver at
http://www.opengis.net/def/crs and http://www.opengis.net/def/crs-compound.

The optional CIS::Envelope component helps applications in gaining a quick overview
on the coverage’s location. The location information does not need to use the same CRS as
the domain set, therefore the bounding box may not always be the minimal.

Note Particularly in presence of displaced axes, transformation axes, and discrete coverages the do-
main set can quickly become hard to oversee.

Requirement 4 :
If present, the envelope of a coverage instantiating class coverage shall consist of a
CIS::EnvelopeByAxis element conforming to Figure 4, Table 4, and Table 5.

Note As in GML 3.2.1, the envelope of a coverage, if present, encloses the entire coverage in-
stance; it does not have to be minimal, though (for example, if the envelope is in a different – possibly eas-
ier to evaluate – CRS such as WGS84 a minimal bounding box normally cannot be expressed exactly).

Figure 4: CIS::EnvelopeByAxis structure

Table 4 CIS::EnvelopeByAxis structure

Name Definition Data type Multiplicity
srsName URL identifying the CRS of the

coordinates in this coverage
anyURI One

(mandatory)

srsDimension Dimension (number of axes) of
the grid

positive-
Integer

One
(mandatory)

class CIS::Env elopeByAxis

GML::Envelope

«Data Type»
CIS::Env elopeByAxis

+ srsName :anyURI
+ srsDimension :positiveInteger

«Data Type»
CIS::AxisExtent

+ axisLabel :string
+ uomLabel :string
+ lowerBound :string
+ upperBound :string

{ | axisExtent | = srsDimension }

{ordered}

+axisExtent1..*

 22 Copyright © 2017 Open Geospatial Consortium

axisExtent Sequence of extents of the grid
along a specific axis, exactly one
for each axis defined in the CRS
referenced in srsName

CIS::
AxisExtent

One or more
(mandatory)

As the envelope coordinate values refer to a CRS and its axes it is necessary to link to those.
To this end, a CRS identifier is provided through a URL referencing its definition. Axes used
by the coverage are identified by their position in the (ordered) list of axes given in the CRS.
In the axisLabels string, alias names are established for the axes used in the axisEx-
tent components, matched with the axis through their position in the sequence. Addition-
ally, the units of measure are indicated for each axis.

Requirement 5 :
In the envelope of a coverage instantiating class coverage, if present, the value of
srsName shall be a URL which points to a CRS definition which fulfils the following
conditions:
- srsDimension equals the dimension of the CRS (i.e., the number of axes);
- the number of axisExtent items is equal to srsDimension;
- in each axisExtent the uomLabel value equals the unit of measure of the corresponding
CRS axis.

Note This definition relaxes the axisLabels handling as per GMLCOV/CIS 1.0 where the iden-
tifiers referenced in axisLabels had to be identical to the corresponding axisAbbrev value in the
CRS definition. In CIS 1.1, coverage axisLabels and CRS axisAbbrev are decoupled so that
there is no such dependency any longer. This definition is backwards compatible, i.e., coverages can con-
tinue to use CRS axisAbbrev values; note, though, that axisAbbrev values in subsequent versions
of a CRS may change without notice, so the correspondence may get lost over time.

Example The following envelope, encoded in XML, utilizes EPSG 4326 with two axis labels, “Lat” and
“Long”. These labels correspond to the CRS axis abbreviations of EPSG v8.5, but not to EPSG v8.9.2
where the axis abbreviation for Longitude has been changed to “Lon”. In CIS 1.1, this is not an issue be-
cause (i) CRS axes are ordered and (ii) values in axisLabels are matched by position, so axis label
“Long” is unambiguously associated with CRS axis abbreviated as “Lon”.

<Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4326"
 axisLabels="Lat Long" srsDimension="2">
 <AxisExtent axisLabel="Lat" uomLabel="deg" lowerBound="-80" upperBound="-70"/>
 <AxisExtent axisLabel="Long" uomLabel="deg" lowerBound="0" upperBound="10"/>
</Envelope>

Actually, a coverage is completely free to use any identifier whereby the syntax of identifiers is given by
the encoding used; in GML, for example, it is NCName. The following version is semantically identical to
the above:

<Envelope srsName="http://www.opengis.net/def/crs/EPSG/0/4326"
 axisLabels="a1 a2" srsDimension="2">
 <AxisExtent axisLabel="a1" uomLabel="deg" lowerBound="-80" upperBound="-70"/>
 <AxisExtent axisLabel="a2" uomLabel="deg" lowerBound="0" upperBound="10"/>
</Envelope>

This demonstrates that an axis label may be identical to the axisAbbrev value in CRS definition, but
does not have to.

 23 Copyright © 2017 Open Geospatial Consortium

Table 5 CIS::AxisExtent structure

Name Definition Data type Multiplicity
axisLabel Shorthand axis identifier with

scope given by the coverage
document

string One
(mandatory)

uomLabel Shorthand identifier of the
Unit of Measure used on this
axis (as indicated in the CRS
definition for this axis)

string One
(mandatory)

lowerBound Lowest coordinate along this
axis

string One
(mandatory)

upperBound Highest coordinate along this
axis

string One
(mandatory)

Note At the time of this standard’s writing the widely used EPSG database – which forms the basis
also for the OGC CRS resolver, http://www.opengis.net/def/crs/ - does not have unit symbols, only non-
normative names. Therefore, in general it is currently not possible to automatically deduce the unit of meas-
ure of an axis. Instead is recommended as a Best Practice to use the unit strings as defined by UCUM
(http://unitsofmeasure.org). All examples used in this standard utilize UCUM.

Requirement 6 :
For each axisExtent in the EnvelopeByAxis element of a coverage the lowerBound
shall be less than or equal to the upperBound.

Requirement 7 :
In a coverage instantiating class coverage, the extent of CIS::Envelope (if present) shall
enclose CIS::DomainSet along all dimensions.

Note In other words: the bounding box given by the domain set must be fully enclosed in the bound-
ing box as defined in the envelope. This requirement follows already from GML 3.2.1 Subclause 9.3.1, but
is repeated here as GML does not have a uniform treatment of spatial, temporal, and other dimensions.

While the envelope can be approximate, the domain set is exact in its boundaries:

Requirement 8 :
In a coverage instantiating class coverage, for all axes in a CIS::GeneralGrid where axis
coordinates of direct positions are given explicitly, the lowest and highest value of these
coordinates shall be equal to the lowerBound and upperBound value, respectively.

Just like in their Envelope, Coverages in their DomainSet must have a 1:1 correlation be-
tween the axis names given in axisLabels and gridLabels, i.e.: they shall relate pair-
wise, given by their sequence position. For example, GeneralGrid axisLabels=“Lat
Long h date” and GridLimits axisLabels=”i j k l“ implies a correspondence of Lat
with i, Long with j, h with k, and date with l. The value of srsDimension in this
case is 4. On coverage instance level, though, this cannot be conformance tested, therefore
this is not a formal requirement.

 24 Copyright © 2017 Open Geospatial Consortium

Requirement 59 :
In the GeneralGrid of the DomainSet of a coverage instantiating class coverage the
value of srsName shall be a URL which points to a CRS definition which fulfils the
following conditions:
- srsDimension equals the dimension of the CRS (i.e., the number of axes);
- the number of axisExtent items is equal to srsDimension;
- all items listed in the axisLabels attribute are pairwise distinct, and for each item in
this list there is exactly one axisExtent item with the same axisLabel value;
- in each axisExtent the uomLabel value equals the unit of measure of the
corresponding CRS axis.

6.5 RangeType
6.5.1 Overview

The RangeType component adds a structure description and technical metadata required for
an appropriate (however, application independent) understanding of a coverage. For this
structure description, the SWE Common DataRecord is used. Optionally, interpolation di-
rectives can be added.

Requirement 9 :
In a coverage instantiating class coverage, the RangeType component shall have a
structure as given in Table 6.

Table 6 CIS::RangeType structure

Name Definition Data type Multiplicity
dataRecord Description of the common

data type of all range values
SWE Common ::
DataRecord

One
(mandatory)

interpolation
Restriction

Constraints on the interpola-
tion methods meaningfully ap-
plicable to this coverage

CIS::Inter-
polation-
Restriction

Zero or one
(optional)

6.5.2 Range data type specification

Specification of the common data type all range values share is done through the Data-
Record part of the coverage’s RangeType component. Atomic data types available for
range values are those given by the SWE Common data type AbstractSimpleCompon-
ent. As a range structure contains only structure definitions, but not the values themselves
(these sit in the coverage range set component), the optional AbstractSimpleComponent
component value is suppressed in coverages.

Requirement 10 :
In a coverage instantiating class coverage, for all SWE Common ::
AbstractSimpleComponent items in a range type structure, instance multiplicity of the
value component shall be zero.

 25 Copyright © 2017 Open Geospatial Consortium

Note Following [4], omission of the value component implies that in a DataArray there is no
encoding component either.

Range values can be structured as records or arrays. Both structuring principles can be nested
(and mixed) to any depth for a concrete coverage range structure definition.

Requirement 11 :
In a coverage instantiating class coverage, for all SWE Common
AbstractDataComponent items in a coverage range type structure, the concrete subtype
used shall be one of DataRecord and DataArray.

Note 1 In particular, these subtypes are not allowed: DataChoice, Vector, Matrix.

Note 2 As array-valued ranges (i.e., nested arrays) can always be represented in a “flat” way by a sin-
gle-level array with extra dimension(s) the use of such array-valued range types is discouraged as it adds
complexity without additional value. Effectively, only DataRecord should be used.

Within a DataRecord contained in a concrete range structure, each of its record compo-
nents is locally uniquely identified by the record component’s field attribute, in accordance
with the “soft-typing” property introduced by SWE Common.

Example The following XML fragment represents a valid range structure; it models the red, green, and
blue channel of a Landsat scene. Pixels are defined as unsigned 8-bit quantities where 0 and 255 denote
null values, representing radiance values measured in W/cm2:

<RangeType>
 <swe:DataRecord>

<swe:field name="red">
 <swe:Quantity definition="http://opengis.net/def/property/OGC/0/Radiance">
 <swe:uom code="W/cm2"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="green">
 <swe:Quantity definition="http://opengis.net/def/property/OGC/0/Radiance">
 <swe:uom code="W/cm2"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="blue">
 <swe:Quantity definition="http://opengis.net/def/property/OGC/0/Radiance">
 <swe:uom code="W/cm2"/>
 </swe:Quantity>
 </swe:field>

 </swe:DataRecord>
</RangeType>

Note While SWE Common is confined to XML, a coverage can be encoded in any suitable format.
Therefore, the GML examples are of informative nature only, but not constraining to this format.

6.5.3 Interpolation and continuous coverages

A continuous (grid) coverage as defined in Abstract Topic 6 [1] has values not only at the di-
rect positions themselves, but also inbetween – in other words, it is valid to apply interpola-
tion to obtain values between direct positions.

 26 Copyright © 2017 Open Geospatial Consortium

Technically, a continuous grid coverage consists of a grid coverage with an interpolation
method associated. Notably, often there is more than one interpolation method which can be
applied meaningfully.

Example A satellite image can be interpolated by nearest neighbour, linear, quadratic, and several more
methods. A land use map, on the other hand, can only be interpolated using nearest-neighbour.

In the CIS::allowedInterpolation element an application can specify which interpo-
lation methods are meaningful (hence, allowed) on the coverage on hand. Without such an
element, any interpolation is admissible on the coverage.

Table 7 CIS::InterpolationRestriction structure

Name Definition Data type Multiplicity
allowed-
Interpolation

Constraint on the interpolation
methods meaningfully applica-
ble to this coverage

anyURI Zero or more
(optional)

The InterpolationRestriction element is meant to be interpreted as follows:

• If no interpolationRestriction element is present, then any interpolation
method is applicable to the coverage on hand.

• In presence of an interpolationRestriction element, only those interpola-
tion methods may be meaningfully applied whose identifiers appear in an allow-
edInterpolation element; in case of an empty list this means that no interpo-
lation is applicable at all.

Note As selection of a particular interpolation method is in the hands of the application processing a
coverage, this is no testable behavior on the level of coverage definition and, therefore, cannot be put into a
formal, testable requirement.

Example In an XML encoding, the following constitutes a valid interpolation restriction (using OGC-
defined URLs for identifiying interpolation methods as defined in ISO 19123) indicating that nearest-
neighbor and linear interpolation are admissible on the coverage on hand:

<InterpolationRestriction>
 <AllowedInterpolation>
 http://www.opengis.net/def/interpolation/OGC/1/nearest-neighbor
 </AllowedInterpolation>
 <AllowedInterpolation>
 http://www.opengis.net/def/interpolation/OGC/1/linear
 </AllowedInterpolation>
</InterpolationRestriction>

6.6 RangeSet

The range set contains the actual values, each of which is associated with one direct position
as defined in the domain set.

 27 Copyright © 2017 Open Geospatial Consortium

Both DomainSet and RangeType describe the coverage values given in the RangeSet.
Hence, consistency must be enforced between them. The pertaining requirements are listed
below.

There must be a 1:1 correspondence between direct positions and range values. Neither dupli-
cates nor values omitted are allowed.

Note For range values not known null values can be used.

Requirement 12 :
In a coverage instantiating class coverage, for each coordinate position contained in the
domain set description of a coverage there shall exist exactly one range value in the
coverage’s range set.

Note For each of the coverage subtypes the number of direct positions in the domain set is deter-
mined individually, as this varies greatly across the types.

Note This applies to CIS::IrregularAxis, the CIS::Displacement, and the CIS::
TransformationModel.

Requirement 13 :
In a coverage instantiating class coverage, all range values contained in the range set of this
coverage shall be consistent with the structure description provided in its range type.

The data type of all range values is the same, it is given by the range type defined through a
SWE::DataRecord. In particular, in a coverage instantiating class coverage, atomic values
inside a composite value shall be listed exactly in the same sequence as the range type com-
ponents whereby arrays are treated like records, serialized in their natural ascending se-
quence.

Note This last sentence is not conformance testable on this standardization target (coverage in-
stance), therefore not expressed as a requirement. However, at service level this requirement may be testa-
ble indeed.

6.7 Metadata

The metadata component is a carrier for any kind of application dependent metadata.
Hence, no requirements are imposed here.

Note Implementations may impose restrictions on metadata stored (such as their sheer volume).

7. Class grid-regular

7.1 Overview

This class grid-regular establishes coverages with regular grid types, both referenced and
non-referenced. For backwards compatibility, CIS10::GridCoverage and CIS10::
RectifiedGridCoverage are kept from GMLCOV/CIS 1.0 [5]; additionally, a new
structure CIS::GeneralGridCoverage is added.

 28 Copyright © 2017 Open Geospatial Consortium

7.2 General grid coverages

CIS::GeneralGridCoverage lays foundation for the modelling of all possible grid types
in CIS. While in class grid-regular only regular grids are defined, classes grid-irregular and
grid-transformation extend this framework successively with additional grid types.

Note Skewed and rotated grids are not modelled explicitly; they can be represented by making the
grid’s CRS a concatenation of any given CRS with an Engineering CRS describing, e.g., any affine trans-
formation of the original grid.

Requirement 14 :
A coverage instantiating class grid-regular shall conform with class coverage.

Requirement 15 :
A coverage of type CIS::GeneralGridCoverage shall have a structure as given by
Figure 5, Table 8, Table 9, Table 10, and Table 13.

Figure 5: CIS::GeneralGridCoverage structure as per grid-regular

class CIS::GeneralGridCov erage (as per grid-regular)

AbstractGridCoverage

«Feature Type»
GeneralGridCov erage

«Data Type»
GeneralGrid

+ srsName :anyURI

{ordered}

«Data Type»
RegularAxis

+ lowerBound :string
+ upperBound :string
+ resolution :string
+ uomLabel :string

«Data Type»
Axis

+ axisLabel :string

«Data Type»
IndexAxis

+ lowerBound :int
+ upperBound :int

«Data Type»
GridLimits

+ srsName :anyURI

not needed in case
grid consists of index
axes only

{ordered}

{ lowerBound <= upperBound }
{ resolution > 0 }

+indexAxis

1..*

+gridLimits0..1 +axis0..*

+domainSet

 29 Copyright © 2017 Open Geospatial Consortium

Table 8 CIS::GeneralGridCoverage structure

Name Definition Data type Multiplicity
DomainSet grid defining the coverage’s

direct positions, specializing
the general DomainSet of
CIS::AbstractCoverage

CIS::General-
Grid

One
(mandatory)

(all other components inherited unchanged from CIS::AbstractCoverage)

7.2.1 General Grid

7.2.1.1 Overview

Gridded coverages have a grid as their domain set describing the direct positions in multi-
dimensional coordinate space, depending on the type of grid. In this class grid-regular,
simple equidistant grids are established.

Requirement 16 :
A CIS::GeneralGrid shall have a structure as given by Figure 5, Table 9, Table 10,
Table 11, Table 12, and Table 13.

Table 9 CIS::GeneralGrid structure

Name Definition Data type Multiplicity
srsName URL identifying the CRS of the

coordinates in this coverage
anyURI One

(mandatory)

axis grid axis identifiers, all distinct
within a grid

CIS::Axis One or more
(mandatory)

Note Such a General Grid does not contain global offset vectors because these are available with the
axis subtypes where appropriate. It does not contain a rotation vector as this can be modelled by concate-
nating the CRS with an appropriate Engineering CRS for general affine transformations.

A CIS::Axis item contains information about a particular axis: its axis name, unit of meas-
ure along the axis, and further information depending on the axis type.

Table 10 CIS::Axis structure

Name Definition Data type Multiplicity

axisLabel identifier of this axis string One
(mandatory)

 30 Copyright © 2017 Open Geospatial Consortium

Except for an index axis (which is a bare array grid), coordinates in an axis are expressed
in some geodetic CRS or similar. Correspondingly, the grid limits in the CIS::Axis
structure contains information about the grid boundaries in the coverage’s CRS.

In addition, the limits of the underlying array are given by the CIS::gridLimits com-
ponent. This structure is optional because it is not needed when all coverage axes are of
type CIS::indexAxis, in which case the boundary information is redundant.

Table 11 CIS::GridLimits structure

Name Definition Data type Multiplicity
srsName URL identifying the Index

CRS of the domain set grid ar-
ray in this coverage

anyURI One
(mandatory)

indexAxis all axes of the Index CRS ref-
erenced in srsName, in
proper sequence

CIS::
IndexAxis

One or more
(mandatory)

Example The Index CRS for a 2-D grid is http://www.opengis.net/def/crs/OGC/0/Index2D. It defines
axis names i and j.

In this regular-grid class, two subtypes of axes are defined, characterized by their axis
type and CRS used: index and regular axis.

7.2.1.2 Index Axis

Axis type CIS::IndexAxis requires an Index CRS as its CRS, as defined in the OGC
Name Type Specification for Index CRSs [9]. An Index CRS allows only integer coordinates
with spacing (“resolution”) of 1, hence resembling Cartesian coordinates; therefore, there is
no resolution value.

Table 12 CIS::IndexAxis structure

Name Definition Data type Multiplicity
lowerBound Lowest array coordinate along

this axis
integer One

(mandatory)

upperBound Highest array coordinate along
this axis

integer One
(mandatory)

Note A grid coverage containing exclusively axes of type IndexAxis technically corresponds to a
CIS10::GridCoverage, however, with a slightly differing schema.

7.2.1.3 Regular Axis

Axis type CIS::RegularAxis has no restriction on the CRS used; as it is regularly spaced
it contains the common distance, i.e.: resolution, as a part of the axis definition.

 31 Copyright © 2017 Open Geospatial Consortium

Table 13 CIS::RegularAxis structure

Name Definition Data type Multiplicity
lowerBound Lowest coordinate along this

grid axis
string One

(mandatory)

upperBound Highest coordinate along this
axis

string One
(mandatory)

resolution grid resolution along this axis string One
(mandatory)

uomLabel unit of measure in which val-
ues along this axis are ex-
pressed

string One
(mandatory)

Note The type is string to accommodate any potential resolution specification, such as “100” for de-
grees or meters, “2015-07-30T23Z” for a 1-hour duration in Gregorian calendar, and potential future calen-
dar types.

Requirement 17
In a coverage using the grid-regular scheme, the resolution value in a
CIS::RegularAxis shall be a nonzero, positive value expressed in the units of measure of
this axis as defined in the CRS identified in the srsName item of the envelope.

The set of direct positions in a grid is given by the number of grid points. In the simplest case
of a grid with index axes only, this is the product of the axis extents. For more complex grid
types this computation gets more involved.

For some CIS::GeneralGrid g, let nx be the number of CIS::IndexAxis elements, nr
the number of CIS::RegularAxis elements, ni the number of CIS::Irregular axis el-
ements, nd the number of CIS::DisplacementAxisNest elements associated with any of
the CIS::DisplacementAxis items, and nt be the number of CIS::Transformat-
ionModel elements associated with any of the CIS::TransformationAxis items.

Let the following positive integer numbers be defined for the number of direct position coor-
dinates along axes or axis combinations:

• IndexAxis:
pxa := g.a.upperBound – g.a.lowerBound + 1 for aÎ g.CIS::IndexAxis;

• RegularAxis:
pra := ë(g.a.upperBound–g.a.lowerBound)/resolution+1û (i.e., rounded down)
for aÎ g.CIS::RegularAxis;

• IrregularAxis:
pia := card(g.a.directPositions) for aÎ g.CIS::IrregularAxis;

 32 Copyright © 2017 Open Geospatial Consortium

• DisplacementAxis:
pdd := card(g.d.directPositions) for dÎ g.displacement;

• TransformationAxis:
ptm := card(f(g)) for mÎ g.model where f is a function on g delivering all direct po-
sitions (such as a sensor model);

Then, the number np of direct positions in g is given by the product of all the above items:

np := P pxa * P pra * P pia * P pdd * P ptm
 a a a d m

where a partial product is 1 if no such item exists..

Requirement 18 :
The RangeSet of a coverage containing the above CIS::GeneralGrid g shall contain
exactly np value items.

8. Class grid-irregular

8.1 Overview

This class grid-irregular adds coverages of irregular axis types to the GeneralGridCov-
erage introduced with class grid-regular. Figure 6 shows some common 2-D grid types
tractable with class grid-irregular.

The concept builds upon axis types with individual characteristics, such as non-referenced,
referenced-equidistant, referenced-nonequidistant, etc. from which CRSs and, hence, grids
are assembled. All axis types can be combined freely in a grid. This model includes the GML
3.3 [3] grid types ReferenceableGridByVector and ReferenceableGridByArray
as special cases and allows representing all grid types.

Figure 6: Some grid types: equidistant (far left), equidistant-skewed (left),
irregular (right), displaced (far right) [2]

Note Skewed and rotated grids such as shown in Figure 6 can be represented by making the grid’s
CRS a concatenation of any given CRS with an Engineering CRS describing, e.g., any affine transfor-
mation of the original grid.

8.2 Irregular independent grid axes

The first extension over regular axes consists of irregular axes where spacing along an axis
can have any positive increment. Graphically, this can be represented by straight lines (but
consider that existence of values between direct positions is possibly guided by interpolation
restrictions). Such axes are modelled by type CIS::IrregularAxis.

 33 Copyright © 2017 Open Geospatial Consortium

Example This allows grid representations like swath data, but also mixes like Lat/Long/t datacubes over
orthorectified imagery where Lat and Long are equidistant while acquisition time, hence t, is irregular. This
is schematically shown in Figure 7 (left).

8.3 Irregular correlated grid axes

The second extension consists of building axis groups, informally called “nests”, within
which the coordinates of direct positions are not tied to the crossing points of “straight” grid
lines. Instead, coordinates can vary freely; however, the topological neighbourhood relation-
ship is retained. This leads to “displaced grids” as shown in Figure 6 far right (but consider
that the curves drawn suggest a particular interpolation scheme which may or may not be al-
lowed as per interpolation restrictions).

Not all axes in a grid need to participate in a nest, and a grid may contain several disjoint
nests (although this case is unlikely).

Example A grid displaced in Lat/Long may also contain a time axis not involved in this nest. This situa-
tion is shown in Figure 7 where the vertical axis is not involved in the displacement field. Further, a grid
may contain several nests, which, however, need to be disjoint in their participating axis sets.

Figure 7: Sample grid combining regular and irregular axes (left) and irregular axes
and “displaced” grids; time axis is drawn vertically

Class grid-irregular extends class grid-regular with further axis types, hence it requires im-
plementation of that class.

Requirement 19 :
A coverage instantantiating class grid-irregular shall conform with class grid-regular.

The new axis types require storage of additional information. While for a regular axis a single
resolution value is sufficient per axis, irregular grids require a sequence of direct positions
along the axis (axis type CIS::IrregularAxis).

Nests require an n-D tensor, i.e., an array which stores the coordinates of each direct position
for the axes participating in the nest (cf. CIS::DisplacementAxisNest).

 34 Copyright © 2017 Open Geospatial Consortium

Requirement 20 :
A coverage using the grid-irregular scheme shall conform with Figure 8, Table 14, and
Table 15.

An irregular axis abandons the equidistant spacing of a regular axis. Therefore, all direct po-
sitions along such an axis must be enumerated explicitly which is achieved by replacing the
lower bound / resolution / upper bound scheme by an ordered list of direct positions.

Note GML 3.3 type ReferenceableGridByVector resembles the special case that all axes
are irregular, but independent. In CIS, this is modelled through a CIS::GeneralGrid that has only
axes of type CIS::IrregularAxis.

Figure 8: UML diagram of CIS::GeneralGrid structure as per grid-irregular

class CIS::GeneralGridCov erage (as per grid-irregular)

AbstractGridCoverage

«Feature Type»
GeneralGridCov erage

«Data Type»
GeneralGrid

+ srsName :anyURI

«Data Type»
IrregularAxis

+ directPositions :DirectPosition [1..*] {ordered}
+ uomLabel :string

«Data Type»
DisplacementAxisNest

+ axisLabels :string [1..*] {ordered}
+ uomLabels :string [1..*] {ordered}
+ directPositions :DirectPosition [1..*] {ordered}
+ sequenceRule :GML:sequenceRule [0..1]

«Data Type»
Axis

+ axisLabel :string

{ordered}

+axis 0..*

+domainSet

+displacement 0..*

 35 Copyright © 2017 Open Geospatial Consortium

Table 14 CIS::IrregularAxis structure

Name Definition Data type Multiplicity
direct-
Positions

Ordered sequence of direct po-
sitions along this axis

CIS::Direct-
PositionType

One or more
(mandatory)

uomLabel unit of measure in which val-
ues along this axis are ex-
pressed

String One
(mandatory)

An axis being part of a displacement grouping generalizes irregular axes further. Several axes
together represent a grid where the individual direct positions of range values are situated ar-
bitrary in space/time. The CIS::DisplacementAxisNest combines several axes to a sin-
gle “nest” where the coordinates are enumerated individually for each direct position.

Therefore, the direct positions are no longer associated with individual axes, but collectively
form an array (tensor) which is stored in the CIS::DisplacementAxisNest structure,
associated with the axes involved. The linearization scheme of this array is stated in the
sequenceRule the same way as the linearization is described for the range set array.

Table 15 CIS::DisplacementAxisNest structure

Name Definition Data type Multiplicity
axisLabels Axes involved in the “nest” of

displaced direct positions;
these axes shall form a subset
of the CIS::GeneralGrid
axisLabels

string One or more
(mandatory)

uomLabels units of measure in which val-
ues along the axes are ex-
pressed

string One or more
(mandatory)

direct-
Positions

Array of direct positions along
this axis, linearized according
to the sequence rule or, if
missing, along the GML 3.2.1
[2] default

string One or more
(mandatory)

sequenceRule Description of the array line-
arization in directPosit-
ions, according to the GML
3.2.1 [2] sequence rule

GML::
sequenceRule

Zero or one
(optional)

Note 1 Not all axes of a coverage need to participate in such a displacement “nest”. For example, Lat
and Long may form a surface in 3-D space whereas time axis is irregular. This is the case described in Fig-
ure 7 (right).

 36 Copyright © 2017 Open Geospatial Consortium

Note 2 The GML 3.3 type ReferenceableGridByArray resembles the special case that all
axes form one nest – in other words, for each range value its direct position is explicitly listed in the do-
main set. This case is reflected in CIS through a CIS::GeneralGrid which has only axes of type
CIS:: DisplacementAxis with one CIS::DisplacementAxisNest array (holding the
direct position coordinates) associated with all these axes.

Requirement 21 :
In a coverage using the grid-irregular scheme, the directPosition values in any
CIS::IrregularAxis shall be listed in strictly monotonic order, expressed in the units of
measure of this axis as defined in the CRS identified in the srsName item of the envelope.

Note “Strictly monotonic” means that the sequence of position values is either completely in increas-
ing order, or decreasing. Neither are changes in direction is allowed, nor equality of any two positions. This
is to ensure that applications will not run into singularities causing, e.g., a division by zero.
There is no corresponding monotonicity requirement on displaced axes (in the way Requirement 21 states
for irregular axes). In practice, coverage generators should avoid grids that may lead to issues in coverage
consumers - for example, singularities like neighbouring points sharing the same coordinate could lead to a
division by zero. Conversely, applications reading coverages should be ruggedized to cope with borderline
cases in an appropriate way.

Requirement 22 :
In a coverage using the grid-irregular scheme, for any two CIS::DisplacementAxis-
Nest elements their set of axis names shall be disjoint.

All combinations of axis types index and regular (from class grid-regular) as well as irregu-
lar and displaced (from class grid-irregular) are permitted. However, no two axes may have
the same name (i.e., axis label).

Example In a Lat/Long/t timeseries datacube, axes Lat and Long form a nest represented by two axes
with axis name Lat and Long, resp., of type CIS::RegularAxis and one axis named t of type CIS
::IrregularAxis storing all the image acquisition timestamps.

9. Class grid-transformation

9.1 Overview

Class grid-transformation establishes coverages with algorithmically defined grids. Currently
one such transformation is defined which is based on SensorML 2.0 [5].

9.2 General

Requirement 23 :
A coverage using the grid-transformation scheme shall implement class grid-regular.

Requirement 24 :
A coverage using the grid-transformation scheme shall conform with Figure 9 and Table 16.

The cases currently supported by this standard – algorithmic transformation and specifically
SensorML model – are defined in the Subclauses below.

9.3 Transformation

Grid definitions in the previous Clauses of this standard are defined through some well-
known principle and (comparatively simple) computation methods. In the most general case,
however, this is not the case, and only some special-built code – here called a

 37 Copyright © 2017 Open Geospatial Consortium

“transformation” – with some particular variable instantiation can determine the direct posi-
tions of the grid. A special case of a transformation is provided by SensorML 2.0 [5], in CIS
modelled through coverage type CIS::SensorModelCoverage.

Note It is recommended to ensure that transformations are invertible (i.e., an inverse transformation
exists) in order to support the determination of the associated grid location of a given direct position.

Figure 9: UML diagram of CIS::GeneralGridCoverage structure
as per grid-transformation

Table 16 CIS::TransformationModel structure

Name Definition Data type Multiplicity
axisLabels List of axes involved in the trans-

formation model
string One or more

(mandatory)

uomLabels units of measure in which values
along the axes are expressed

string One or more
(mandatory)

class CIS::GeneralGridCov erage (as per grid-transformation)

«Data Type»
Axis

+ axisLabel :string

«Data Type»
GeneralGrid

+ srsName :anyURI

«Data Type»
TransformationModel

+ axisLabels :string [1..*] {ordered}
+ uomLabels :string [1..*] {ordered}

AbstractGridCoverage

«Feature Type»
GeneralGridCov erage

+axis 0..*

+domainSet

+model 0..*

 38 Copyright © 2017 Open Geospatial Consortium

9.4 SensorML grid

Aside from the general definition, this standard supports one special case of such a transfor-
mation as defined by SensorML 2.0 [5]. Such a sensor model involves two inputs: a sensor
model description containing free variables plus a separate set of variable instantiations
(Table 17). As the sensor model defines the grid and its direct positions, this transformation
effectively represents the coverage domain set.

Figure 10: UML diagram of CIS::GeneralGridCoverage structure
as per SensorML

Requirement 25 :
In coverage of type CIS::SensorModelCoverage every
CIS::TransformationModel shall be of type
CIS::TransformationBySensorModel as specified in Figure 10 and Table 17.

Table 17 CIS::TransformationBySensorModel structure

Name Definition Data type Multiplicity
sensorModel SensorML model yielding the

direct positions of the grid
SML::
Abstract-

One
(mandatory)

class CIS::GeneralGridCov erage (as per SensorML)

«Data Type»
GeneralGrid

+ srsName :anyURI

AbstractGridCoverage

«Feature Type»
GeneralGridCov erage

«Data Type»
TransformationModel

+ axisLabels :string [1..*] {ordered}
+ uomLabels :string [1..*] {ordered}

«Data Type»
Axis

+ axisLabel :string

«Feature Type»
SensorModelCov erage

«Data Type»
TransformationBySensorModel

+ sensorModel :SML::AbstractProcessPropertyType
+ sensorInstance :SML::AbstractProcessPropertyType [0..1]

{ordered}

details omitted

+axis 0..*

+model 0..*

+domainSet

+model 0..*

 39 Copyright © 2017 Open Geospatial Consortium

Process-
PropertyType

sensor-
Instance

Parameter values for the sen-
sor model

SML::
Abstract-
Process-
PropertyType

Zero or one
(optional)

The CIS::TransformationBySensorModel of the SensorML grid inherits attributes
uomLabels and axisLabels that will be a directive to the sensor model software for the
computed output geo locations. In general, these attributes will have no effect whatever on
sensor model calculations except for the last stage when the output geo locations will be
transformed from the native units and CRS of the software to the specified units and CRS of
the CIS::TransformationBySensorModel.

Example 1 The following XML fragment defines the DomainSet of a frame camera sensor image
modelled as a CIS::TransformationBySensorModel.

<DomainSet>
 <GeneralGrid srsName="http://www.opengis.net/def/crs/EPSG/0/4326"
 axisLabels="Lat Long">
 <GridLimits srsName=
 "http://www.opengis.net/def/crs/OGC/0/Index2D"
 axisLabels="i j">
 <IndexAxis axisLabel="i" lowerBound="0" upperBound="1919"/>
 <IndexAxis axisLabel="j" lowerBound="0" upperBound="1079"/>
 </GridLimits>
 <TransformationBySensorModel
 uomLabels="deg deg" axisLabels="Lat Long">
 <SensorModel xlink:href=
 "http://www.sensorml.com/csmFrame.html"/>
 <SensorInstance xlink:href=
 "http://www.sensorml.com/myHDCamera.html"/>
 </TransformationBySensorModel>
 </GeneralGrid>
</DomainSet>

Example 2 The following SensorML 2.0 defines parameters of a 2D electro-optical grid of a frame camera
sensor, as part of a sensor model description referenced in the SensorModel subelement.

<SensorModel>
 <swe:field name="pixelGrid">
 <swe:DataRecord>
 <swe:label>Pixel Grid Characteristics</swe:label>
 <swe:field name="numberOfRows">
 <swe:Count definition=
 "http://sensorml.com/ont/csm/property/NROWS">
 <swe:label>Number of Rows</swe:label>
 </swe:Count>
 </swe:field>
 <swe:field name="numberOfColumns">
 <swe:Count definition=
 "http://sensorml.com/ont/csm/property/NCOLS">

 40 Copyright © 2017 Open Geospatial Consortium

 <swe:label>Number of Columns</swe:label>
 </swe:Count>
 </swe:field>
 <swe:field name="rowSpacing">
 <swe:Quantity definition=
 "http://sensorml.com/ont/csm/property/ROW_SPACING">
 <swe:label>Row Spacing</swe:label>
 <swe:uom code="mm"/>
 </swe:Quantity>
 </swe:field>
 <swe:field name="columnSpacing">
 <swe:Quantity definition=
 "http://sensorml.com/ont/csm/property/COL_SPACING">
 <swe:label>Column Spacing</swe:label>
 <swe:uom code="mm"/>
 </swe:Quantity>
 </swe:field>
 </swe:DataRecord>
 </swe:field>
</sensorModel>

Example 3 The following SensorML 2.0 fragment sets parameters of a 2D electro-optical grid of a frame
camera sensor, as part of a sensor instance description referenced in the sensorInstance sub-ele-
ment of CIS::TransformationBySensorModel, coherent with the parameter definitions of
the previous example.

<sensorInstance>
 <sml:configuration>
 <sml:Settings>
 <sml:setValue ref="parameters/csm/pixelGrid/numberOfRows">
 1080
 </sml:setValue>
 <sml:setValue ref="parameters/csm/pixelGrid/numberOfColumns">
 1920
 </sml:setValue>
 <sml:setValue ref="parameters/csm/pixelGrid/rowSpacing">
 0.0074
 </sml:setValue>
 <sml:setValue ref="parameters/csm/pixelGrid/columnSpacing">
 0.0074
 </sml:setValue>
 </sml:Settings>
 </sml:configuration>
<sensorInstance>

Example 4 The following SensorML 2.0 snippet defines a 2D grid of a sensor model image through a list
of inputs consistent with the sensorModel and sensorInstance subelements above.

<sml:inputs>
 <sml:InputList>
 <sml:input name="pixelGridCoordinates">
 <swe:Vector referenceFrame=
 "http://www.opengis.net/def/crs/OGC/0/IndexCRS2D">
 <swe:coordinate name="r">
 <swe:Quantity definition=
 "http://sensorml.com/def/property/ImageRowPosition">
 <swe:label>Row Position</swe:label>

 41 Copyright © 2017 Open Geospatial Consortium

 <swe:uom xlink:href=
 "http://sensorml.com/def/property/pixel"/>
 </swe:Quantity>
 </swe:coordinate>
 <swe:coordinate name="c">
 <swe:Quantity definition=
 "http://sensorml.com/def/property/ImageColumnPosition">
 <swe:label>Column Position</swe:label>
 <swe:uom xlink:href=
 "http://sensorml.com/def/property/pixel"/>
 </swe:Quantity>
 </swe:coordinate>
 </swe:Vector>
 </sml:input>
 </sml:InputList>
</sml:inputs>

10. Class discrete-pointcloud

Class discrete-pointcloud defines coverages which represent sets of multi-dimensional points
at arbitrary positions.

The domain set of a discrete coverage consists of spatial and/or temporal objects, finite in
number. The range set is comprised of a finite number of attribute values each of which is as-
sociated to every direct position within any single spatiotemporal object in the domain. In
other words, the range values are constant on each spatiotemporal object in the domain. This
coverage function maps each element from the coverage domain to an element in its range.

Requirement 26 :
A coverage instantiating class discrete-pointcloud shall conform with class coverage.

Requirement 27 :
A coverage using the discrete-pointcloud scheme shall conform with Figure 11 and Table 18.

Note While this definition is based on GML it does not preclude a GML encoding (through class
gml-coverage); the same structures may be represented in any other suitable format (using class other-for-
mat-coverage).

class CIS::AbstractDiscreteCov erage (as...

GMLCOV::AbstractDiscreteCoverage

«Feature Type»
MultiPointCov erage

«Data Type»
DirectMultiPoint

+domainSet

 42 Copyright © 2017 Open Geospatial Consortium

Figure 11: UML diagram of CIS::MultiPointCoverage structure

In a MultiPointCoverage the domain set is a GM_MultiPoint, that is a collection of
arbitrarily distributed geometric points.

Table 18 CIS::MultiPointCoverage structure

Name Definition Data type Multiplicity
DomainSet Direct positions of coverage,

describing points
CIS::Direct-
MultiPoint

One
(mandatory)

11. Class discrete-mesh

This class discrete-mesh establishes those discrete coverages which have a non-zero topologi-
cal dimension, thereby extending class discrete-pointcloud. As such, it defines coverages
consisting of curve, surface, and solid bundles, resp.

Requirement 28 :
A coverage using the discrete-mesh scheme shall implement class discrete-pointcloud.

Requirement 29 :
A coverage using the discrete-mesh scheme shall implement GMLCOV/CIS 1.0 coverage
types CIS10::MultiCurveCoverage, CIS10::MultiSurfaceCoverage, and
CIS10::MultiSolidCoverage.

Note While this definition is based on the conceptual model of GML it does not preclude a GML en-
coding (through class gml-coverage); the same structures may be represented in any other suitable format
(using class other-format-coverage).

12. Class gml-coverage

12.1 Overview

Class gml-coverage establishes how coverages, as defined in this standard, are represented in
the GML encoding format.

Note To make the GML schema of CIS more lightweight and self-contained, several GML defini-
tions have been migrated into the CIS schema, at the same time simplifying these very general definitions
for the particular use with coverages. Further, highly repetitive elements have been given particularly short
to keep file size low. Therefore, strictly speaking the GML conformance class of CIS 1.1 is not a GML Ap-
plication Profile anymore in the sense as defined in the GML standard.

The following convention has been adopted throughout CIS 1.1 for gml-coverage:

• Element and type names are in camel case with first letter capitalized

• Attribute names are in camel case with first letter lowercase.

Note This is a change over the corresponding schema definitions in GML 3.2.1 and GMLCOV/CIS
1.0 (which adheres to GML 3.2.1) where both lower and upper case can appear in element names, depend-
ing on their role in the schema. The reason for this change is to achieve coherent upper/lower case conven-
tions across the XML, JSON, and RDF encoding of CIS as well as to simplify XML handling towards com-
mon XML Schema practices.

 43 Copyright © 2017 Open Geospatial Consortium

Requirement 30 :
A coverage using the gml-coverage scheme shall implement class coverage.

Requirement 31 :
In a coverage encoded in GML, the coverage document represented shall conform to the
XML Schema definitions and Schematron rules being part of this standard.

Note 1 The XML Schema contained in this standard does not copy the abstract class definitions of Fig-
ure 2; rather, it deviates by not defining namespaces for GMLCOV/CIS 1.0 and GML 3.3. This allows
applications which utilize only CIS 1.1 coverages to avoid pulling massive additional GML Schema files
during validation.

Note 2 Coverage identifiers, as per GML are represented as gml:id attributes of XML type
NCName which has constraints in the characters allowed. Therefore, naming of coverages is constrained,
too, to such identifiers when using GML encoding.

This GML encoding is prepared for split representations where different parts of a coverage
reside in different objects (such as files or databases), individually encoded. For example, do-
main set, range type, and range set each can independently be given by a URL; the same is
possible for metadata – although it does not contain a file reference explicitly, its <any> defi-
nition allows for a URL as well.

Each range value is either atomic or composed from atomic values, each individually en-
closed in an element.

Requirement 32 :
In a coverage encoded in GML, each atomic range value (i.e., cis:v element) shall contain
exactly one value.

Note Such values will normally be numbers, encoded dates (as per ISO 8601), etc. The exact type
definition for each range value component is governed by the range type.

Example The XML Schema being part of this specification contains several examples for different cov-
erages encoded in XML.

References in GML are indicated through type xs:anyURI which specifies general syntax
and semantics of URIs up to, and excluding, resolution of the fragment part (i.e, the URI part
starting with a number sign, “#”). Fragment resolution is specified analogously to HTML:

Requirement 33 :
In a URI reference to a coverage component instantiating class gml-coverage the URI frag-
ment component, if present, shall identify the value of a gml:id attribute in the target XML
resource.

Example The following XML snippet demonstrates a possible way to incorporate a CRS definition
within the coverage document:

<GeneralGridCoverage>
 <DomainSet>
 <GeneralGrid srsName="#myCrs"/>
 ...
 </DomainSet>
 ...
 <Metadata>

 44 Copyright © 2017 Open Geospatial Consortium

 <myLocalCrs gml:id="myCrs">
 here goes my CRS definition in GML, WKT, or otherwise
 </myLocalCrs>
 </Metadata>
</GeneralGridCoverage>

12.2 Coverage representation

Coverages can be encoded in any suitable format. One such format is established in GML
3.2.1 [2] stating that domain set items are mapped to range set items in XML document order
or file sequence order, respectively.

Note As this statement above is not conformance testable no corresponding normative requirement is
established.

13. Class json-coverage

Class json-coverage establishes how coverages, as defined in this standard, are represented in
the JSON encoding format.

Requirement 34 :
A coverage using the json-coverage scheme shall implement class coverage.

Requirement 35 :
A coverage encoded in JSON test shall conform to IETF RFC7159.

Requirement 36 :
In a coverage encoded in JSON, the coverage document represented shall conform to the
JSON Schema definitions being part of this standard.

Example The following JSON snippet is an example of a JSON encoded coverage.

{
 "type": "CoverageByDomainAndRangeType",
 "DomainSet":{
 "type": "DomainSetType",
 "generalGrid":{
 "type": "GeneralGridCoverageType",
 "srsName":
 "http://www.opengis.net/def/crs/OGC/0/Index2D",
 "axisLabels": ["i", "j"],
 "axis": [{
 "type": "IndexAxisType",
 "axisLabel": "i",
 "lowerBound": 0,
 "upperBound": 2
 },{
 "type": "IndexAxisType",
 "axisLabel": "j",
 "lowerBound": 0,
 "upperBound": 2
 }]
 }
 },
 "RangeSet": {
 "type": "RangeSetType",

 45 Copyright © 2017 Open Geospatial Consortium

 "dataBlock": {
 "type": "VDataBlockType",
 "values": [1,2,3,4,5,6,7,8,9]
 }
 },
 "RangeType": {
 "type": "DataRecordType",
 "field":[{
 "type": "QuantityType",
 "definition": "ogcType:unsignedInt",
 "uom": {
 "type": "UnitReference",
 "code": "10^0"
 }
 }]
 }
}

Note The JSON Schema being part of this specification has been used to validate the examples for
different coverages encoded in JSON also provided.

14. Class rdf-coverage

Class rdf-coverage establishes how to represent coverages as Linked Data in RDF. This is
done by providing a mapping between the JSON encoding and the RDF triples model using
JSON-LD which allows that a JSON file with some additional content, defined in the W3C
JSON-LD syntax [20], can be converted into RDF notation automatically using the W3C
JSON-LD API [21].

Note One implementation of this API is provided in the JSON-LD Playground (http://json-
ld.org/playground/).

Requirement 37 :
A coverage encoded in RDF shall conform to W3C RDF 1.1 Concepts and Abstract Syntax
[22] and shall be constructed as if derived from a JSON encoded coverage which additionally
conforms to W3C JSON-LD version 1 [20].

Note This conformance class has a dependency on the json-coverage only if the RDF encoding is de-
rived from JSON-LD. The dependency on this class is not normative as coverage instances of this class can
be RDF encoded without any previous use of JSON or JSON-LD to derive it.
Although this conformance class refers to class json-coverage it is not normatively dependent on this class
as coverage instances of this class do not implement the JSON encoding, but RDF. Subsequent require-
ments detail the structure of a hypothetical JSON-LD coverage leading to the RDF coverage defined.

Requirement 38 :
A coverage encoded in JSON-LD shall include a reference to a JSON-LD @context docu-
ment for the coverage’s root object and other JSON-LD @context documents for the ob-
jects DomainSet, RangeSet, RangeType, envelope and partitionSet when these
objects are present.

Note Coverage components which are not in the above list of objects require personalized JSON-LD
@context objects embedded or linked to allow mapping to the RDF models. One example for this is
the metadata object.

 46 Copyright © 2017 Open Geospatial Consortium

Note The JSON-LD @context documents being part of this specification have been used to vali-
date that examples of the different coverages encoded in JSON-LD also provided can be successfully con-
verted to RDF.

Example The sample JSON code being part of this specification contains the necessary @context ob-
jects that can be linked or embedded in other JSON instances wanting to be conformant to this standard.

Requirement 39 :
A coverage encoded in JSON-LD shall embed or include a reference to a @context object
defining the abbreviated and full namespace of the object identifiers in the way defined by
the W3C JSON-LD standard.

Note This @context object is not included as a separated JSON-LD @context document be-
cause id namespaces are commonly responsibility of the data provider and should be provided by them.
The provides can decide to provide a JSON-LD @context document to include by reference to several
coverages or can embed this definition directly in the coverage.

Requirement 40 :
In a coverage encoded in JSON-LD, each object shall contain an id and type property
where id values shall be composed by the abbreviated namespace for ids, a “:” (colon)
character and the id value, and the type property shall be the name of the object’s data type
without namespace.

Note Large lists of values or coordinates embedded in the document are likely to produce exces-
sively large RDF encodings. Therefore, instead of including them in the JSON file directly it can be advan-
tageous to store such parts in separate files and reference these instead.

Example 1 Some of the sample JSON files being part of this specification have the values embedded (in
places where potentially large lists will be used in practice) instead of being factored out into separated
files. This is for didactic purpose only, these values are not be mapped to RDF when using the JSON-LD
@context documents provided.

Example 2 The following JSON snippet illustrates an example of a JSON-LD encoded coverage with links
to the @context document provided by this standard.

{
 "@context": ["http://schemas.opengis.net/cis/1.1/json/coverage-
context.json",
 {"examples": "http://www.opengis.net/cis/1.1/examples/"}],
 "type": "CoverageByDomainAndRangeType",
 "id": "examples:CIS_05_2D",
 "DomainSet":{
 "@context": "http://schemas.opengis.net/cis/1.1/json/domainset-
context.json",
 "type": "DomainSetType",
 "id": "examples:CIS_DS_05_2D",
 "generalGrid":{
 "type": "GeneralGridCoverageType",
 "id": "examples:CIS_DS_GG_05_2D",
 "srsName": "http://www.opengis.net/def/crs/OGC/0/Index2D",
 "axisLabels": ["i", "j"],
 "axis": [{
 "type": "IndexAxisType",
 "id": "examples:CIS_DS_GG_I_05_2D",
 "axisLabel": "i",
 "lowerBound": 0,

 47 Copyright © 2017 Open Geospatial Consortium

 "upperBound": 2
 },{
 "type": "IndexAxisType",
 "id": "examples:CIS_DS_GG_J_05_2D",
 "axisLabel": "j",
 "lowerBound": 0,
 "upperBound": 2
 }]
 }
 },
 "RangeSet": {
 "@context": "http://schemas.opengis.net/cis/1.1/json/rangeset-
context.json",
 "type": "RangeSetType",
 "id": "examples:CIS_RS_05_2D",
 "fileReference": "http://myserver.com/fileref.tiff"
 },
 "RangeType": {
 "@context": "http://schemas.opengis.net/cis/1.1/json/rangetype-
context.json",
 "type": "DataRecordType",
 "id": "examples:CIS_RT_05_2D",
 "field":[{
 "type": "QuantityType",
 "id": "examples:CIS_RT_F_05_2D",
 "definition": "ogcType:unsignedInt",
 "uom": {
 "type": "UnitReference",
 "id": "examples:CIS_RT_F_UOM_05_2D",
 "code": "10^0"
 }
 }]
 }
}

Example 3 The following RDF triples representation corresponds to the JSON-LD encoded coverage
listed above:

<http://www.opengis.net/cis/1.1/examples/CIS_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/cis/1.1/CoverageByDomainAndRangeType> .

<http://www.opengis.net/cis/1.1/examples/CIS_05_2D>

<http://www.opengis.net/cis/1.1/DomainSet>
<http://www.opengis.net/cis/1.1/examples/CIS_DS_05_2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_05_2D>
<http://www.opengis.net/cis/1.1/generalGrid>
<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/cis/1.1/DomainSetType> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D>
<http://www.opengis.net/cis/1.1/axis>
<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_I_05_2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D>
<http://www.opengis.net/cis/1.1/axis>
<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_J_05_2D> .

 48 Copyright © 2017 Open Geospatial Consortium

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D>
<http://www.opengis.net/cis/1.1/axisLabels>
<http://www.opengis.net/cis/1.1/axisLabels0> .

<http://www.opengis.net/cis/1.1/axisLabels0>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#first> "i" .

<http://www.opengis.net/cis/1.1/axisLabels0>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#rest>
<http://www.opengis.net/cis/1.1/axisLabels1> .

<http://www.opengis.net/cis/1.1/axisLabels1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#first> "j" .

<http://www.opengis.net/cis/1.1/axisLabels1>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#rest>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#nil> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D>
<http://www.opengis.net/cis/1.1/srsName>
<http://www.opengis.net/def/crs/OGC/0/Index2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/cis/1.1/GeneralGridCoverageType> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_I_05_2D>
<http://www.opengis.net/cis/1.1/axisLabel> "i" .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_I_05_2D>
<http://www.opengis.net/cis/1.1/lowerBound>
"0"^^<http://www.w3.org/2001/XMLSchema#integer> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_I_05_2D>
<http://www.opengis.net/cis/1.1/upperBound>
"2"^^<http://www.w3.org/2001/XMLSchema#integer> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_I_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/cis/1.1/IndexAxisType> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_J_05_2D>
<http://www.opengis.net/cis/1.1/axisLabel> "j" .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_J_05_2D>
<http://www.opengis.net/cis/1.1/lowerBound>
"0"^^<http://www.w3.org/2001/XMLSchema#integer> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_J_05_2D>
<http://www.opengis.net/cis/1.1/upperBound>
"2"^^<http://www.w3.org/2001/XMLSchema#integer> .

<http://www.opengis.net/cis/1.1/examples/CIS_DS_GG_J_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/cis/1.1/IndexAxisType> .

<http://www.opengis.net/cis/1.1/examples/CIS_05_2D>

<http://www.opengis.net/cis/1.1/RangeSet>
<http://www.opengis.net/cis/1.1/examples/CIS_RS_05_2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_RS_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/cis/1.1/RangeSetRefType> .

<http://www.opengis.net/cis/1.1/examples/CIS_RS_DB_05_2D>
<http://www.opengis.net/cis/1.1/fileReference>
<http://myserver.com/fileref.tiff> .

<http://www.opengis.net/cis/1.1/examples/CIS_05_2D>

<http://www.opengis.net/cis/1.1/RangeType>
<http://www.opengis.net/cis/1.1/examples/CIS_RT_05_2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_RT_05_2D>
<http://www.opengis.net/swe/2.0/field>
<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_05_2D> .

 49 Copyright © 2017 Open Geospatial Consortium

<http://www.opengis.net/cis/1.1/examples/CIS_RT_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/swe/2.0/DataRecordType> .

<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_05_2D>
<http://www.opengis.net/swe/2.0/definition>
<http://www.opengis.net/def/dataType/OGC/0/unsignedInt> .

<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_05_2D>
<http://www.opengis.net/swe/2.0/uom>
<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_UOM_05_2D> .

<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/swe/2.0/QuantityType> .

<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_UOM_05_2D>
<http://www.opengis.net/swe/2.0/code> "10^0" .

<http://www.opengis.net/cis/1.1/examples/CIS_RT_F_UOM_05_2D>
<http://www.w3.org/1999/02/22-rdf-syntax-ns#type>
<http://www.opengis.net/swe/2.0/UnitReference> .

15. Class other-format-coverage

Class other-format-coverage establishes how coverages are represented in encoding formats
other than those defined in this standard.

Note Such formats may be able to encode only parts of a coverage (i.e., they are “informationally
incomplete”), and they may be able to encode only specific categories of coverages (such as raster images,
but not point clouds).

Requirement 41 :
A coverage using the other-format-coverage scheme shall implement class coverage.

16. Class multipart-coverage

16.1 Overview

Class multipart-coverage establishes how coverages can be packaged into multiple files,
meaning that the coverage document (henceforth referred to as the “first part”) has one or
more components shifted out into separate documents (henceforth called “further parts”). To
maintain connection between the parts, the first part references all other parts through URLs
(which may be local). Packaging can be done through any appropriate container format. Ad-
ditionally, parts can be stored outside the package, referenced by URLs.

Note Among the suitable container formats are multipart MIME [4], GMLJP2, zip, and tar. Out of
those, MIME is normatively defined here.

Such a splitting is particularly useful for the range set so as to allow a different, possibly
more efficient encoding of this (typically) bulk of information. However, with the same argu-
ment other parts of the coverage (such as a large domain set with displaced axes) can be
shifted into further parts as well.

To achieve a complete representation of the coverage, the encoding used in the first part must
be “informationally complete”, i.e.: able to hold the complete coverage information. Further,
it must be allow expressing references (which replace the substructure – such as the range set
– to be shifted into a separate part). Notably, the format used in the further parts does not
need to be informationally complete with respect to coverage metadata; however, it must be
able to represent the values factored out of the first-part document.

 50 Copyright © 2017 Open Geospatial Consortium

Note Among the list of suitable formats for the first part are GML and JSON. Image/data formats
like GeoTIFF and NetCDF are suitable formats for the further parts.

Requirement 42 :
A coverage using the multipart-coverage scheme shall implement class coverage.

Requirement 43 :
A coverage encoded as a multipart MIME message shall adhere to IETF RFC 2387 [16] in
that it consists of a multipart MIME document with a Content-Type parameter of value
“Multipart/Related” and a Type parameter containing a MIME type identifier match-
ing the encoding of the first (“root”) part; references to further parts located in the same
container as the first-part coverage shall use a local "cid" (Content-ID) URL as specified by
IETF RFC 2392 [17].

Note 1 The MIME type identifier of GML, for example, is “application/gml+xml”.

Note 2 In GMLCOV/CIS 1.0 a ContentDisposition parameter of value “inline” was re-
quired. This is not required any more in CIS 1.1.

References used in coverage parts follow common URI standards for syntax [18] and seman-
tics [12].

16.2 Root part

The root part of a multipart coverage consists of the top-level structure of the coverage. Each
container format needs to individually determine how this root part is represented.

Example In Multipart / MIME, this is the first item in the stream. In a zip file, it might be a manifest file.
Each format needs establish unambiguous conventions, such as a particular file name in a zip archive.

Requirement 44 :
In a coverage encoded as per class multipart-coverage, the root part shall be a complete
coverage as per this standard, but with one or more components replaced by a reference to the
further parts of the multipart message where these components replaced get manifested.

Example In a GML encoded coverage, a reference can be expressed through a fileReference ele-
ment.

Note Each part of the message can be encoded in different formats individually and independently.

Requirement 45 :
In a coverage encoded as per class multipart-coverage, references from the first message part
(containing the coverage root part) to subsequent parts shall use the method foreseen by the
container format to achieve an unambiguous identification of the further parts located in the
same container as the first-part coverage.

Note 1 Generally, syntax and semantics of the reference may depend on the environments in which the
coverage containing the reference, on the one hand, and the item referenced, on the other hand, reside: in a
multipart MIME message, this will be cid identifiers; in a zip file, identification will be done through file
names and paths relative to the zip directory root; this hierarchical scheme would allow relative references.
In a GMLJP2 file, identification will be done through XML identifiers, i.e., locally unique gml:id attributes.
If keeping a sandboxed environment is important, e.g., for security reasons, the W3C app: URI scheme
[13] might be used.

 51 Copyright © 2017 Open Geospatial Consortium

Note 2 A reference may be temporarily or permanently unresolvable. In case of an unresolvable refer-
ence, the coverage may still be reconstructable through other means – for example, treatment of CRSs
given by some well-known URI may be hardwired in an application handling coverages.

16.3 Further parts

The root part may, instead of containing coverage constituents verbatim, shift such constitu-
ents into subsequent parts of the multipart document and reference them.

Requirement 46 :
In a coverage encoded as per class multipart-coverage, any part referenced from the root part
shall contain the complete information required to substitute the reference and obtain a
complete coverage as per class coverage.

Note In GMLCOV/CIS 1.0, only one extra part was foreseen exclusively for the range set. Starting
with CIS 1.1 more than one coverage component can be extracted into a separate part. Besides the (often
large) range set, another candidate for a separate part is the domain set in a coverage with displaced axes, as
such a domain set may become just as large as the range set. In a Discrete Coverage, the domain set typi-
cally is even larger than the range set.

Example The following MIME message represents a valid multipart coverage structure with the root
part encoded in GML and the second part encoded in TIFF (assuming all “...” substituted by proper XML
and with a proper TIFF stream instead of “...binary TIFF data...”):

Content-Type: Multipart/Related; boundary=cis;
 start="GML-Part"
 type="application/gml+xml"

--cis
Content-type: application/gml+xml
Content-ID: GML-Part

<?xml version="1.0" encoding="UTF-8"?>
...GML data...
--cis
Content-Type: image/tiff
Content-Description: coverage data
Content-Transfer-Encoding: binary
Content-ID: grey.tif
Content-Disposition: inline

...binary TIFF data...
--cis--

17. Class coverage-partitioning

17.1 Overview

This class coverage-partitioning establishes an alternative representation for coverages
through partitioning into sub-coverages or direct enumeration of position/value pairs.

17.2 Partitioning

With the coverage extensions provided by this class coverages can be composed from other
coverages which are either copied in directly (“domain-and-range” variant), or referenced by
coverage id (“partitioning” variant), or can contain single values per direct position (“posi-
tion/value pair” variant, sometimes also called “geometry/value pair” or “interleaved”).

 52 Copyright © 2017 Open Geospatial Consortium

Coverages embedded (“sub-coverages”) can be of the same or lower dimension than the cov-
erage embedding them (“super-coverage”). The partition element in the super-coverage,
acting as a connection between sub- and super-coverage, contains an envelope element de-
termining the sub-coverage’s position relative to the super-coverage. A coverage can be part
of several partitioned coverages simultaneously, thereby allowing shared regions. A parti-
tioned coverage can itself be part of another partitioned coverage, thereby allowing trees of
coverages to be built recursively.

In the position/value pair approach, single range values (which may be composite, such as
RGB pixel values) are listed together with their direct position.

All of the above variants can be combined freely within a single coverage as per this stand-
ard. However, an implementation may constrain the partitioning choices available, such as to
“partitioning only along time axis” or “only equi-sized sub-coverages”. Further, it may sup-
port selection of partitioned and “geometry/value pair” representation.

Requirement 47 :
A coverage using the coverage-partitioning scheme shall conform to class coverage.

Requirement 48 :
A coverage using the coverage-partitioning scheme shall conform to Figure 12, Table 19,
Table 20, Table 21, Table 22, and Table 23.

The partitioning mechanism effectively establishes a nesting of coverages. This nesting must
be acyclic, i.e.: a coverage cannot contain itself.

Requirement 49 :
A coverage shall not reference itself through a partition element, neither directly nor in-
directly.

All “sub-coverages” participating in a partitioned coverage must lie inside the super-coverage
and additionally must fulfill homogeneity criteria to ensure that the resulting structure ad-
heres to the definition of a coverage, as specified in the following Subclauses.

A coverage can act as sub-coverage in more than one coverages.

 53 Copyright © 2017 Open Geospatial Consortium

Figure 12: UML diagram of CIS::CoverageByPartitioning structure
as per coverage-partitioning

Table 19 CIS::CoverageByPartitioning structure

Name Definition Data type Multiplicity
partition-
Set

Set of coverages or single position-
ed values which together make up
the coverage on hand

CIS::
PartitionSet

one
(mandatory)

Table 20 CIS::PartitionSet structure

Name Definition Data type Multiplicity
partition Sub-coverage being part of the

coverage on hand, together with
positioning information

CIS::
Partition

Zero or one
(optional)

value Range value being part of the cov-
erage on hand, together with posi-
tioning information

CIS::Position
ValuePair

Zero or one
(optional)

Table 21 CIS::Partition structure

Name Definition Data type Multiplicity
envelope Envelope of sub-coverage making

up this partition;
CIS::Envelope
ByAxis

Zero or one
(optional)

class CIS::AbstractCov erage (as per cov erage-partitioning)

Feature

«Feature Type»
AbstractCoverage

«Data Type»
Metadata

+ any :any [0..*]

«Feature Type»
CoverageByPartitioning

«Data Type»
Partition

+ envelope :EnvelopeByAxis [0..1]

«Data Type»
RangeSet

+ value :any [0..*] {ordered}

«Feature Type»
CoverageByDomainAndRange

«Data Type»
DomainSet

«Data Type»
PositionValuePair

+ directPosition :DirectPosition
+ value :any

SWE Common :: DataRecord

«Data Type»
RangeType

«Data Type»
InterpolationRestriction

+ allowedInterpolation :anyURI [0..*]

refined in the
individual
coverage types

structure of values is
defined by RangeType,
multiplicity defined by
DomainSet

«Data Type»
PartitionSet

+partitionSet +domainSet

+coverage

+partition 0..* +value 0..*

+metadata0..1

+interpolationRestriction0..1

+rangeType+rangeSet

 54 Copyright © 2017 Open Geospatial Consortium

default: envelope of the coverage
referenced

coverage Coverage acting as partition
(directly stored here or through
some resolvable reference, such as
coverage id or a URL)

CIS::Abstract
Coverage

One
(mandatory)

Table 22 CIS::PositionValuePair structure

Name Definition Data type Multiplicity
direct-
Position

Direct position of the coverage to
which value is assigned

string One
(mandatory)

value Coverage value to be associated
with directPosition

any One
(mandatory)

Table 23 CIS::RangeTypeComponentTranslation structure

Name Definition Data type Multiplicity
super-
Coverage-
Component-
Name

Name of range type component as
defined in the super-coverage
range type

string One
(mandatory)

sub-
Coverage-
Component-
Name

Name of corresponding range type
component as defined in the sub-
coverage range type

string One
(mandatory)

Sub-coverages can be stored directly as the value of coverage, or they can be given as
some reference, such as coverage id or a URL.

Note Support for these alternatives may vary across data format encodings. Further, as this is a nor-
mative requirement which a server must fulfill an implementation possibly will restrict the options for ref-
erencing coverages to those ones where it can control this acyclicity requirement.

17.3 CRS and partition envelope constraints

The sub-coverage CRS must allow that the coverage data can be embedded in the super-cov-
erage referencing it.

Requirement 50 :
For any coverage s with domain set CRS cs being a partition of some coverage c with domain
set CRS cc, the following shall hold: cs is obtained from cc by deleting zero or more axes
from cc.

Note This definition enforces an identical axis order among those axes present in both the sub- and
super-coverage CRSs.

 55 Copyright © 2017 Open Geospatial Consortium

Example A timeseries datacube with CRS axes Lat/Long/t can contain sub-coverages whose CRS axes
are given by Lat/Long, but not by Long/Lat. A datacube with axis order t/Lat/Long likewise can contain
sub-coverages with a Lat/Long CRS.

Lower-dimensional sub-coverages are embedded as slices of thickness one into the super-
coverage.

Requirement 51 :
For any axis not occurring in the domain set CRS cp of coverage p but listed as a partition of
some coverage c with domain set CRS cc, lowerBound = upperBound shall hold in the
envelope of the p partition referencing s.

Note This allows to “lift”coverage parts into higher-dimensional spaces in the super-coverage, such
as embedding a 2-D Lat/Long timeslice into a 3-D Lat/Long/time datacube.

The CIS::partitionEnvelope element does not need to repeat coordinate axis values of
the sub-coverage if they are identical in the context of the super-coverage.

Requirement 52 :
For any axis of the domain set CRS cc of some coverage c containing some coverage p as a
partition, any axis not listed in c’s partitionEnvelope within p the default
lowerBound and upperBound of this axis in the partitionEnvelope shall be given
by the corresponding values in the DomainSet of p.

Note Axis identification and sequence is unambiguous even when axes are left out because part-
itionEnvelope coordinates are expressed in terms of the super-coverages CRS which defines all axes
and their sequence.

17.4 Domain set constraints

The sub-coverage domain sets, as well as single direct positions, must be non-overlapping
(considering all axes plus the range components) and properly contained in the super-cover-
age; missing boundary values are represented as a null value.

Note Such null values can be used whenever the actual extent of the super-coverage is not known in
the super-coverage itself, such as in timeseries where further timeslices can be appended at any time. The
representation of such a null value is defined in the concrete encodings.

Requirement 53 :
For any coverage p referenced as partition in a coverage c, the envelope of p shall be a
subset of the domain set of c, obtained by ignoring all values of lowerBound and
UpperBound in the envelope of c which have a null value.

Requirement 54 :
For any coverage c of type CIS:CoverageByPartitioning, all partition and
value components shall have pairwise disjoint extents across any of its range components.

Example Band-interleaved (BIL) representation can be achieved through multiple sub-coverages all reg-
istered to the same extent, but each one adding an individual band.

Requirement 55 :
In a coverage containing at least one direct position for which no value is stored there shall
be at least one null (i.e., nil) value defined in its range type.

 56 Copyright © 2017 Open Geospatial Consortium

Note 1 Such “undefined areas” can only occur with coverages containing partitions (in a domain /
range representation there must always exist a value for each direct position). This rule makes sure that
“null values” exist when needed.

Note 2 Such “default” null values can differ among direct positions, an implementation is free to
choose values non-deterministically. It is good practice, though, to use a single value whenever possible.

17.5 Range type constraints

Sub- and super-coverage must have compatible range types – either identical ones, or parti-
tions contribute parts of the full super-coverage range component record.

Requirement 56 :
For any coverage p with range type rp referenced as a partition in a coverage c with
range type rc, the following shall hold: rp is obtained from rc by deleting zero or more range
components from rc.

Note Sub-coverage bands are visible in the super-coverage under the name indicated in the range
type translation list, which obviously must not lead to name clashes in the super-coverage (i.e., range com-
ponent names still have to be pairwise distinct). Further, from the super-coverage perspective, all range
components “imported” must adhere to the same range type definition to not violate the basic definition of
range type coherence in a coverage.

Example Band-interleaved storage of satellite imagery, as well as variables in climate model output can
be accomplished this way: single bands, or combinations of bands, can go into separate sub-coverages
which are linked together through a super-coverage.

If the partitions altogether are not commensurate to the complete range type structure then the
range components not covered are equivalent to some null value (which must be defined in
this case).

Requirement 57 :
In any coverage containing at least one range component for which no value is stored there
shall be at least one null (i.e., nil) value defined in the corresponding range type component.

Example 1 Consider an RGB coverage where the color bands are factored out into partitions. Assume that
there are only partitions for the red and green, but not for the blue band. In this case, the range type defini-
tion of the RGB coverage must provide a null value for the blue band so that an equivalent “flat” coverage
can be constructed which contains null values in all direct positions for the missing blue band.

Example 2 Band interleaving combined with spatial partitioning (such as in mosaics) may lead to small
islands of null values. For each of them, a proper null value definition must exist allowing an implementa-
tion to interpret the missing value as one of these null values.

18. Class container

This class container, which is free-standing and not dependent on class coverage, establishes
a general data type and format independent information unit. Such units are particularly use-
ful when aggregating homogeneous information (such as several coverages) or heterogeneous
information (such as coverages annotated with other coverages, features, and metadata).

Note Container objects can be conveniently queried by XPath when encoded in XML, and by similar
existing techniques when encoded in some other format like JSON. This notwithstanding, there is no re-
striction on the encoding – individual components of an object may be encoded individually in different
formats.

 57 Copyright © 2017 Open Geospatial Consortium

The definition of the target structure, CIS::Object, is tentatively as general as ever possi-
ble. Applications will derive bespoke instantiatable subclasses from this abstract class.

Requirement 58 :
An object using the container scheme shall conform to Figure 13.

Figure 13: UML diagram of CIS::Object structure as per container

Note This container approach is intended to align with related standards on heterogeneous data and
services on them. Information from such objects can be extracted, for example, through the XPath-based
retrieval defined in the OGC Web Information Service (WIS) [10].

class Container

«Data Type»
Object

58 Copyright © 2017 Open Geospatial Consortium

Annex A
(normative)

Abstract Test Suite

This Annex specifies an Abstract Test Suite which shall be passed in completeness by any
implementation claiming conformance with this Application Schema.

The test approach conceptually consist of two steps:

• Transcode the coverage from its original format into one of the formats directly ad-
dressed by this standard4, following the mapping rules defined for the particular origi-
nal format on hand5.

• Perform all conformance tests on this transcoded coverage representation. Tests
fail/succeed if they fail/succeed, resp., on this transcoded representation.

A concrete test implementation may choose a different strategy (may be for efficiency rea-
sons) as long as the tests behave as indicated in this Abstract Test Suite.

A.1 Conformance Test Class: coverage

Test Purpose: Requirement 1

Test method: Test the coverage under test:

• If the coverage passes the tests of CIS 1.1 core conformance class
coverage (disregarding this Requirement 2), pass test.

• Otherwise, if the coverage passes the tests of GMLCOV/CIS 1.0
core conformance class gml-coverage, pass test.

• Otherwise, if the coverage is a gridded coverage and it passes the
tests of GMLCOV/CIS 1.0 core conformance class gml-coverage
with a grid structure as defined in GML 3.3, pass test.

• Otherwise, fail test.

Test Purpose: Requirement 2

Test method: Determine the encoding of the coverage under test:

4 Currently, this is GML; in future, JSON will be added.
5 At the time of this writing, such OGC coverage mapping standards exist for GeoTIFF, GMLJP2, and NetCDF; GRIB
is under construction.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 59

• If the encoding is GML, perform the conformance test defined for
class gml-coverage.

• Otherwise, if the encoding is in some other format:

o Convert the coverage into one of the formats directly ad-
dressed by this CIS standard, according to the coverage map-
ping defined for the corresponding encoding standard;

o perform the conformance test defined of the resp. format;

o perform the conformance test defined for class other-format-
coverage.

• Otherwise, fail test.

Test passes overall if all detail checks pass.

Test Purpose: Requirement 3

Test method: Verify that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML
model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Verify that all necessary elements are present
(with the exception described in class other-format-coverage).

Test passes if all detail checks pass.

Test Purpose: Requirement 4

Test method: From the coverage under test extract the envelope, if present.

• If none present: pass test.

• If present: verify that it consists of a CIS::EnvelopeByAxis ele-
ment with the required structure.

Test passes if all constraints evaluate to true.

Test Purpose: Requirement 5

Test method: From the coverage under test extract the envelope, if present.

• If none present: pass test.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 60

• If present: verify that all constraints are fulfilled.

Test passes if all detail checks pass.

Test Purpose: Requirement 6

Test method: From the coverage under test extract the envelope, if present.

• If none present: pass test.

• If present: verify constraint for all occurrences of axisExtent.

Test passes if all constraints evaluate to true.

Test Purpose: Requirement 7

Test method: From the coverage under test extract the envelope, if present.

• If none present: pass test.

• If present: If the envelope uses a CRS different from the
DomainSet then first transform the envelope CRS coordinates
into the DomainSet CRS. Check that the envelope describes a
bounding box around the DomainSet, taking into account all axes
of the DomainSet CRS.

Test passes if all detail checks pass.

Test Purpose: Requirement 8

Test method: In the coverage under test, verify that for each axis in the domain set the co-
ordinates of all direct positions are within the closed interval [lowerBound,
upperBound] indicated in the corresponding axis extent.

Test passes if all detail checks pass.

Test Purpose: Requirement 59

Test method: In the coverage under test, inspect the coherence of the domain set axis defi-
nitions with the CRS referenced, as required.

Test passes if all detail checks pass.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 61

Test Purpose: Requirement 9

Test method: In the coverage under test, inspect the RangeType component and verify that
the structure is as required.

Test passes if all detail checks pass.

Test Purpose: Requirement 10

Test method: In the coverage under test, inspect all SWE Common AbstractSimple-
Component subtypes in a range type structure and verify that no value
component is present6.

Test passes if all detail checks pass.

Test Purpose: Requirement 11

Test method: In the coverage under test, inspect the range type structure and verify that
each SWE Common AbstractSimpleComponent item is of the allowed
subtypes listed.

Test passes if all detail checks pass.

Test Purpose: Requirement 12

Test method: In the coverage under test, verify that for each location defined in the do-
main set there is exactly one corresponding value in the range set.

Test passes if all detail checks pass.

Test Purpose: Requirement 13

Test method: In the coverage under test, verify for each range value tuple:

• Number of tuple components adheres to range structure definition.

6 In case of a GML encoding, the corresponding schematron rule provided with the XML Schema checks this.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 62

• Data type (including unit of measure, where indicated) of each
range value conforms to the corresponding data type specification in
the range structure definition.

Test passes if all detail checks pass.

A.2 Conformance Test Class: grid-regular

Test Purpose: Requirement 14

Test method: The coverage under test must pass all tests of class coverage.

Test passes if all detail checks pass.

Test Purpose: Requirement 15

Test method: Check that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML
model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Check that all necessary elements are present.

Test passes if all detail checks pass.

Test Purpose: Requirement 16

Test method: Check that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML
model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Check that all necessary elements are present.

Test passes if all detail checks pass.

Test Purpose: Requirement 17

Test method: In the coverage under test, verify that the requirement is met by each regular
axis.

Test passes if all detail checks pass.

Test Purpose: Requirement 18

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 63

Test method: In the coverage under test, verify:

• if the coverage’s domain set contains a CIS::GeneralGrid then
verify whether the equation for the number of direct positions in the
grid is fulfilled.

• Otherwise, pass test.

Test passes if all detail checks pass.

A.3 Conformance Test Class: grid-irregular

Test Purpose: Requirement 19

Test method: The coverage under test must pass all tests of class grid-regular.

Test passes if all detail checks pass.

Test Purpose: Requirement 20

Test method: Check that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML
model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Check that all necessary elements are present.

Test passes if all detail checks pass.

Test Purpose: Requirement 21

Test method: In the coverage under test, verify monotonicity for every axis of type
CIS::IrregularAxis in the domain set.

Test passes if all detail checks pass.

Test Purpose: Requirement 22

Test method: In the coverage under test, verify that all displacement axes have pairwise
different names.

Test passes if all detail checks pass.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 64

A.4 Conformance Test Class: grid-transformation

Test Purpose: Requirement 23

Test method: The coverage under test must pass all tests of class grid-regular.

Test passes if all detail checks pass.

Test Purpose: Requirement 24

Test method: Check that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML
model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Check that all necessary elements are present.

Test passes if all detail checks pass.

Test Purpose: Requirement 25

Test method: In the coverage under test, verify:

• If its type is CIS::SensorModelCoverage, verify that each axis
in the domain set is of type CIS::TransformationAxis and
that there is exactly one CIS::TransformationModel.

• Otherwise, pass test.

Test passes if all detail checks pass.

A.5 Conformance Test Class: discrete-pointcloud

Test Purpose: Requirement 26

Test method: The coverage under test must pass all tests of class coverage.

Test passes if all detail checks pass.

Test Purpose: Requirement 27

Test method: Check that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 65

model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Check that all necessary elements are present.

Test passes if all detail checks pass.

A.6 Conformance Test Class: discrete-mesh

Test Purpose: Requirement 28

Test method: The coverage under test must pass all tests of class discrete-pointcloud.

Test passes if all detail checks pass.

Test Purpose: Requirement 29

Test method: Check that the coverage under test conforms with one of the coverage types
listed.

Test passes if all detail checks pass.

A.7 Conformance Test Class: gml-coverage

Test Purpose: Requirement 30

Test method: The coverage under test must pass all tests of class coverage.

Test passes if all detail checks pass.

Test Purpose: Requirement 31

Test method: In the coverage under test, if it is encoded in XML then verify that the docu-
ment body validates against the schema and the Schematron rules being part
of this standard.

Test passes if all detail checks pass.

Test Purpose: Requirement 32

Test method: In the coverage under test, verify for each that each element contains exactly
one value conforming to the coverage’s range type definition.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 66

Test passes if all detail checks pass.

Test Purpose: Requirement 33

Test method: In the coverage under test, verify for each reference targeting an XML docu-
ment that the fragment, if present, identifies a gml:id attribute in the target
document.

Test passes if all detail checks pass.

A.8 Conformance Test Class: json-coverage

Test Purpose: Requirement 34

Test method: The coverage under test must pass all tests of class coverage.

Test passes if all detail checks pass.

Test Purpose: Requirement 35

Test method: In the coverage under test, if it is encoded in JSON then verify that the docu-
ment conforms to IETF RFC7159.

Test passes if all detail checks pass.

Test Purpose: Requirement 36

Test method: In the coverage under test, if it is encoded in JSON then verify that the docu-
ment body validates against the schema being part of this standard.

Test passes if all detail checks pass.

A.9 Conformance Test Class: rdf-coverage

Test Purpose: Requirement 37

Test method: In the coverage under test, if it is encoded in RDF then verify that the docu-
ment conforms to W3C RDF 1.1 and can be derived from a JSON-LD en-
coded coverage as defined in this conformance class and W3C JSON-LD
version 1.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 67

Test passes if all detail checks pass.

Test Purpose: Requirement 38

Test method: In the coverage under test, if it is encoded in JSON-LD then verify that the
document links to the @context documents being part of this standard for
the root object and the objects DomainSet, RangeSet, RangeType,
envelope and partitionSet if these objects are present.

Test passes if all links required are present .

Test Purpose: Requirement 39

Test method: In the coverage under test, if it is encoded in JSON-LD then verify that all
abbreviated namespaces for identifiers are defined in a @context section

Test passes if all detail checks pass.

Test Purpose: Requirement 40

Test method: In the coverage under test, if it is encoded in JSON-LD then verify that all
objects in the JSON document have two properties with the name “id” and
“type”. In addition, verify that the “id” values use an abbreviated
namespace and “type” values do not.

Test passes if all detail checks pass.

A.10 Conformance Test Class: other-format-coverage

Test Purpose: Requirement 41

Test method: The coverage under test must pass all tests of class coverage.

Test passes if all detail checks pass.

A.11 Conformance Test Class: multipart-coverage

Test Purpose: Requirement 42

Test method: The coverage under test must pass all tests of class coverage.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 68

Test Purpose: Requirement 43

Test method: In the coverage under test, verify:

• If it is encoded as a multipart message, verify all MIME conditions.
Test passes if all partial tests pass.

• Otherwise, pass test.

Test passes if all detail checks pass.

Test Purpose: Requirement 44

Test method: In the coverage under test, verify:

• If it is encoded in a multipart message, extract the first part. Substi-
tute all references from this part into subsequent parts of the same
message by the resp. message contents. Verify that there are no dan-
gling references and that the resulting document is a valid coverage
by applying all tests required by this conformance class multipart-
coverage.

• Otherwise, pass test.

Test passes if all detail checks pass.

Test Purpose: Requirement 45

Test method: In the coverage under test, verify:

• If it is encoded in a multipart message, verify that all references into
subsequent parts are valid (i.e., no dangling links) in accordance
with the container format used.

• Otherwise, pass test.

Test passes if all detail checks pass.

Test Purpose: Requirement 46

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 69

Test method: In the coverage under test, replace all references by the reference target
(while decoding the target format appropriately). If no error occurs, perform
tests of class coverage on the resulting coverage.

Test passes if all detail checks pass.

A.12 Conformance Test Class: coverage-partitioning

Test Purpose: Requirement 47

Test method: The coverage under test must pass all tests of class coverage.

Test passes if all detail checks pass.

Test Purpose: Requirement 48

Test method: Check that the coverage under test contains the information structures de-
fined by this requirement. This involves checks against the complete UML
model, including classes, attributes and their values, associations, multiplici-
ties, and further constraints. Check that all necessary elements are present.

Test passes if all detail checks pass.

Test Purpose: Requirement 49

Test method: In the coverage under test, verify all partition references do not form a
circle, neither through directly referencing itself nor indirectly through a cir-
cular reference chain.

Test passes if all detail checks pass.

Test Purpose: Requirement 50

Test method: In the coverage under test, verify for each sub-coverage referenced in a
partition, that the super/sub-coverage CRS condition holds.

Test passes if all detail checks pass.

Test Purpose: Requirement 51

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 70

Test method: In the coverage under test, verify for each partition that all axes fulfil the
constraint required.

Test passes if all detail checks pass.

Test Purpose: Requirement 52

Test method: In the coverage under test, verify for each partition that all axes fulfil the
constraint required.

Test passes if all detail checks pass.

Test Purpose: Requirement 53

Test method: In the coverage under test, verify for each partition that the constraint re-
quired holds.

Test passes if all detail checks pass.

Test Purpose: Requirement 54

Test method: In the coverage under test, determine the set of all partition and value com-
ponents. Verify that for any two components in this set their extent is dis-
joint for each range component.

Test passes if all detail checks pass.

Test Purpose: Requirement 55

Test method: In the coverage under test, verify:

• If there is at least one direct position in the domain set of the cover-
age for which no range value is stored: verify that a least one null
value is defined in the range set.

• Otherwise, pass test.

Test passes if all detail checks pass.

Test Purpose: Requirement 56

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 71

Test method: In the coverage under test, verify that each partition’s range type is a subset
of the coverage under test, with any eventual range component name transla-
tion duly applied.

Test passes if all detail checks pass.

Test Purpose: Requirement 57

Test method: In the coverage under test, check whether there is a value missing for any
range type component. If such a gap exists, verify that the range type has at
least one null value defined for the range component in which this gap oc-
curs.

Test passes if all detail checks pass.

A.13 Conformance Test Class: container

Test Purpose: Requirement 58

Test method: On the object under test, no tests are defined in this standard (structural con-
straints will be added by applications instantiating this scheme).

Test passes always.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 72

Annex B
(non-normative)
Revision History

Date Release Author Paragraph modified Description
2015-07-23 1.1.0 Peter Baumann All Reworked for 1.1, based on 1.0
2015-11-22 1.1.0 Peter Baumann Annex A Added test suite
2016-05-24 1.1.0 Peter Baumann,

Eric Hirschorn,
Joan Maso

All Reflected RFC comments and further
stakeholder input; added JSON and
JSON-LD/RDF

2016-11-27 1.1.0 Peter Baumann Intro, Annex B More background explanations,
resolution of TC vote comments

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 73

Annex C
(non-normative)

Complete CIS::AbstractCoverage UML diagram collection

This Annex summarizes the UML diagrams presented in the normative part. For the reader’s
convenience they are split into coverage types, coverage structure, and grid coverages.

Figure 14: Coverage types

Figure 15: Coverage structure

class CIS::AbstractCov erage (cov erage types)

Feature

«Feature Type»
AbstractCoverage

«Feature Type»
GMLCOV::

MultiSolidCov erage

«Feature Type»
GMLCOV::

MultiSurfaceCov erage

«Feature Type»
GMLCOV::

MultiCurv eCov erage

«Feature Type»
MultiPointCov erage

«Feature Type»
GMLCOV::AbstractDiscreteCoverage

«Feature Type»
GMLCOV::RectifiedGridCov erage

«Feature Type»
GMLCOV::GridCov erage

«Feature Type»
GeneralGridCov erage

«Feature Type»
AbstractGridCoverage

may be deprecated
in forthcoming version

«Feature Type»
GMLCOV::ReferenceableGridCov erage

AbstractImplicitGeometry

«Data Type»
GML 3.2.1::Grid

«Data Type»
GML 3.2.1::RectifiedGrid

«Data Type»
GML 3.3::

AbstractReferenceableGrid

«Data Type»
GeneralGrid

«Data Type»
GML::MultiCurv e

«Data Type»
DirectMultiPoint

«Data Type»
GML::MultiSolid

«Data Type»
GML::MultiSurface

+domainSet+domainSet

+domainSet

+domainSet +domainSet +domainSet+domainSet +domainSet

class CIS AbstractCov erage

Feature

«Feature Type»
AbstractCoverage

«Data Type»
Metadata

+ any :any [0..*]

«Feature Type»
Cov erageByPartitioning

«Data Type»
Partition

+ envelope :EnvelopeByAxis [0..1]

«Data Type»
RangeSet

+ value :any [0..*] {ordered}

«Feature Type»
Cov erageByDomainAndRange

«Data Type»
DomainSet

«Data Type»
PositionValuePair

+ directPosition :DirectPosition
+ value :any

SWE Common :: DataRecord

«Data Type»
RangeType

«Data Type»
InterpolationRestriction

+ allowedInterpolation :anyURI [0..*]

refined in the
individual
coverage types

structure of values is
defined by RangeType,
multiplicity defined by
DomainSet

«Data Type»
PartitionSet

+metadata0..1

+coverage

+rangeSet+domainSet +rangeType

+interpolationRestriction0..1

+partitionSet

+partition 0..* +value 0..*

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 74

Figure 16: Grid coverages

class CIS::AbstractGridCov erage (grid cov erage)

«Feature Type»
GMLCOV::RectifiedGridCov erage

+ envelope :GML::Envelope [0..1]

«Feature Type»
GMLCOV::GridCov erage

+ envelope :GML::Envelope [0..1]

«Feature Type»
GeneralGridCov erage

«Data Type»
RegularAxis

+ lowerBound :string
+ upperBound :string
+ resolution :string
+ uomLabel :string

«Data Type»
IrregularAxis

+ directPositions :DirectPosition [1..*] {ordered}
+ uomLabel :string

«Feature Type»
SensorModelCov erage

«Data Type»
DisplacementAxisNest

+ axisLabels :string [1..*] {ordered}
+ uomLabels :string [1..*] {ordered}
+ directPositions :DirectPosition [1..*] {ordered}
+ sequenceRule :GML:sequenceRule [0..1]

«Data Type»
Axis

+ axisLabel :string

«Data Type»
GeneralGrid

+ srsName :anyURI

«Data Type»
IndexAxis

+ lowerBound :int
+ upperBound :int

«Data Type»
TransformationModel

+ axisLabels :string [1..*] {ordered}
+ uomLabels :string [1..*] {ordered}

«Data Type»
TransformationBySensorModel

+ sensorModel :SML::AbstractProcessPropertyType
+ sensorInstance :SML::AbstractProcessPropertyType [0..1]

AbstractCoverage

«Feature Type»
AbstractGridCoverage

AbstractImplicitGeometry

«Data Type»
GML 3.2.1::Grid

«Data Type»
GML 3.3::AbstractReferenceableGrid

«Data Type»
GML 3.2.1::RectifiedGrid

«Feature Type»
GMLCOV::

ReferenceableGridCov erage

may get
deprecated
in future

«Data Type»
GridLimits

+ srsName :anyURI

details omitted

A grid must have at least one axis, of any type:
{ | axis | + | displacement | + | model | > 0 }

+model 0..*+displacement 0..*

+domainSet

+model 0..*

+axis 0..*+gridLimits 0..1

+indexAxis 1..*

+domainSet +domainSet

+domainSet

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 75

Annex D
(non-normative)

Relation to Other Standards

D.1 Abstract Topic 6 / ISO 19123

ISO 19123 (which is identical to OGC Abstract Topic 6 [1]) defines an abstract coverage
model. This model tentatively is general and abstract; as a consequence, different and incom-
patible coverage implementations are possible. The OGC Coverage Implementation Schema,
therefore, complements it with a concrete coverage structure definition which can be con-
formance tested and allows for interoperable implementations.

The following table correlates ISO 19123 and GMLCOV/CIS 1.0 and CIS 1.1 coverage
types. Note that continuous coverages are modelled separately in ISO 19123 whereas in CIS
they consist of discrete coverages together with some interpolation method; typically, this
will be specified in the interpolation method associated with the range type (starting CIS 1.1);
alternatively, the coverage function can express interpolation (starting GMLCOV/CIS 1.0).

Those coverage types which represent point clouds and general meshes (i.e., all non-gridded
coverages) are consistent with the modelling introduced by GML 3.2.1, Consequently, all
corresponding ISO 19123 types are implemented by CIS types MultiPointCoverage, Mul-
tiCurveCoverage, MultiSurfaceCoverage, and MultiSolidCoverage.

ISO 19123:2003 coverage type CIS coverage type

CV_Coverage Coverage (CIS 1.0 or 1.1)

CV_DiscreteCoverage Coverage (CIS 1.0 or 1.1)

CV_DiscretePointCoverage MultiPointCoverage (CIS 1.0 or
1.1 with no interpolation method)

CV_DiscreteGridPointCoverage GeneralGridCoverage (CIS 1.1
with no interpolation method)

or GridCoverage / RectifiedGrid-
Coverage / ReferenceableGrid-

Coverage (CIS 1.0)

CV_DiscreteCurveCoverage MultiCurveCoverage (CIS 1.0 or
1.1) with no interpolation method

CV_DiscreteSurfaceCoverage MultiSurfaceCoverage (CIS 1.0 or
1.1) with no interpolation method

CV_DiscreteSolidCoverage MultiSolidCoverage (CIS 1.0 or
1.1) with no interpolation method

CV_ContinuousCoverage Coverage (CIS 1.0 or 1.1) with at
least one interpolation method

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 76

CV_ContinuousQuadrilateralGridCoverage GeneralGridCoverage (CIS 1.1)
with at least one interpolation

method

CV_ThiessenPolygonCoverage MultiSurfaceCoverage (CIS 1.0 or
1.1) with at least one interpolation

method

CV_HexagonalGridCoverage GeneralGridCoverage (CIS 1.1)
with at least one interpolation

method

CV_SegmentedCurveCoverage MultiCurveCoverage (CIS 1.0 or
1.1) with at least one interpolation

method

CV_TINCoverage MultiSurfaceCoverage (CIS 1.0 or
1.1) with at least one interpolation

method

Table 24 Correspondence between ISO 19123 and CIS coverage types

D.2 GML 3.2.1

In GML 3.2.1 [2], all coverage types are derived from the abstract Coverage data type con-
taining a DomainSet and a RangeSet component. The OGC coverage implementation
schema, CIS, extends this with two additional components, a mandatory RangeType and
optional metadata, an extensible slot for individual, application-specific metadata struc-
tures.

The GMLCOV/CIS 1.0 changes which apply over GML 3.2.1 are detailed in [5].

The following CIS 1.1 changes apply over GML 3.2.1 [2]:

• There are several extra concepts not present in GML 3.2.1, ranging from model (grid
definition by axis rather than by grid type, SensorML domains, etc.) over representa-
tion (partitioning and geometry/value pairs) to encoding (addition of JSON and
RDF).

• Coordinates are not required to be numeric only, but can also contain strings such as
ISO 8601 date/timestamps or categorical values. This is instrumental for general
multi-dimensional coverages.

• A point cloud coverage type, MultiPointCoverage, is provided which semanti-
cally is equivalent to GML 3.2.1 and GMLCOV/CIS 1.0, but allows string coordi-
nates as described above.

OGC 09-146r8

Copyright © 2017 Open Geospatial Consortium 77

Note GMLCOV/CIS 1.0 coverage types MultiCurveCoverage, MultiSurface-
Coverage, and MultiSolidCoverage are not addressed by CIS 1.1, the original
GMLCOV/CIS 1.0 definitions remain valid.

D.3 GML 3.3

GML 3.3 [3] adds several grid types to GML 3.2.1. However, given the OGC modular speci-
fication rules these are not automatically available for GMLCOV/CIS 1.0. Further, these grid
types resemble only special cases omitting, for example, combinations of regular and irregu-
lar axes in the same datacube. The CIS 1.1 model encompasses and generalizes GML 3.3. In
the CIS 1.1 XML encoding, the GML 3.3 schema is included.

D.4 SWE Common

The RangeType element of a coverage describes the coverage's range set data structure (see
Clause 6). This range value structure description is adopting the SWE Common [4] Data-
Record.

D.5 Further Standards

The OGC standards WaterML 2 [OGC 10-126r4], TimeseriesML 1 [OGC 15-043rX], and
OM-JSON [OGC 15-100r1] represent domain-specific standards for which the OGC Cover-
age Implementation Schema establishes a domain-neutral basic data structure which can be
used whenever a coverage-like structure occurs; such standards, while retaining interopera-
bility by using the common coverage model, will likely extend coverages with domain spe-
cific metadata, such as done in TimerseriesML.

